Устройство и виды электронного балласта для люминесцентных ламп

Конструкции пускорегулирующих модулей

Конструкции промышленных и бытовых люминесцентных лампочек, как правило, оснащаются модулями ЭПРА. Аббревиатура читается вполне доходчиво – электронный пускорегулирующий аппарат.

Электромагнитное устройство старого образца

Рассматривая конструкцию этого устройства из серии электромагнитной классики, сразу можно отметить явный недостаток – громоздкость модуля.

Правда, конструкторы всегда стремились минимизировать габаритные размеры ЭМПРА. В какой-то степени это удалось, судя по современным модификациям уже в виде ЭПРА.

Набор функциональных элементов электромагнитного пускорегулирующего устройства. Его составными частями, как видно, являются всего два компонента – дроссель (так называемый балласт) и стартер (схема формирования разряда)

Громоздкость электромагнитной конструкции обусловлена внедрением в схему крупногабаритного дросселя – обязательного элемента, предназначенного сглаживать сетевое напряжение и выступать в качестве балласта.

Помимо дросселя, в состав схемы ЭМПРА входят стартеры (один или два). Очевидна зависимость качества их работы и долговечности лампы, т. к. дефект стартера вызывает фальшивый старт, что означает перегрузку по току на нитях накала.

Так выглядит один из конструктивных вариантов стартера пускорегулирующего электромагнитного модуля люминесцентных ламп. Существует масса других конструкций, где отмечается разница в размерах, материалах корпуса

Наряду с ненадежностью стартерного пуска, люминесцентные лампы страдают от эффекта стробирования. Проявляется он в виде мерцания с определенной частотой, близкой к 50 Гц.

Наконец, пускорегулирующий аппарат обеспечивает значительные энергетические потери, то есть в целом снижает КПД ламп люминесцентного типа.

Усовершенствование конструкции до ЭПРА

Начиная с 1990 годов, схемы люминесцентных ламп все чаще стали дополнять усовершенствованной конструкцией пускорегулирующего модуля.

Основу модернизированного модуля составили полупроводниковые электронные элементы. Соответственно, уменьшились габариты устройства, а качество работы отмечается на более высоком уровне.

Результат модификации электромагнитных регуляторов – электронные полупроводниковые устройства запуска и регулировки свечения люминесцентных ламп. С технической точки зрения, отличаются более высокими эксплуатационными показателями

Внедрение полупроводниковых ЭПРА привело практически к полному исключению недостатков, какие присутствовали в схемах аппаратов устаревшего формата.

Электронные модули показывают качественную стабильную работу и увеличивают долговечность люминесцентных светильников.

Более высокий КПД, плавное регулирование яркости, повышенный коэффициент мощности – все это преимущественные показатели новых модулей ЭПРА.

Общий принцип работы элемента

По сути, балласт для люминесцентных ламп представляет собой дроссель. Он регулирует силу подачи тока, ограничивая или разделяя разночастотные электрические сигналы. Ликвидирует пульсации постоянного тока. Происходит нагрев катодов люминесцентных ламп.

Далее, на них производится подача необходимого количества напряжения, которое активирует работу осветительного прибора. Напряжение корректируется с помощью особого регулятора, который впаян в инверторную схему. Именно он отлаживает диапазон напряжений. За счет вышеперечисленных особенностей работы балласта мерцание в источнике света полностью исключается.

В схему встроен и стартер. Его функции – трансляция напряжения и зажигание. При включении лампы, на микросхеме балласта происходит снижение силы тока. Данная особенность позволяет выстроить необходимый режим работы осветительного прибора.

Сегодня на рынке широко представлены такие виды балластных устройств, как:

  • электромагнитные;
  • электронные;
  • балласты для компактных ламп.

Представленные категории отмечены надёжной работой и обеспечивают длительное функционирование и простоту эксплуатации всех люминесцентных ламп. Все эти приборы имеют идентичный принцип действия, однако отличаются по некоторым пунктам.

Электромагнитные

Данные балласты применимы для ламп, подключенных к электросети при помощи стартера. Первично возникающий разряд интенсивно разогревает и замыкает биметаллические электродные элементы. Происходит резкое увеличение рабочего тока.

Электромагнитный балласт легко узнать по внешнему виду. Конструкция более массивная, по сравнению с электронным прототипом.

При выходе из строя стартера, в схеме электромагнитного балласта, возникает фальстарт. При поступлении питания лампа начинает мигать, впоследствии идёт ровная подача электроэнергии. Эта особенность значительно снижает рабочий ресурс источника освещения.

Плюсы Минусы
Высококлассный уровень надежности, доказанный практикой и временем. Долгий запуск — на первом этапе эксплуатации запуск осуществляется за 2-3 секунды и до 8 секунд к моменту завершения срока службы.
Простота конструкции. Повышенный расход электроэнергии.
Удобство эксплуатации модуля. Мерцание лампы с частотой 50 Гц (эффект стробирования). Негативно влияет на человека, который длительно находится в помещении с подобным видом освещения.
Доступная цена для потребителей. Слышен гул работы дросселя.
Количество фирм производителей. Значительный вес конструкции и громоздкость.

Электронные

Сегодня применяются магнитные и электронные балластники, которые состоят в первом случае из микросхемы, транзисторов, динисторов и диодов, а во втором – из металлических пластин и медного провода. Посредством стартера лампы запускаются, причем в качестве единой функции этого элемента с балластником в одной схеме организовано явление в электронном варианте детали.

  • малый вес и компактность;
  • плавное быстрое включение;
  • в отличие от электромагнитных конструкций, которым для работы требуется сеть 50 Гц, высокочастотные магнитные аналоги функционируют без шумов от вибрации и мерцания;
  • снижены потери на нагревание;
  • коэффициенты мощности в электронных схемах достигают 0,95;
  • продленный срок эксплуатации и безопасность применения обеспечиваются несколькими видами защиты.
Достоинства Недостатки
Автоматическая настройка балласта под различные виды ламп. Более высокая стоимость, по сравнению с электромагнитными моделями.
Моментальное включение осветительного прибора, без дополнительной нагрузки на устройство.
Экономия потребления электроэнергии до 30%.
Исключен нагрев электронного модуля.
Ровная световая подача и отсутствие шумовых эффектов в процессе освещения.
Увеличение срока службы люминесцентных ламп.
Дополнительная защита гарантирует увеличение степени пожаробезопасности.
Снижение рисков в процессе эксплуатации.
Ровная подача светопотока исключает быструю утомляемость.
Отсутствие негативных функций в условиях пониженных температур.
Компактность и легкость конструкции.

Для компактных люминесцентных ламп

Компактные типы ламп дневного света представлены приборами, аналогичным лампой накаливания типов Е27, Е40 и Е14. В таких схемах электронные балласты встраиваются вовнутрь патрона. В данной конструкции исключён ремонт в случае поломки. Дешевле и практичнее будет приобрести новую лампу.

Что такое

Электронный балласт использует твердотельные электронные схемы, чтобы обеспечить надлежащие пусковые и рабочие электрические условия для питания газоразрядных лампочек. Они часто основаны на топологии SMPS, сначала выпрямляя входную мощность, а затем прерывая ее с высокой частотой. Усовершенствованные ЭБ могут позволить регулировать яркость с помощью широтно-импульсной модуляции или путем изменения частоты на более высокое значение. Балласты, включающие микроконтроллер или цифровые схемы могут предлагать дистанционное управление и мониторинг через сети или простое аналоговое управление с использованием сигнала управления яркостью 0-10 В постоянного тока.


Конструкция ЭБ

Применение электронных балластов для HID освещения становится все более популярным. Большинство ЭБ нового поколения могут работать как с натриевыми (HPS) лампами высокого давления, так и с металлогалогенными устройствами, что снижает затраты систем освещения, которые используют оба типа ламп. Первоначально балласт работает как пускатель для дуги, подавая импульс высокого напряжения, а затем он функционирует как ограничитель/регулятор электрического потока внутри цепи. ЭБ работают намного холоднее и легче, чем их магнитные аналоги.

Люминесцентная лампа: принцип действия, достоинства и недостатки

— Принцип действия люминесцентных ламп

— Достоинства и недостатки люминесцентных ламп

Принцип действия Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали. В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора. Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500. 2000 В на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом. Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения.В своем движении электроны встречаются с нейтральными атомами газа — заполнителя полости трубки — и ионизируют их, выбивая электроны с верхней орбиты в пространство. Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии. Каждому инертному газу и парам металла соответствует свой спектральный состав излучаемого света: . трубки с гелием светятся светло-желтым или бледно-розовым светом; • трубки с неоном — красным светом; трубки с аргоном — голубым светом. Смешивая инертные газы или нанося люминофоры на поверхность разрядной трубки, получают различные оттенки свечения. Люминесцентные лампы дневного и белого света выполняют в виде прямой или дугообразной трубки из обычного стекла, не пропускающего короткие ультрафиолетовые лучи. Электроды изготавливают из вольфрамовой проволоки. Трубку заполняют смесью аргона и паров ртути. Внутри поверхность трубки покрыта люминофором — специальным составом, который светится под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в парах ртути. Аргон способствует надежному горению разряда в трубке.

Достоинства люминесцентных ламп. Основным преимуществом люминесцентных ламп по сравнению с лампами накаливания являются: . более высокий коэффициент полезного действия (15. 20%), высокая световая отдача и в несколько раз больший срок службы. Таким образом, при затрате той же мощности достигается значительно большая освещенность по сравнению с лампами накаливания; . правильный выбор ламп по цветности может создать освещение, близкое к естественному; о благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи; . люминесцентные лампы значительно менее чувствительны к повышениям напряжения, поэтому их экономично применять на лестничных клетках и в помещениях, освещаемых ночью, когда в сети напряжение повышено. Лампы накаливания (очень чувствительные к повышениям напряжения) быстро перегорают; . малая себестоимость; . низкая яркость поверхности и ее низкая температура (до 50 °С) Недостатки люминесцентных ламп Основным недостатками люминесцентных ламп по сравнению с лампами накаливания являются: « сложность схемы включения; • ограниченная единичная мощность (до 150 Вт); • зависимость от температуры окружающей среды (при снижении температуры лампы могут гаснуть или не зажигаться); » значительное снижение светового потока к концу срока службы; • вредные для зрения пульсации светового потока; » акустические помехи и повышенная шумность работы; в при снижении напряжения сети более чем на 10% от номинального значения лампа не зажигается; » дополнительные потери энергии в пускорегулирующеи аппаратуре, достигающие 25. 35% мощности ламп; • наличие радиопомех; • лампы содержат вредные для здоровья вещества, поэтому вышедшие из строя газоразрядные лампы требуют тщательной утилизации.

Основные функции балласта

Основным конструктивным элементом люминесцентной лампы служит стеклянная трубка, заполненная внутри одним из инертных газов – аргоном, неоном или криптоном. К газовому наполнителю добавляется небольшое количество ртути. Концы трубки оборудованы металлическими электродами, через которые подается напряжение. Под действием электрического поля возникает пробой газовой среды, появляется тлеющий разряд и далее – электрический ток в цепи устройства. Газовый разряд начинает излучать свет бледно-голубых тонов, слабо видимый в обычном диапазоне.

Однако, действующий электрический разряд переводит значительную часть энергии в диапазон ультрафиолетового света, невидимого человеческим глазом. Попадая на люминофорное покрытие, нанесенное на стенки колбы, ультрафиолет превращается в видимое свечение, которое и является основным источником света. Путем изменения химического состава покрытия можно получить различную цветовую гамму свечения. В большинстве ламп используются оттенки белого цвета, а для оформления декора или дизайна интерьера применяются любые другие цвета. Данное свойство дает несомненное преимущество перед обычными лампами накаливания.

После появления в газовой среде тока, происходит его дальнейший лавинообразный рост, в результате чего внутреннее сопротивление резко падает. В этот момент может наступить перегрев, и лампа выйдет из строя. Чтобы не допустить этого, осуществляется последовательное включение дополнительной нагрузки, ограничивающей величину тока. Именно она служит балластом, известным также под названием дросселя.

В люминесцентных схемах используется балласт электромагнитного и электронного типа. В первом случае используется классическая трансформаторная схема, состоящая из металлических пластин, медных проводов и других компонентов. Первоначальный запуск или поджиг выполняется пусковым устройством – стартером.

Второй вариант – электронный балласт для люминесцентной лампы, создан на базе электроники с использованием диодов, транзисторов, динисторов и микросхем. Данная схема выполняет и функцию пуска, в результате которого возникает тлеющий разряд. Таким образом, электронные устройства – ЭПРА получаются легкими и компактными, что во многом упрощает и всю конструкцию люминесцентной лампы.

Ремонтные работы

Ремонт мигающего осветительного прибора осуществляем в такой последовательности:

  1. Проверяем напряжение в электросети и качественность контактов.
  2. Меняем лампочку на исправную.
  3. Если светильник продолжает мигать, меняем стартер в светильниках ЭмПРА, проверяем дроссель. В случае с ЭПРА понадобится починка или замена электронного балласта.

Для выполнения ремонтных работ понадобится определенный набор инструментов, в том числе паяльник, мультиметр, отвертки. Очень неплохо, если кроме инструмента имеется хотя бы базовый набор познаний в электротехнике.

Электромагнитный балласт

Чтобы починить устройство с ЭмПРА, выполняем следующие действия:

  1. Проверяем конденсаторы. Применяются для снижения электромагнитных помех и компенсации недостатка реактивной мощности. В некоторых случаях неисправность связана с утечками тока в конденсаторах. Эту причину нужно исключить первой, чтобы избежать ненужной замены достаточно дорогостоящего конденсатора.
  2. Прозваниваем электромагнитный балласт, чтобы найти пробой. Если мультиметр имеет опцию замера индуктивности, по характеристикам дросселя ищем межвитковое замыкание. Перемотка балласта своими руками не стоит потраченного времени — это очень трудоемкая операция. В связи с этим балласт проще поменять или поставить электронный аналог. Нужный ЭПРА можно купить в магазине или достать из вышедшей из строя лампы.

Электронный балласт

Схемы ЭПРА отличаются в зависимости от производителя. Однако принцип их работы ничем не отличается друг от друга: нити накала характеризуются определенной индуктивностью, что дает возможность задействовать их в автоколебательном контуре. Контур включает конденсаторы и катушки, обладает обратной связью с инвертором, состоящим из мощных транзисторных ключей.

Когда нити нагреваются, их сопротивление возрастает, параметры колебаний меняются. Реакция инвертора состоит в выдаче напряжения для розжига лампочки. Происходит шунтирование током через ионизированную газовую среду напряжения на нитях, вследствие чего снижается накал. Обратная связь инвертора с автоколебательным контуром дает возможность управлять силой тока в лампочке.

Ремонт электронного балласта

Для диагностирования состояния ЭПРА в условиях мастерской применяют осциллограф, частотный генератор или другую измерительную технику. Если ремонт проводится дома, поиск проблемы осуществляется путем визуального осмотра электронной платы и последовательного поиска испорченного компонента с помощью подручных измерительных устройств.

Особенности светильников с ЭПРА

ЭПРА для светодиодов имеют компактные размеры, монтировать их в конструкцию достаточно легко. С ними возможно конструировать различные вариации люминесцентной и светодиодной иллюминации. Их практичность прекрасно совмещается с воссозданием комфортабельного, разнообразного и уникального освещения в различных условиях и для различных площадей, где сама практичность выражается:

  • в высоком энергосбережении;
  • отсутствии мерцания;
  • более эффективном КПД;
  • более высоком коэффициенте показателя мощности;
  • мгновенном старте включения света;
  • отсутствии мерцания из-за перегорания диодов;
  • низком показателе рабочей температуры;
  • отсутствии шума люминесцентных ламп и светодиодов во время рабочего процесса;
  • высоких показателях экономии денежных средств.


Электронный ПРА обеспечивает стабильную работу светодиодных светильников

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: