Гармоники в электрических сетях, причины, влияние, методы борьбы

Мониторинг качества электрической энергии и обнаружение гармоник

Присутствие гармоник лучше всего определять по результатам мониторинга качества электроэнергии, а не после аварийных отключений и поломок оборудования. 

Мониторинг является обязательной частью безопасного функционирования сложных энергосистем. Современные анализаторы качества электроэнергии позволяют контролировать множество параметров тока, включая гармоники. Например, трехфазные анализаторы PITE 3561 могут выполнять разовые или долговременные (до 40 суток) тесты энергосистемы, выявляя в том числе гармонические искажения каждой из трех фаз.

Анализатор качества электроэнергии PITE-3561-1500A

Подобные анализаторы дают возможность записать диаграмму гармоник, увидеть пиковые и средние значения, чтобы провести анализ и найти источник проблемы. Без подобных приборов невозможно своевременно обнаружить опасные гармоники, особенно в сложных системах со множеством нелинейных потребителей.

Это интересно: Сгорела техника из-за скачка напряжения — что делать и куда звонить

Источники гармоник

Нелинейные нагрузки

Символ выпрямителя.

Однофазный мост Гретца

В выпрямителях в их различных формах , являются основной причиной гармонических токов в сети. Мост Гретца — очень распространенная сборка, позволяющая выпрямлять ток. Чтобы сгладить ток, выходящий из выпрямителя, в цепь постоянного напряжения обычно помещают катушку индуктивности. Ток, поступающий в сборку, имеет форму прорези.

Поскольку бытовая электроника, такая как компьютеры , телевизоры и т. Д., Питается постоянным током, требуется импульсный источник питания для преобразования переменного тока из сети в постоянный. Они являются основным источником гармоник на бытовом уровне. Освещение с помощью люминесцентных и газоразрядных ламп и диммеров ( диммеров ) является еще одним источником гармоник. На промышленном уровне приводы с регулируемой скоростью , то есть система регулирования скорости электродвигателя, являются нелинейными. В дуговых печах и сварочные аппараты и другие примеры.

В сети установки постоянного тока, коммутируемые по линиям, являются важным источником гармоник. Магнитные цепи электрических трансформаторов или электродвигателей также создают гармоники при насыщении, что обычно не происходит.

В то время как изначально нелинейные нагрузки и силовая электроника в основном присутствовали в промышленной среде, расширение их использования в домашних условиях означает, что в 1999 году импульсные источники питания стали основными источниками гармоник. Измерения на французской электросети показали, что время, когда сеть наиболее загрязнена гармониками, — это вечер воскресенья, то есть когда промышленность простаивает, а телевизоры широко работают.

Усиление

Импеданс сети в основном индуктивный. Однако, если конденсаторные батареи шунтируются в сети, существует одна или несколько резонансных частот, для которых полное сопротивление сети становится равным нулю. Поэтому частотные гармоники, близкие к этому резонансу, усиливаются. Мы говорим о параллельном резонансе. Последовательный резонанс также возможен, если катушки индуктивности включены последовательно с конденсаторами в сети.

Последствия влияния гармоник

Искажения формы переменного тока и напряжения снижают срок службы изоляции, конденсаторов, качество напряжения в сети, увеличиваиют погрешности средств измерений. Это приводит:

  • К уменьшению межремонтных промежутков электрооборудования и увеличению эксплуатационных затрат.
  • К частым остановкам технологического оборудования. В результате ложного срабатывания схем защиты прерываются производственные процессы.
  • К авариям электроустановок. В результате падений напряжения и избыточного нагрева возникает пробой изоляции и короткие замыкания.

Высшие гармоники вызывают значительные экономические убытки.

Определение гармоник

График сигнала, который изменяется по синусоидальному закону, имеет вид:

Но это значительно отличается от реальной формы напряжения в электрической сети:

Эти зазубрины и всплески и вызваны гармониками. Мы попытаемся рассказать об этом явлении простыми словами. Изображенный выше график можно представить как сумму сигналов различной частоты и величины. Если всё это сложить, то в результате получится именно такой сигнал. Пример и результат сложения сигналов изображен на графике ниже:

Гармоники различают по номерам, где первая гармоника — это та составляющая, у которой самая большая величина. Однако такое описание слишком кратко. Поэтому давайте приведем формулу определения величины гармоники. Это возможно при гармоническом анализе и разложении в ряд Фурье:

Из этой формулы можно выделить и величины частот и фаз гармонических составляющих электрической сети и любого другого синусоидального сигнала.

Алгоритмы управления активным фильтром гармоник

Основным алгоритмом анализа гармоник и выделения сигнала ошибки для управления фильтром является разложение общего сигнала на высшие гармонические составляющие c использованием быстрого преобразования Фурье и выделение из общего сигнала сигналов основной частоты и высших гармоник.

Анализ входящих аналоговых сигналов

Получение дискретизации сигнала осуществляется встроенным в микроконтроллер АЦП. Чтобы взять дискретизацию за 1 период сигнала с частотой 50Гц, через равные промежутки времени АЦП со всех каналов синхронно снимает выборки (условно, т.к. время взятие одной выборки пренебрежимо мало по отношению к интервалу между точками дискретизации). В качестве триггера АЦП выступает аппаратный таймер контроллера.

Расчет спектра сигнала

Спектр сигнала получается выполнением прямого Дискретного Преобразование Фурье (ДПФ). Для вычисления спектра на микроконтроллере в реальном времени, используется Быстрое Преобразование Фурье БПФ.

Алгоритм быстрого вычисления дискретного преобразования Фурье (ДПФ) позволяет вычислять спектр сигнала за существенно меньшее количество операций. Сложность БПФ , против  у ДПФ.

Когда в дискретизации нет целого числа периодов синусоидального сигнала, разрывы, которые образуются в конечных точках выборки, приводят к расширению спектра анализируемого сигнала вследствие появления дополнительных гармоник.

В случаях когда полученная дискретизация содержит не целое количество периодов, краевые точки не будут совпадать. В этом случае спектр полученный применением БПФ, не будет верным, т. к. из-за изменения временного интервала основные гармоники перераспределяются по высшим частотам. Это влечет за собой расчет гармоник, которых на самом деле не содержится в сигнале и которые могут значительно превышать частоту Найквиста.

Из теоремы Котельникова следует, что при дискретизации аналогового сигнала потерь информации не будет только в том случае, если наивысшая частота полезного сигнала равна половине или меньше частоты дискретизации. В противном случае при восстановлении аналогового сигнала будет иметь место наложение спектральных «хвостов» (подмена частот, маскировка частот, алиасинг).

Это выглядит будто амплитуда с одних гармоник растекается по другим. Для минимизации эффекта растекания спектра применяется техника оконного преобразования.

Так как в случае изменения частоты сети период сигнала так же незначительно изменяется необходимо изменение размерности дискретизации, для этого применяется интерполяция сигнала. Для уточнения расчета спектра сигнала, снятую с АЦП дискретизацию необходимо интерполировать по количеству точек и по времени для передачи в расчет ДПФ, так как расчет ДПФ выполняется только на дискретизациях размерности кратной 2.

Так же с помощью интерполяции можно эффективно решать проблему растекания спектра, при условии, что временной интервал дискретизации близок к измеряемому периоду.

Блок управления выполняет следующие операции:

  • производит быстрое преобразование Фурье (FFT).
  • производит умножение полученных гармоник на задаваемый коэффициент подавления, полученный результат инвертируется;
  • над нормализованными и инвертированными данными производится обратное преобразование Фурье для получения требуемого тока компенсации АФГ;
  • требуемый ток АФГ интерполируется под частоту ШИМ;
  • интерполируемый под частоту ШИМ требуемый ток преобразуется в задание ШИМ и заносится в генератор ШИМ для формирования сигнала управления силовым модулем. В общем виде задание ШИМ представляется по формуле 1: ,                                                (1) где С — коэффициент зависящий от напряжения сети и напряжения на накопителе;y(t) — результат обратного БПФ; — управление активным выпрямителем; — управление генерацией/потреблением реактивной мощности; power — коэффициент обратной связи АФГ.

Гармоники прямой, обратной и нулевой последовательности

В случае сбалансированных трехфазных систем (трехпроводных или четырехпроводных) гармоники набора из трех искаженных (несинусоидальных) периодических сигналов также могут быть классифицированы в соответствии с их последовательностью фаз.

Гармоники прямой последовательности

Эти положительные гармоники последовательности из набора трехфазного искажено (Несинусоидальный) периодические сигналы являются гармоники , которые имеют ту же последовательность фаз, что и из трех исходных сигналов, и сдвинутый по фазе во времени на 120 ° друг между другом для заданная частота или порядок. Можно доказать, что гармоники прямой последовательности — это гармоники, порядок которых определяется следующим образом:

часзнак равно3k-2,k∈N(гармоники прямой последовательности){\ displaystyle h = 3k-2, \ quad k \ in \ mathbb {N} \ quad {\ text {(гармоники прямой последовательности)}}}

например ,.
часзнак равно1,4,7,10,13{\ displaystyle h = 1,4,7,10,13}

Фундаментальные составляющие трех сигналов являются гармониками прямой последовательности, так как когда , приведенная выше формула дает , что является порядком основных составляющих. Если основные составляющие исключены из гармоник прямой последовательности, то порядок остальных гармоник определяется следующим образом:
kзнак равно1{\ displaystyle k = 1}часзнак равно1{\ displaystyle h = 1}

часзнак равно3k+1,k∈N(гармоники прямой последовательности, которые не являются основными){\ displaystyle h = 3k + 1, \ quad k \ in \ mathbb {N} \ quad {\ text {(гармоники прямой последовательности, которые не являются основными)}}}

например ,.
часзнак равно4,7,10,13,16{\ displaystyle h = 4,7,10,13,16}

Гармоники обратной последовательности

В обратной последовательности гармоник из набора трехфазного искажено (Несинусоидальный) периодические сигналы являются гармоники , которые имеют последовательность , противоположную фазу с , что из трех исходных сигналов, и сдвинутый по фазе во времени на 120 ° при заданной частоте или заказывать. Можно доказать, что гармоники обратной последовательности — это гармоники, порядок которых определяется следующим образом:

часзнак равно3k-1,k∈N(гармоники обратной последовательности){\ displaystyle h = 3k-1, \ quad k \ in \ mathbb {N} \ quad {\ text {(гармоники обратной последовательности)}}}

например ,.
часзнак равно2,5,8,11,14{\ displaystyle h = 2,5,8,11,14}

Гармоники нулевой последовательности

В нулевой последовательности гармоник из набора трехфазного искажено (Несинусоидальный) периодические сигналы являются гармониками , которые находятся в фазе во время при заданной частоте или порядка. Можно доказать, что гармоники нулевой последовательности — это гармоники, частота которых кратна частоте третьей гармоники. Итак, их порядок определяется:

часзнак равно3k,k∈N(гармоники нулевой последовательности){\ displaystyle h = 3k, \ quad k \ in \ mathbb {N} \ quad {\ text {(гармоники нулевой последовательности)}}}

например ,.
часзнак равно3,6,9,12,15{\ displaystyle h = 3,6,9,12,15}

Все тройные гармоники также являются гармониками нулевой последовательности, но не все гармоники нулевой последовательности также являются тройными гармониками.

Способы защиты от высших гармоник для частотных преобразователей

Преобразователи частоты содержат инверторы и ШИМ-модуляторы, которые являются источниками искажения напряжения в сети. Это отрицательно сказывается как на работе электродвигателей, так и на качестве электроэнергии в сети. Для защиты от этого явления используют различные фильтры.

Эти устройства устанавливают во входной и выходной цепях преобразователей частоты. Для защиты от искажений формы напряжения и тока применяют:

  • Сетевые дроссели. Эти устройства защищают от импульсных перепадов напряжения, несимметричной нагрузке, продлевают срок службы конденсаторов звена постоянного тока.
  • Электромагнитные фильтры. Устанавливаются во входной силовой цепи преобразователя. Защищают сеть от гармоник, генерируемых инвертором ПЧ.
  • Синусные и dU/dt фильтры. Эти устройства устанавливают в частотно-регулируемом приводе с возможностью рекупации электроэнергии, в цепях электрических машин с частыми пусками, отключениями и реверсами, при использовании для подключения неэкранирумых кабелей.

При выборе фильтра необходимо убедиться, что конкретная модель преобразователя частоты совместима с типом защитного устройства. Эта информация указана в технической документации ПЧ. Компания «Данфосс» выпускает несколько линеек частотных преобразователей со встроенными фильтрами высших гармоник. Это избавляет от необходимости рассчитывать характеристики устройств и расходов на покупку дополнительного оборудования.

FAQ по гармоникам

Что такое гармоники?

Гармоники – это синусоидальные волны суммирующиеся с фундаментальной. Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.

Основной частотой 50 Гц(т.е. 1-я гармоника = 50 Гц 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.

Когда возникают гармоники?

Гармонические искажения возникают при работе нелинейных потребителей тока (в том числе частотных преобразователей).

Какие гармоники не появляются от работы ПЧ?

При работе от преобразователя частоты не появляются четные гармоники.

Чем опасны гармоники по току?

Гармонические искажения тока вызывают перегрев силового трансформатора, повышенное потребление реактивной мощности, увеличение потерь в меди силовых проводов и трансформатора. Они являются причиной появления гармоник по напряжению.

Чем опасны гармоники по напряжению?

Наличие гармонических искажений по напряжению приводят к выходу из строя оборудования.

Как бороться с гармониками?

Гармонические искажения можно уменьшать при помощи входных фильтров. Например, в серии VLT HVAC Basic FC 101 имеется встроенный фильтр гармоник на звене постоянного тока.

Способы защиты от высших гармоник для частотных преобразователей

Преобразователи частоты содержат инверторы и ШИМ-модуляторы, которые являются источниками искажения напряжения в сети. Это отрицательно сказывается как на работе электродвигателей, так и на качестве электроэнергии в сети. Для защиты от этого явления используют различные фильтры.

Эти устройства устанавливают во входной и выходной цепях преобразователей частоты. Для защиты от искажений формы напряжения и тока применяют:

  • Сетевые дроссели. Эти устройства защищают от импульсных перепадов напряжения, несимметричной нагрузке, продлевают срок службы конденсаторов звена постоянного тока.
  • Электромагнитные фильтры. Устанавливаются во входной силовой цепи преобразователя. Защищают сеть от гармоник, генерируемых инвертором ПЧ.
  • Синусные и dU/dt фильтры. Эти устройства устанавливают в частотно-регулируемом приводе с возможностью рекупации электроэнергии, в цепях электрических машин с частыми пусками, отключениями и реверсами, при использовании для подключения неэкранирумых кабелей.

При выборе фильтра необходимо убедиться, что конкретная модель преобразователя частоты совместима с типом защитного устройства. Эта информация указана в технической документации ПЧ. Компания «Данфосс» выпускает несколько линеек частотных преобразователей со встроенными фильтрами высших гармоник. Это избавляет от необходимости рассчитывать характеристики устройств и расходов на покупку дополнительного оборудования.

FAQ по гармоникам

Что такое гармоники?

Гармоники – это синусоидальные волны суммирующиеся с фундаментальной. Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.

Основной частотой 50 Гц(т.е. 1-я гармоника = 50 Гц 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.

Когда возникают гармоники?

Гармонические искажения возникают при работе нелинейных потребителей тока (в том числе частотных преобразователей).

Какие гармоники не появляются от работы ПЧ?

При работе от преобразователя частоты не появляются четные гармоники.

Чем опасны гармоники по току?

Гармонические искажения тока вызывают перегрев силового трансформатора, повышенное потребление реактивной мощности, увеличение потерь в меди силовых проводов и трансформатора. Они являются причиной появления гармоник по напряжению.

Чем опасны гармоники по напряжению?

Наличие гармонических искажений по напряжению приводят к выходу из строя оборудования.

Как бороться с гармониками?

Гармонические искажения можно уменьшать при помощи входных фильтров. Например, в серии VLT HVAC Basic FC 101 имеется встроенный фильтр гармоник на звене постоянного тока.

В данной статье мы рассмотрим что такое гармоники, фундаментальную частоту и сложные формы волны из-за гармоник, в конце статьи подведем краткие итоги по этой теме.

Эффекты, вызываемые высшими гармониками напряжения и тока

Последние могут быть разделены на эффекты мгновенного и длительного возникновения.

Проблемы мгновенного возникновения включают:

  • искажение формы питающего напряжения;
  • падение напряжения в распределительной сети;
  • эффект гармоник, кратных трем (в трехфазных сетях);
  • резонансные явления на частотах высших гармоник;
  • наводки в телекоммуникационных и управляющих сетях;
  • повышенный акустический шум в электромагнитном оборудовании;
  • вибрация в электромашинных системах.

Проблемы длительного возникновения включают:

  • нагрев и дополнительные потери в трансформаторах и электрических машинах;
  • нагрев конденсаторов ;
  • нагрев кабелей распределительной сети.

Советуем изучить — Приложение n 1. группы по электробезопасности электротехнического (электротехнологического) персонала и условия их присвоения

Рассмотрим подробнее причины возникновения указанных эффектов и возможные пути и средства их решения.

Причины и источники гармоник в электрических сетях

Главной причиной гармонического искажения является протекание каких-либо переходных процессов в электрических сетях. Независимо от характера созданной нагрузки, переходной процесс можно наблюдать в работе той же лампы накаливания, которая, казалось бы, характеризуется исключительно активными потерями. Так, разница между сопротивлением нити лампы в холодном и нагретом состоянии создает переходной процесс, который привносит скачок. Но из-за низкого уровня искажения и относительно кратковременного протекания, влияние на всю систему получается ничтожным.

Поэтому можно смело сказать, что и активные, и реактивные сопротивления в сетях электропитания могут способствовать генерации гармоник. Тем не менее, существует ряд устройств, обуславливающих весомую величину искажения, которая способна нанести существенный ущерб приборам. На практике к источникам искажения относят такие виды оборудования:

  • Силовое электрооборудование – приводы постоянного и переменного тока, высокочастотные плавильные печи, полупроводниковые преобразователи, источники бесперебойного питания (ИБП), преобразователи частоты.
  • Устройства, работающие по принципу формирования электрической дуги – электросварочные установки, дуговые печи, лампы освещения (ДРЛ, люминесцентные и другие).
  • Насыщаемые приборы – двигатели, трансформаторы, обладающие магнитопроводом, который может достигнуть насыщения петли гистерезиса. Без такового насыщения их вклад в формирование гармонической составляющей будет незначительным.

Среди бытовых приборов значительный вклад в генерацию несинусоидальных составляющих вносят те же микроволновые печи

Обратите внимание, что из-за особенностей режима работы одна такая печь способна кратковременно снижать уровень напряжения в сети на 2 – 4%, и, что куда более существенно, повышать коэффициент искажения его кривой на 6 – 18%

Советуем изучить — Виды отверток

Форма питающего напряжения

Повышенное значение коэффициента амплитуды указывает на то, что имеется большой пик потребляемого тока за половину периода сетевой частоты. Чем выше пиковое значение тока и меньше его длительность за полупериод напряжения сети, тем больше его искажение. Коэффициент амплитуды тока данной нагрузки изменяется в зависимости от характера источника электропитания, в то время как способность самого источника к обеспечению нагрузок с большим коэффициентом амплитуды определяется его полным внутренним сопротивлением и его способностью обеспечивать пиковые значения потребляемого от него тока.

Для многих устройств, выполняющих функции источников электропитания, такая способность может быть достигнута только путем завышения номинальных параметров этого оборудования. В частности, в современных генераторных установках переменного тока сверхпереходное реактивное сопротивление составляет приблизительно 15%, что производит достаточно неблагоприятное воздействие на форму напряжения, если не используются специальные обмотки или мощность генератора не будет выбрана заведомо завышенной.

Современные источники бесперебойного питания (ИБП) способны контролировать форму напряжения на каждом полупериоде синусоиды. В настоящее время в подавляющем большинстве систем бесперебойного питания практически любой мощности используются инверторы на биполярных транзисторах с изолированным затвором (IGBT) при высокочастотном широтно-импульсном методе их управления. Такие системы обладают способностью питания нагрузок с высокими коэффициентами амплитуды тока (3 и выше) за счет переключений на высокой частоте и корректировке формы напряжения на каждом полупериоде. Эта способность отдавать ток с высокими пиковыми значениями может приводить к тому, что форма напряжения на выходе ИБП с двойным преобразованием энергии заметно лучше, чем у промышленной сети на входе системы.

Влияние гармоник на электрооборудование

Гармонические колебания в сети оказывают негативное влияние на работу электрооборудования. К ним относятся:

  • Асимметрия в трехфазных сетях при возникновении искажений на одной или двух фазах. Это вызывает ненормальные режимы работы двигателей, другой электротехники.
  • Ложное срабатывание защиты. На гармоники реагируют автоматические выключатели, релейные схемы защиты, отключающие напряжение в распределительной сети.
  • Избыточный нагрев обмоток электрических машин, трансформаторов, проводов.
  • Увеличение уровня шума в слаботочных сетях. Про частом переходе синусоиды через ноль в соседних контрольных кабелях возникают наводки, искажающие сигнал.
  • Увеличение тока нейтрали. Гармонические искажения вызывают падение напряжения в нейтральном и фазных проводах, нагреву нулевого проводника.

Рекомендации по выбору компенсирующих устройств реактивной мощности

Мощность компенсирующего устройства выбирается исходя из мощности нагрузки, а также существующего и желаемого коэффициентов мощности.

Для расчета параметров можно воспользоваться следующей методикой.

Определить из таблицы коэффициент К, который считается по формулам на основе углов фаз некомпенсированного и компенсированного питания:

Таблица для определения коэффициента выбора конденсаторов

Например, текущий cosϕ = 0,7, желаемый cosϕ = 0,96. Тогда К = 0,73.

Как я уже говорил, не рекомендуется компенсировать реактивную мощность полностью (до cosϕ = 1), так как при этом возможна перекомпенсация (за счет переменной величины активной мощности нагрузки и других случайных факторов)

Далее, необходимую емкостную мощность конденсаторных батарей определяют по формуле: Qc = КP (ВАр).

Например, в нашем случае, при мощности 1000 кВт полная мощность конденсаторной батареи будет 730 кВАр.

При выборе конденсаторной батареи она должна обладать следующими параметрами (не хуже):

  • Перегрузка по току – 1,3 I ном
  • Перегрузка по напряжению – 1,1 U ном
  • Мощность минимальной ступени – не более 15 кВАр
  • Допустимое содержание гармоник напряжения – не менее 20 %
  • Частота расстройки фильтра – не более 190 Гц (срез начиная с 4-й гармоники)
  • Регулятор реактивной мощности – электронный, с измерением и выдачей всех необходимых параметров
  • Коммутация – контакторы, поскольку изменение активной мощности не быстрое

(рекомендации даны поставщиком КУ)

На этом всё. Если есть желание что-то добавить, или поправить меня – как всегда, рад вашим комментариям!

Различные схемы соединения трехфазных цепей

Если фазы генератора соединены звездой, то при несинусоидальном фазном напряжении линейные напряжения, равные разностям напряжений двух смежных фаз, не содержат гармоник напряжений порядка, кратного трем, так как последние образуют системы нулевой последовательности.

Отсутствие гармоник порядка, кратного трем, в линейных напряжениях приводит к тому, что при несинусоидальных напряжениях отношение линейного напряжения к фазному меньше . Действительно, фазное напряжение

а линейное напряжение

Отсюда следует, что

При симметричной нагрузке фазные токи основной частоты и все высшие гармоники, за исключением высших гармоник порядка, кратного трем, образуют системы прямой и обратной последовательностей и дают в сумме нуль. Гармоники же порядка, кратного трем, образуют систему нулевой последовательности, т. е. имеют в любой момент времени одинаковые значения и направления. Поэтому ток в нейтральном проводе равен утроенной сумме токов высших гармоник нулевой последовательности:

При отсутствии нейтрального провода токи в каждой из фаз не могут содержать высших гармоник порядка, кратного трем, так как в этой схеме сумма токов в любой момент времени должна равняться нулю, что невозможно при наличии высших гармоник порядка, кратного трем. Поэтому в приемнике нет напряжений от токов нулевой последовательности и между нейтральными точками генератора и симметричного приемника может появиться значительное напряжение, содержащее только гармоники, кратные трем.

Если фазы генератора соединены треугольником, то при несинусоидальных ЭДС в фазах сумма ЭДС, действующих в замкнутом контуре генератора, не равна нулю, как при синусоидальных ЭДС, а равна тройной сумме высших гармоник порядка, кратного трем. Если включить вольтметр в рассечку треугольника (рис. 12.21), то вольтметр измерит гармоники ЭДС порядка, кратного трем, так как остальные в сумме дадут нуль, т. е.

Рис. 12.21

Открытый треугольник с ЭДС, содержащими высшие гармоники, применяется как утроитель частоты.

Если фазы соединены в замкнутый треугольник, то ЭДС гармоник порядка, кратного трем, вызывают внутренний ток в генераторе. Этот ток протекает в замкнутом треугольнике генератора даже и в режиме холостого хода генератора. Составляющая фазной ЭДС, содержащая гармоники порядка, кратного трем, однако, не выявляется между выводами фаз, так как она компенсируется падением напряжения на внутреннем сопротивлении фазы генератора. Фазное напряжение, равное в данном случае линейному,

Поэтому во внешней цепи, подключенной к генератору, обмотки которого соединены треугольником, токи не содержат гармоник порядка, кратного трем.

Фазный ток генератора при симметричной нагрузке

а линейный ток во внешней цепи

Пример 12.12. 

Источники

Чистое синусоидальное напряжение — это концептуальная величина, создаваемая идеальным генератором переменного тока, построенным с точно распределенными обмотками статора и возбуждения, которые работают в однородном магнитном поле. Поскольку ни распределение обмоток, ни магнитное поле не являются однородными в работающей машине переменного тока, возникают искажения формы волны напряжения, и зависимость напряжения от времени отклоняется от чистой синусоидальной функции. Искажение в точке генерации очень мало (от 1% до 2%), но, тем не менее, оно существует. Поскольку это отклонение от чистой синусоидальной волны, отклонение имеет форму периодической функции, и по определению искажение напряжения содержит гармоники.

Когда синусоидальное напряжение прикладывается к линейной неизменной во времени нагрузке, такой как нагревательный элемент, ток через него также является синусоидальным. В нелинейных и / или изменяющихся во времени нагрузках, таких как усилитель с ограничивающим искажением, размах напряжения применяемой синусоиды ограничен, и чистый тон загрязнен множеством гармоник.

Когда существует значительный импеданс на пути от источника питания к нелинейной нагрузке, эти искажения тока также будут вызывать искажения формы волны напряжения на нагрузке. Однако в большинстве случаев, когда система подачи энергии работает правильно в нормальных условиях, искажения напряжения будут довольно небольшими, и их обычно можно игнорировать.

Искажение формы волны можно математически проанализировать, чтобы показать, что оно эквивалентно наложению дополнительных частотных компонентов на чистый синусоидальный сигнал. Эти частоты являются гармониками (целыми кратными) основной частоты и иногда могут распространяться наружу от нелинейных нагрузок, вызывая проблемы в других частях энергосистемы.

Классическим примером нелинейной нагрузки является выпрямитель с конденсаторным входным фильтром, где выпрямительный диод пропускает ток к нагрузке только в то время, когда приложенное напряжение превышает напряжение, хранящееся в конденсаторе, что может быть относительно небольшая часть цикла входящего напряжения.

Другими примерами нелинейных нагрузок являются зарядные устройства аккумуляторов, электронные балласты, частотно-регулируемые приводы и импульсные источники питания.

Отрицательный косинус

Из школьного курса геометрии известно, что cos (φ) = cos (-φ), то есть косинус любого угла будет положительной величиной. Но как же отличить индуктивную нагрузку от емкостной? Всё просто – электрики всех стран условились, что при емкостной нагрузке перед знаком косинуса ставится минус!

В практике пользования прибором анализа напряжения HIOKI у меня были случаи, когда значение косинуса было отрицательным. В последствии выяснилось, что была неправильно включена компенсаторная установка и произошла перекомпенсация. То есть cos φ < 0, что и должно быть, но конденсаторные установки используются неправильно, и возможны ситуации, когда напряжение в сети из-за этого может подняться.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: