Виды токов: постоянные и переменные
В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:
- Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
- Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.
Основные характеристики переменного тока
Параметры тока
Амперметр
Очень важной количественной характеристикой тока является сила тока
(величина тока ), или простоток , — скалярная физическая величина, равная величине заряда, который проходит через поперечное сечение проводника за единицу времени.
Но термин «сила тока» не следует воспринимать, как проявление силы
в буквальном смысле. В проводниках нет силы. Там есть только движение электрических зарядов.
Если за время t
через проводник сечениемS протекаетQ зарядов, то величина тока выражается формулой
I= Q/t Единица измерения величины тока в системе СИ — ампер (А). Ток в проводнике равен 1 амперу, если за 1 секунду через проводник протекает заряд величиной в 1 кулон. Измеряют силу тока прибором, который называется амперметром. Он включается последовательно в электрическую цепь.
Для постоянного тока в единицу времени через любое поперечное сечение протекает одинаковое количество электрических зарядов.
Величина, равная отношению силы тока I
к площади поперечного сечения проводникаS , называетсяплотностью тока . В системе СИ плотность тока измеряется в А/м2. Конечно, практически невозможно найти проводник с диаметром сечения, равным квадратному метру. По этой причине силу тока принято измерять в А/мм2.
j= I/S Любой проводник противодействует протеканию по нему электрических зарядов
Поэтому величина тока в проводнике зависит от другой важной величины, называемой сопротивлением. Это физическая величина, характеризующая способность проводника препятствовать прохождению электрического тока
Она обозначается буквойR и определяется по формуле:
. Это физическая величина, характеризующая способность проводника препятствовать прохождению электрического тока. Она обозначается буквойR и определяется по формуле:
R=UI ,
где U
– напряжение, или разность электрических потенциалов, на концах проводника;
I
– сила тока, протекающего между концами проводника.
В систем СИ единицей измерения сопротивления является ом
Разные материалы по-разному сопротивляются движению тока. Поэтому сопротивление проводника зависит от вещества, из которого он сделан, его длины и сечения.
R = ρ ˑ l /S
где ρ
– удельное электрическое сопротивление проводника, его способность препятствовать прохождению электрического тока;
l – длина проводника;
S
— площадь поперечного сечения проводника.
Каждый источник постоянного электрического тока создаёт стороннее электрическое поле
, совершающее работу по разделению положительно и отрицательно заряженных частиц и перемещению их в электрической цепи. Эту работу производят любые силы не электрического происхождения, которые действуют внутри источника. Они называютсясторонними силами . Возникают эти силы по разным причинам. Например, в гальваническом элементе они появляются в результате химических реакций, а в генераторах постоянного тока – при движении проводника в магнитном поле.
Величина, численно равная работе, которую выполняют сторонние силы, перенося единицу положительного заряда по всей замкнутой цепи, называется электродвижущей силой
(ЭДС).
где Е
– ЭДС;А – работа, совершаемая источником по переносу заряда величинойQ .
Единицей измерения ЭДС в системе СИ является вольт
(v,V ). ЭДС источника тока равна 1 вольту, если при перемещении заряда, равного 1 кулону, совершается работа в 1 джоуль.
Перенося электрический заряд, источник тока совершает работу А0 по внутреннему участку (внутри себя самого) и работу А1 по внешнему участку электрической цепи. Поэтому полная работа А = А0 + А1
. Разделив обе части уравнения наQ, получим Величина AQ
называетсяпадением напряжения на внутреннем участке цепи (U ), аA1Q — падением напряжения на внешнем участке цепи (U1 ).
A=U+U1 , аU1= А –U. Величина, равная произведению тока на напряжение, называется мощностью
. Единица измерения мощности –ватт .
P=IU=I2R=U2R Если в электрической цепи есть источник ЭДС, то P=Iˑε , гдеε – ЭДС.
Приемники, источники:
Если к схеме добавить узел стабилизации, построенный по схеме параметрического стабилизатора , напряжение блока питания будет стабилизировано. На изображении с распиновкой должно быть четко видно: с какой стороны считать ножки, где находится ключ, срез или метка, чтобы вы правильно определили необходимый вывод. Этого можно достичь, перенося свободные электроны с положительного тела на отрицательное так, чтобы заряды тел не менялись со временем.
Режимы работы Различные элементы, соединенные проводниками электрического тока между собой, образуют электрические цепи.
Направленное движение электронов в проводнике Если вдоль проводника действует напряжение, то внутри проводника возникает электрическое поле. Дополнительно по теме.
Режим короткого замыкания В этом режиме ключ SA в схеме электрической цепи рис.
Транзисторы — это управляемые ключи, вы можете закрыть их и открыть, а если нужно открыть не полностью. Динисторы — разновидность тиристора, без управляющего электрода, а открываются они, подобно стабилитронам, по преодолению определенного уровня напряжения.
Это участок цепи с током одинаковой величины.
Схема замещения пассивного двухполюсника П представляется в виде его входного сопротивления.
Метод эквивалентных преобразований. Как находить токи и напряжения в цепи
Читайте дополнительно: Измерение петли фаза нуль
Направление тока: от минуса к плюсу или наоборот?
Все мы хорошо знаем, что электричество представляет собой направленный поток заряженных частиц в результате воздействия электрического поля. Это вам скажет любой школьник. А вот вопрос о том, каково направление тока и куда деваются эти самые частицы, многих может поставить в тупик.
Суть вопроса
Как известно, в проводнике электричество переносят электроны, в электролитах – катионы и анионы (или попросту ионы), в полупроводниках электроны работают с так называемыми «дырками», в газах – ионы с электронами. От наличия свободных элементарных частиц в том или ином материале и зависит его электропроводность. При отсутствии электрического поля в металлическом проводнике ток идти не будет. Но как только на двух его участках возникнет разность потенциалов, т.е. появится напряжение, в движении электронов прекратится хаос и наступит порядок: они начнут отталкиваться от минуса и направятся в сторону плюса. Казалось бы, вот и ответ на вопрос «Каково направление тока?». Но не тут-то было. Достаточно заглянуть в энциклопедический словарь или просто в любой учебник по физике, как сразу станет заметно некое противоречие. Там говорится, что условно словосочетание «направление тока» обозначает направленное движение положительных зарядов, другими словами: от плюса к минусу. Как быть с этим утверждением? Ведь здесь невооруженным глазом заметно противоречие!
Сила привычки
Когда люди научились составлять цепь постоянного тока, они еще не знали о существовании электрона. Тем более, в то время не подозревали что он движется от минуса к плюсу. Когда Ампер предложил в первой половине 19-го столетия направление тока от плюса к минусу, все восприняли это как должное и это решение никто не стал оспаривать. Прошло 70 лет, пока люди не выяснили, что ток в металлах происходит благодаря движениям электронов. А когда они это поняли (это случилось в 1916 году), все настолько привыкли к сделанному Ампером выбору, что уже не стали ничего менять.
«Золотая середина»
В электролитах отрицательно заряженные частицы движутся к катоду, а положительные — к аноду. То же самое происходит и в газах. Если подумать, какое направление тока будет в этом случае, в голову приходит только один вариант: перемещение разнополярных электрических зарядов в замкнутой цепи происходит навстречу друг другу. Если принять это утверждение за основу, то оно снимет существующее ныне противоречие. Возможно, это вызовет удивление, но еще более 70 лет назад ученые получили документальные подтверждения того, что противоположные по знаку электрические заряды в проводящей среде действительно движутся друг другу навстречу. Данное утверждение будет справедливо для любого проводника вне зависимости от его типа: металла, газа, электролита, полупроводника. Как бы там ни было, остается надеяться, что со временем физики устранят путаницу в терминологии и примут однозначное определение того, что же все-таки такое направление движения тока. Привычку, конечно, менять сложно, но ведь нужно же наконец поставить все на свои места.
Электромагнитная индукция. Магнитный поток
- Подробности
- Просмотров: 449
«Физика — 11 класс»
Электромагнитная индукция
Английский физик Майкл Фарадей был уверен в единой природе электрических и магнитных явлений.
Изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле — магнитное.
В 1831 году Фарадей открыл явление электромагнитной индукции, легшее в основу устройства генераторов, превращающих механическую энергию в энергию электрического тока.
Явление электромагнитной индукции
Явление электромагнитной индукции — это возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.
Для своих многочисленных опытов Фарадей использовал две катушки, магнит, выключатель, источник постоянного тока и гальванометр.
Электрический ток способен намагнитить кусок железа. Не может ли магнит вызвать появление электрического тока?
В результате опытов Фарадей установил главные особенности явления электромагнитной индукции:
1). индукционный ток возникает в одной из катушек в момент замыкания или размыкания электрической цепи другой катушки, неподвижной относительно первой.
Вывод:
В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.
И чем быстрее меняется число линий магнитной индукции, тем больше возникающий индукционный ток.
При этом не важно. что является причиной изменения числа линий магнитной индукции. Это может быть и изменение числа линий магнитной индукции, пронизывающих поверхность, ограниченную неподвижным проводящим контуром, вследствие изменения силы тока в соседней катушке,
Это может быть и изменение числа линий магнитной индукции, пронизывающих поверхность, ограниченную неподвижным проводящим контуром, вследствие изменения силы тока в соседней катушке,
и изменение числа линий индукции вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве, и т.д.
Магнитный поток
Магнитный поток — это характеристика магнитного поля, которая зависит от вектора магнитной индукции во всех точках поверхности, ограниченной плоским замкнутым контуром.
Есть плоский замкнутый проводник (контур), ограничивающий поверхность площадью S и помещенный в однородное магнитное поле.
Нормаль (вектор, модуль которого равен единице) к плоскости проводника составляет угол α с направлением вектора магнитной индукции .
Магнитным потоком Ф (потоком вектора магнитной индукции) через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и косинус угла α между векторами и :
Ф = BScos α
гдеВcos α = Вn — проекция вектора магнитной индукции на нормаль к плоскости контура.
Поэтому
Ф = BnS
Магнитный поток тем больше, чем больше Вn и S.
Магнитный поток зависит от ориентации поверхности, которую пронизывает магнитное поле.
Магнитный поток графически можно истолковать как величину, пропорциональную числу линий магнитной индукции, пронизывающих поверхность площадью S.
Единицей магнитного потока является вебер.
Магнитный поток в 1 вебер (1 Вб) создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции.
Следующая страница «Направление индукционного тока. Правило Ленца»
Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»
Электромагнитная индукция. Физика, учебник для 11 класса — Класс!ная физика
Электромагнитная индукция. Магнитный поток —
Направление индукционного тока. Правило Ленца —
Закон электромагнитной индукции —
ЭДС индукции в движущихся проводниках. Электродинамический микрофон —
Вихревое электрическое поле —
Самоиндукция. Индуктивность. Энергия магнитного поля тока —
Электромагнитное поле —
Примеры решения задач —
Краткие итоги главы
Источники электрического тока
Источниками электрическою тока являются батареи, аккумуляторы, динамомашины, различные виды генераторов и т. д. Они производят электроэнергию за счет какого-нибудь другого вида энергии, например, химической, механической, тепловой и пр. Следовательно, и в случаях с источниками электрического тока закон сохранения энергии остается в силе.
Каждый источник тока имеет свойство при замыкании цепи создавать в проводниках электрическое поле, которое с определенной силой действует на свободные электроны. Поэтому говорят, что каждый источник тока имеет определенную электродвижущую силу (ЭДС).
Источники электрического тока электронов не производят, но созданное ими электрическое поле приводит в движение свободные электроны, находящиеся в самих проводниках. В этом отношении любой источник тока можно сравнить с насосом, который приводит в движение воду в замкнутой системе труб (рис. 3.3б). Насос передает энергию турбине так же, как батарейка передает энергию лампочке. Очевидно, в любой неразветвленной системе количество воды, протекающей в толстых и тонких трубах за единицу времени, одно и то же, только по тонким трубам частицы воды движутся с большей
Рис.3.3.
скоростью. По аналогии можно сказать, что величина тока в неразветвленной электрической цепи везде одна та же, только в проводниках большего диаметра электроны движутся медленнее, чем в более тонких проводниках.
Скорость электрического тока
Электрическое поле распространяется по проводам со скоростью 300 000 километров в секунду. Эта скорость так велика, что за одну секунду поле может обойти земной шар около восьми раз!
Скорость направленного движения электронов в проводниках намного меньше и зависит от плотности тока.
По накаленной нити электрической лампочки электроны движутся со скоростью 1—2 сантиметра в секунду, в то время как в шнурах и кабелях эта скорость не превышает 2—3 миллиметров в секунду. Здесь может возникнуть вопрос: почему же говорят, что скорость электрического тока огромна?
Для того, чтобы разобраться в этом, представим себе несколько десятков кубиков, плотно сложенных по прямой линии на гладкой поверхности. Если толкнем первый кубик, то толчок дойдет до последнего кубика почти моментально, однако, скорость каждого кубика в отдельности не будет очень большой. Таким же образом при замыкании электрической цепи электрическое поле распространяется по проводнику с огромной скоростью и почти одновременно приводит в движение как близкие, так и дальние электроны. Вот почему и принято считать, что электрический ток распространяется по проводникам со скоростью около 300 000 километров в секунду.
Условное направление тока
Хотя физики много знали о токе и могли его измерить, они все же не могли наблюдать отдельные заряды или точную траекторию их движения. Все что они видели, — это последствия протекающего тока, такие как повышение температуры проводника, падение напряжения на резисторе, изменение магнитного поля или осаждение серебра на пластине. В этом контексте тип тока и его направление не имели значения. Два кулона в секунду в форме электронов, текущих от отрицательного к положительному, имеют тот же эффект что и один кулон положительных ионов и один кулон отрицательных ионов, текущие в противоположных направлениях. Так зачем это каждый раз различать? Разве не проще выбрать один знак и одно условное направление?
Если предположим что задача электрического тока — переносить энергию (например через лампочку), то каждый из трех случаев, показанных на рисунке, будет иметь точно такой же эффект.
Физическая сущность течения тока в цепи
Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).
Основными условиями возникновения и существования электрического тока являются:
- Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
- Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
- Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.
Направление электрического тока
Свободные электроны.. Электрический ток.. Измерение тока.. Амперметр.. Единица силы тока — Ампер.. Направление электрического тока.. Направление движения электронов..
- Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.
- Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.
- Измерение тока
- Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).
В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).
Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10-19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10-19 = 6,24 • 1018 электронов. Следовательно, если 6,24 • 1018 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.
Для измерения силы тока существует измерительный прибор — амперметр.
Рис. 1
Амперметр включается в электрическую цепь (рис. 1) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.
Направление электрического тока
Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»
Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны).
Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис.
2.
Рис. 2 Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.
Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.
Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.
Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.
В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».
Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее электричество, заряжается отрицательно. При их соединении избыточный положительный заряд перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).
Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.
После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.
Какой значок напряжения
Напряжение означает поток электрических заряженных частиц по проводнику определенного сечения и обычно обозначается как «U». Если напряжение в сети постоянное, то около латинской буквы ставится символ прямой линии или двух линий (верхняя сплошная прямая, а нижняя пунктирная). Для мультиметров и прочих приборов, связанных с измерением напряжения, используют латинскую букву «V», которая обозначает единицу измерения напряжения – Вольт (Volt). Значение линий при этом сохраняется.
Вам это будет интересно Описание и использование неодимового магнита
Важно! Многие обыватели полагают, что напряжение обозначается как «E», но это не так. «Е» — это электродинамическая сила (ЭДС) источника питания проводника
Обозначение вида тока на мультиметре
Таким образом, маркировка проводов, клемм электроприборов и схем имеет совершенно четкий и понятный характер. Она указывает на силу тока и напряжение, с которыми работает та или иная сеть или прибор. Каждый взрослый человек может научиться читать электротехнические схемы буквально за несколько дней, так как для этого достаточно лишь изучить основные маркировки, а также обозначения постоянного и переменного напряжения.
Физическая сущность течения тока в цепи
Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).
Основными условиями возникновения и существования электрического тока являются:
- Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
- Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
- Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.