Как добавить укв fm диапазон в старый радиоприемник на дв-св

Основная схема

Схема радиоприемника

На рисунке 1 представлена основная схема радиоприемника, взятая и адаптированная из технического описания Silicon Labs Si4844 и рекомендаций по применению. Для приема в диапазоне КВ я использовал ферритовую антенну от старого портативного приемника. Q1 – усилитель для СВ/УКВ, здесь я так же использовал телескопическую антенну от старого приемника. Стоит заметить, что руководство по проектированию, приведенное выше, дает несколько альтернатив и различные подходы к антеннам.

Переменный резистор (VR1) является критичным элементом схемы, поскольку он будет использоваться для настройки частоты приемника (ручка настройки). Рекомендуется использовать линейный потенциометр. Для аудиовыхода я решил использовать пару «экономичных» аудиоколонок со встроенным усилителем, которые у меня остались от старого компьютера. Разумеется, можно использовать простой стереоусилитель.

Возможно, наиболее сложная часть сборки – это работа с микросхемой в корпусе SSOP-24. Если у вас нет опыта работы с SMD микросхемами, возможно, самым простым способом будет использование переходной платы. У меня была переходная плата SSOP-28; немного пайки, и с микросхемой стало можно работать, как с микросхемой в DIP корпусе. Другими потенциально трудными компонентами для работы является пара из ферритового фильтра (бусинки) и конденсатора. Эти компоненты также можно припаять на переходную плату, чтобы работать с ними как с DIL элементом.

SMD компоненты, припаянные на переходные платы

Список компонентов основной схемы
Компонент Описание
B1 Ферритовый фильтр (бусинка) 2,5 кОм (100 МГц)
C1,C2,C5 Неполярный конденсатор 4,7 мкФ
C3,C4 Конденсатор 22 пФ
C6,C7,C9 Конденсатор 0,1 мкФ
C8 Неполярный конденсатор 47 мкФ
C10,C11 Конденсатор 0,47 мкФ
C12,C14 Конденсатор 33 нФ
C13 Конденсатор 33 пФ
C15 Конденсатор 10 пФ
IC1 Радиоприемник Si4844-A10
Q1 NPN транзистор SS9018
R1, R2 Резистор 2,2 кОм
R3 Резистор 1 кОм
R4,R7 Резистор 100 кОм
R5 Резистор 10 Ом
R6 Резистор 120 кОм
R8 Резистор 100 Ом
L1 Индуктивность 270 нГн
VR1 Линейный потенциометр 100кОм
Y1 Кварцевый резонатор 32,768 кГц
ANT1 Ферритовая антенна
ANT2 Телескопическая/штыревая антенна

Добавление клавиатуры

Для управления радиоприемником нам необходимо устройство ввода. Для наших целей достаточно простой мембранной клавиатуры. Их легко подключить к Arduino. Ниже приведена иллюстрация назначения выводов клавиатуры (где строки, а где столбцы), которую использовал я, вы должны убедиться, что ваша клавиатура аналогична.

Простая мембранная клавиатура

Подключение клавиатуры к Arduino
Клавиатура Arduino
Строка 1 D8
Строка 2 D9
Строка 3 D10
Строка 4 D11
Столбец 1 D13
Столбец 2 D14
Столбец 3 D15

В программном обеспечении я использовал библиотеку от Марка Стэнли и Александра Бревига, которая выпущена под лицензией GNU General Public License. Для проекта мы сопоставим функции с кнопками, как показано ниже.

Назначение кнопок для управления радиоприемником

Назначение кнопок клавиатуры:

  • AM: переключить в режим AM (средние волны), диапазон 22;
  • FM: переключить в режим FM (ультракороткие волны), диапазон 8;
  • SW: переключить в режим SW (короткие волны), диапазон 31.

Обратите внимание, что стандартные диапазоны для изменения режима настраиваются в программе и легко могут быть изменены. Кроме того, текущие значения громкости и тона будут перенесены в новый режим

Vol+ / Vol- : Увеличить или уменьшить громкость на один шаг. Есть 64 уровня громкости. Поскольку в проекте используются колонки со встроенным усилителем, эти кнопки не сильно важны, но их наличие всё равно радует;

Band+/Band- : Изменение диапазона на один шаг, но из числа доступных в текущем режиме;

B/T+ / B/T- : Увеличить или уменьшить тон на один шаг. Я признаю, что несколько вольно использую термин «тон». Для режима FM это увеличит или уменьшит уровень низких частот от 0 (макс. бас) до 8 (макс. высокий). Для режимов AM/SW это установит канальный фильтр от 1 до 7. Фильтры составляют 1.0 кГц, 1.8 кГц, 2.0 кГц, 2.5 кГц, 2.83 кГц, 4.0 кГц и 6.0 кГц соответственно

Также обратите внимание, что для простоты и удобства программирования (т.е. лени) в режимы AM/SW могут быть добавлены уровни 0 и 8, но они не будут отличаться от уровней 1 и 7 соответственно;

Mute: Включить или выключить звук на выходе.

Настройка

Приемник достаточно неприхотлив и при правильной сборке начинает работать сразу. Тем не менее есть ряд общих рекомендаций по его настройке.

  1. После включения проверяют наличие накала ламп. Если накала нет, то следует проверить исправность лампы или искать обрыв/замыкание в цепи накала. Нити подогревателей прогретой лампы должны светиться оранжевым.
  2. Следует проверить наличие анодных напряжений. Некоторые напряжения указаны на схеме.
  3. Проверь режим работы ламп, установив требуемые напряжения в катодной цепи. Если отклонения существенны (больше 50%), следует подобрать соответствующие резисторы.
  4. Проверь работу УНЧ: при прикосновении к движку резистора пальцем должен слышаться характерный шум в динамике. Проверить работу УПЧ без осциллографа сложнее, но, если напряжения установлены верно и ошибок при сборке нет, он будет работать.
  5. Проверь работу смесителя. Когда вращаешь ручку управления режимом работы смесителя в месте начала генерации, должен появляться шум в динамиках.
  6. Проверь работу УВЧ: при касании антенного входа отверткой в динамиках раздаются характерные щелчки.

Если все работает, то ручкой регулировки режима смесителя получаем появление шума в динамиках, после чего переменным конденсатором настраиваемся на радиостанцию. Затем более точной подстройкой режима смесителя и частоты добиваемся наилучшего качества приема. В этом помогает индикатор настройки. Все! Можно наслаждаться теплым ламповым звуком. Качество звучания этого приемника оказалось достаточно хорошим, во всяком случае, с качеством звучания сверхрегенератора оно не сравнится.

Ну и напоследок самое интересное, то, ради чего все и затевалось, — осциллограммы сигнала в разных точках схемы. Осциллограмм работ смесителя у меня нет по причине того, что щупы осциллографа сильно влияют на режим его работы, поэтому начнем с УПЧ.

Рассмотрим сигнал на входе и выходе первого каскада УПЧ. На осциллограмме входного (снизу) сигнала видно, что из смесителя, кроме сигнала ПЧ, проходит высокочастотный шум, и его амплитуда даже больше амплитуды нужного сигнала. Но это не страшно, так как он отфильтруется полосой пропускания каскада. И действительно, в осциллограмме выходного сигнала виден только сигнал ПЧ с амплитудой около 200 МВ

Обрати внимание, что у осциллограмм разный масштаб. Из этих осциллограмм можно увидеть, что реальный коэффициент усиления каскада составляет около 30 против расчетных 80


Сигнал на входе и выходе первого каскада УПЧ

Уже в этом месте с помощью осциллографа можно увидеть настройку на станцию, что выглядит как повышение амплитуды сигнала и пульсирующее изменение его частоты (частотная модуляция).


Частотная модуляция сигнала ПЧ

Далее посмотрим на работу второго каскада УПЧ. Тут все просто и понятно, входной сигнал усиливается примерно в 30 раз, и на выходе мы получаем уже около 5 В.


Сигнал на входе и выходе второго каскада УПЧ

После второго каскада сигнал попадает в ограничитель, в котором он дополнительно усиливается и амплитуда ограничивается на уровне 70 В. Здесь хорошо видно подавление паразитной амплитудной модуляции и почти меандр на выходе.


Сигнал на входе и выходе ограничителя

Также тут можно посмотреть на частотную модуляцию.


Частотная модуляция в ограничителе

Теперь взглянем на осциллограммы работы счетного детектора. Видно, что на каждом восходящем фронте сигнала из ограничителя регенерируется импульс примерно одинаковой длительности и амплитуды.


Импульсы в счетном детекторе

Также здесь отчетливо видна частотная модуляция. Например, изменение частоты входного сигнала меняет частоту следования импульсов на выходе детектора.


Импульсы в счетном детекторе

Затем импульсы идут на интегрирующую RC-цепочку, что приводит к формированию низкочастотного сигнала на выходе. На осциллограмме отчетливо видно влияние частотной модуляции на выходной сигнал.


Формирование звукового сигнала

Суммарно работа детектора выглядит так, как показано на рисунках ниже. Здесь видно, что аудиосигнал несколько запаздывает относительно модулированной ПЧ, это связано с интегрирующей RC-цепочкой.


Работа ЧМ-детектора

C детектора сигнал идет на первый каскад УЗЧ, где он усиливается, а кроме того, отфильтровываются остаточные шумы из детектора.


Работа первого каскада УЗЧ

На этом можно и остановиться.

Конструкция

Так как будет исполь­зована дос­таточ­но высокая ПЧ, конс­трук­ции сле­дует уде­лить осо­бое вни­мание. Мон­таж про­изво­дит­ся на алю­мини­евом шас­си раз­мерами 260 × 70 × 50 мм. Впро­чем, кор­пус мож­но сде­лать и поболь­ше, тог­да будет мень­ше воз­ни с плот­ным мон­тажом. Кор­пус набор­ный и сос­тоит из пяти алю­мини­евых панелей тол­щиной 1,2 мм. Панели соеди­няют­ся меж­ду собой алю­мини­евы­ми угол­ками на вин­тах M3. Луч­ше, конеч­но, сог­нуть из цель­ного лис­та п‑образное шас­си и прик­рутить к нему боковин­ки, будет и проч­нее, и сим­патич­ней, но у меня под рукой не ока­залось лис­тогиба.

Мое любимое орг­стек­ло, к нес­частью, для ана­лого­вой час­ти совер­шенно неп­римени­мо, так как лам­пы гре­ются, а ВЧ‑бло­ки тре­буют экра­ниро­вания. Весь мон­таж дол­жен быть выпол­нен по воз­можнос­ти жес­тко с минималь­ной дли­ной соеди­нений. И самый прос­той спо­соб выпол­нить эти тре­бова­ния — ман­хэттен­ский мон­таж.

Дан­ный вид мон­тажа напоми­нает наши макет­ные пла­ты и ме­тоди­ку Жутя­ева. Детали мон­тиру­ются на «пятач­ках», вырезан­ных из фоль­гирован­ного гетинак­са и прик­леен­ных к шас­си, все дела­ется быс­тро и работа­ет впол­не надеж­но. В качес­тве «пятач­ков» я исполь­зовал квад­ратики раз­мером 5 × 5 мм и 10 × 10 мм. Нарезать такие квад­ратики удоб­но цир­куляр­кой с фре­зой по метал­лу, ей же мож­но нарезать алю­миний.

warning

Че­лове­чес­кие кос­ти по твер­дости не слиш­ком отли­чают­ся от алю­миния. Его цир­куляр­ка режет дос­таточ­но лег­ко, поэто­му, если зазевать­ся, мож­но уко­ротить пару паль­цев. Будь вни­мате­лен и осто­рожен.

Сам кор­пус исполь­зует­ся как общий про­вод, а для более удоб­ной пай­ки к нему прик­ручены полосы из мед­ной фоль­ги. Кон­денса­торы в цепях питания и раз­делитель­ные кон­денса­торы дол­жны быть рас­счи­таны минимум на 200 В при нап­ряжении питания 180 В, а луч­ше взять еще боль­ший запас.

От­дель­ного упо­мина­ния зас­лужива­ют кон­турные кон­денса­торы. Дело в том, что при работе лам­пы замет­но наг­рева­ются, а с ними — кор­пус при­емни­ка и, соот­ветс­твен­но, кон­денса­торы в кон­турах. Из‑за это­го час­тота уплы­вает. Что­бы такого не про­исхо­дило, надо исполь­зовать кон­денса­торы с малым тем­ператур­ным коэф­фици­ентом емкости (ТКЕ), к таким отно­сят­ся кон­денса­торы с диэлек­три­ком NP0. В эту катего­рию мож­но отнести и SMD-кон­денса­торы.

Контурные катушки

Кон­турные катуш­ки в лам­повом супер­гетеро­дине — это самый проб­лемный воп­рос. Осо­бен­но сей­час, ког­да элек­тро­ника отош­ла от резонан­сных схем в поль­зу широко­полос­ных. Тем не менее на Али мож­но най­ти кар­касы с подс­тро­ечни­ками по очень демок­ратич­ной цене, и я их уже исполь­зовал рань­ше в КВ‑при­емни­ке.

По­это­му, что­бы не изоб­ретать велоси­пед, мы их при­меним и здесь. Что же каса­ется экра­нов, то их мы изго­товим самос­тоятель­но, бла­го это нес­ложно. Катуш­ка впа­ивает­ся на неболь­шую плат­ку из гетинак­са, из жес­ти дела­ется неболь­шая коробоч­ка, и в нее впа­ивает­ся плат­ка с катуш­кой. Вмес­то жес­ти луч­ше взять медь, но и жесть работа­ет впол­не себе неп­лохо, а глав­ное, она более дос­тупна. В вер­хней час­ти экра­на про­делы­вает­ся отвер­стие для подс­трой­ки катуш­ки.


Кон­тур ПЧ и экран

Ес­ли есть воз­можность взять кар­касы кон­туров ПЧ от лам­пового телеви­зора или при­емни­ка, то это тоже очень хороший вари­ант. Под­робнее о катуш­ках мы погово­рим при обсужде­нии УПЧ и детек­тора. В резуль­тате дол­жно получить­ся что‑то вро­де того, что ты можешь уви­деть на кар­тинках ниже.


Вид свер­ху


Вид сбо­ку


Вид сни­зу

Тестирование основной схемы

Когда у вас будет собранная на макетной плате схема, подключенные к ней Arduino и аудиоколонки со встроенным усилителем, вы сможете запустить тестовую программу, которая приведена в архиве в конце статьи (Si4844_Quick_Test.ino). Эта программа выполняет простой тест, который включает питание устройства, устанавливает диапазон FM (УКВ) и предоставляет информацию о версии микросхемы. Если всё пройдет хорошо, вы сможете настроить частоту радиоприемника, повернув ручку VR1, увидите частоту, динамически отображаемую на экране и, конечно, услышите то, что выдает радиоприемник.

Скриншот экрана с результатами вывода тестовой программы

Если основная схема и ее подключение к Arduino работают, то можно собирать полноценный радиоприемник.

Конструкция приемника

Конструктивно приемник выполнен навесным монтажом внутри сборной алюминиевой коробки размером 50 х 120 х 240 мм. Крышка изготовлена из алюминия толщиной 2,5 мм, стенки и дно — из алюминия толщиной 1 мм. Дном можно пренебречь, но это несколько ухудшит стабильность работы приемника. На крышке расположены восемь панелек для ламп (одна из них осталась незадействованной), также на ней закреплен трансформатор УЗЧ и переменный конденсатор.


FM-радиоприемник на лампах. Вид сверху Шасси соединено с общим проводом, внутри размещены шины из медной проволоки диаметром 2 мм, соединенные с шасси и играющие роль общего провода. Монтаж навесной. Конечно, туда стоило добавить несколько стоек с лепестками контактов, но я поленился.


FM-радиоприемник на лампах. Вид снизу. На передней стенке закреплены резисторы регулировки громкости и режима работы смесителя, туда же выведена ручка переменного конденсатора.


FM-радиоприемник на лампах. Вид спереди.

На задней стенке закреплены разъемы блока питания, динамика и антенны.


FM-радиоприемник на лампах. Вид сзади.

Блок питания выполнен в отдельном корпусе, но такое исполнение не принципиально. Правильнее было бы немного увеличить размеры девайса и смонтировать блок питания в одном корпусе с ним (трансформатора на 100 Вт хватит с избытком). Впрочем, это можно рассматривать как фичу: в двадцатых годах прошлого века блоки питания тоже часто делали отдельными.


Блок питания радиоприемника

Дроссели, примененные в приемнике, самодельные. Дроссели в цепи накала наматываются на резисторы 0,25 Вт сопротивлением больше 100 К и включают 150 витков эмалированного провода диаметром 0,12 мм. Высокочастотные дроссели представляют собой 75 см (четверть длинны волны на 100 МГц) эмалированного провода диаметром 0,7 мм, намотанного на бумажный каркас диаметром 5 мм. Контурная катушка содержит четыре витка эмалированного провода диаметром 2 мм.

Схема типового приемника на УКВ и его доработка

На рисунке 1 приводится типовая схема дешевого карманного УКВ-ЧМ приемника на базе микросхемы D7088 (аналог TDA7088).

Рис. 1. Типовая схема дешевого карманного УКВ-ЧМ приемника на базе микросхемы D7088 (аналог TDA7088).

А на рисунке 2 дана схема доработки схемы приемника с целью её установки в схему радиоприемника ВЭФ-202. Как видите, изменения малозначительны. Разбираете корп-пус «китайца» и извлекаете из него печатную плату.

Рис. 2. Схема доработки старого СВ-ДВ радиоприемнкиа для приема радиостанций в диапазоне УКВ FM.

Обычно она не больше 50×30 мм. Затем, перерезаете дорожки согласно схеме на рисунке 2 (места перерезки показаны крестиками).

Далее, в корпусе дорабатываемого АМ-приемника нужно найти удобное место для «УКВ-платки», и на фронтальной панели сделать отверстия под установку двух миниатюрных кнопок (S1 и S2) и переключателя S3 (это может П2К или двойной тумблер).

Кнопки S1 и S2 будут служить органами настройки в УКВ-диапазоне, их нужно кратчайшими проводниками соединить с соответствующими кнопками, имеющимися на плате «китайца».

От телескопической антенны пускаете отрезок монтажного провода к S3.1, а от него к точке соединения контурных конденсаторов входного контура.

К выводу переменного резистора, — регулятора громкости, соединенного с выводом 2 микросхемы D7088 подпаиваете конденсатор С1, и через него подаете ЗЧ сигнал на контакт «ПР» панельки для подключения звукоснимателя, которая есть на корпусе переделываемого AM приемника.

Теперь питание. Прежде всего нужно помнить, что в «ВЭФе», как и во многих других отечественных транзисторных приемниках, сделанных на германиевых транзисторах, на корпус идет плюс. Поэтому, питание подается, если так можно выразится, наоборот. Дорожку, от выключателя «китайца» нужно соединить с общим плюсом «ВЭФа», а минус подавать через S3.2.

Схема на двух светодиодах HL1 и HL2 и резисторе R1 образует параметрический стабилизатор напряжения 3,2V, которым будет питаться «УКВ-платка».

Вот, пожалуй, и все. Чтобы перейти на УКВ нужно переключить барабанный переключатель диапазонов «ВЭФа» в положение «ПР» (у некоторых «ЗС»), что означает работу с сигналом от электропроигрывателя, и включить S3. Настройку на станцию производить кнопками S1 и S2.

Таким же образом можно доработать практически любой старый отечественный приемник с AM диапазонами, даже «Альпинист». Однако, в случае с «Альпинистом» нужно будет предусмотреть антенну для УКВ-диапазона, например, проложить отрезок монтажного провода по периметру корпуса приемника.

Иванов А. РК-04-08.

Частотно-импульсный детектор

Теперь остановимся подробнее на детекторе. Из его названия следует, что частотная модуляция подразумевает изменение частоты несущего сигнала под действием модулирующего сигнала. Продемонстрировать это можно следующим графиком.

Суть частотной модуляции

Для обратной процедуры, то есть выделения аудиосигнала, и используется ЧМ-детектор. Существует много видов частотных детекторов, но особняком среди них стоит так называемый счетный детектор.

Принцип работы счетного детектора достаточно прост для понимания. Частотно-модулированный сигнал пропускают через ограничитель, получая на выходе меандр переменной частоты. После этого по восходящему или нисходящему сигналу генерируют импульс постоянной ширины. Таким образом, из сигнала переменной частоты мы получили импульсы с изменяющимся периодом следования, а так как ширина импульсов постоянна, то коэффициент заполнения тоже меняется. То есть мы получили ШИМ-сигнал. Полученный ШИМ-сигнал интегрируют, что дает на выходе аудиосигнал.

В общем, частотно-импульсный детектор работает точно так же, как ЦАП, на ШИМ-генераторе. Однако у такого детектора есть некоторые ограничения, и это прежде всего частота входного сигнала, которая должна быть ниже 1 МГц (при условии, что отклонение частоты составляет 50 кГц, характерное для широкополосной FM-модуляции), так как на больших частотах начинает падать эффективность детектора. Впрочем, в нашем случае это, наоборот, преимущество.

Интересно отметить, что в отечественной радиолюбительской литературе данный детектор упоминается редко, а ламповых конструкций в рунете и вовсе не сыскать, тогда как в Европе и Австралии эти схемы достаточно популярны. Например, одним из самых известных приемников с частотно-импульсным детектором был Sinclair Micro FM. Да, это тот самый Синклер, который разработал ZX Spectrum.

Программирование Arduino

Микросхема Si в этом проекте является ведомым устройство I2C, имеющим фиксированный адрес 0x11; при этом ведущим устройством (мастером) является плата Arduino. Однако скорость обмена информацией по I2C у этой микросхемы относительно медленная: максимальная поддерживаемая скорость 50 кГц. Кроме того, во время процедуры включения питания скорость не должна превышать 10 кГц. Чтобы удовлетворить эти требования, мы должны явно установить у Arduino скорость I2C, которая, как правило, слишком велика для Si4844-A10. К счастью, благодаря большому количеству документации по функциям I2C Arduino, мы можем легко выполнить необходимые изменения.

В принципе, скорость I2C для наших целей определяется в программном обеспечении Arduino двумя переменными. Эти переменные – это и . Биты 0 и 1 управляют предделителем, который работает со значением для установки скорости I2C. Скорость (тактовая частота) передачи по I2C рассчитывается по формуле:

Частота = Тактовая частота процессора / (16 + (2 * () * (предделитель))

Arduino Pro mini 3,3В работает на частоте 8 МГц. Чтобы установить скорость I2C на 10 кГц, мы используем значение 98 и установим предделитель в значение 4 (путем установки в 1 только бита 0 ). Таким образом,

8 000 000 / (16 + (2 * 98 * 4 )) = 10 000 или 10 кГц

Чтобы установить скорость I2C на 50 кГц, мы используем значение 18 и установим предделитель в значение 4 (путем установки в 1 только бита 0 ). Таким образом,

8 000 000 / (16 + (2 * 18 * 4)) = 50 000 или 50 кГц

Для более подробной информации смотрите документацию библиотеки для Arduino. Суть в том, что мы можем выполнить изменение скорости I2C всего парой строк кода, что вы можете увидеть в тестовой программе.

Еще один важный момент, связанный с программирование, заключается в том, что нам в коде нужно использовать подпрограмму внешнего прерывания. Мы используем на Arduino, и, когда Si4844-A10 установит уровень на этом выводе в 1, выполнится простая функция, которая «привязана» к этому прерыванию. Всё, что делает эта функция, это изменяет значение переменной флага, которая может быть проверена и изменена в других частях программы. Si4844-A10 будет запускать прерывания (т.е. подавать уровень логической единицы на вывод INT) при определенных условиях, в основном в случае изменения сопротивления потенциометра настройки. Так Si4844-A10 сообщает Arduino, что вы повернули ручку настройки, и что необходимо обновить данные на дисплее.

Супергетеродин

Супергетеродинный приемник, в отличие от приемника прямого усиления, предполагает преобразование принимаемого сигнала в промежуточную частоту, на которой выполняется селекция. Такое решение позволяет сократить количество перестраиваемых элементов, что значительно облегчает задачу.


Блок-схема типичного гетеродинного приемника

На схеме хорошо видно, что принимаемый сигнал усиливается и поступает в смеситель, туда же подается выход с гетеродина (вспомогательного генератора). В результате сигнал смесителя содержит биения, частота которых равна разности принимаемого сигнала и сигнала гетеродина. Из смесителя поток попадает в полосовой фильтр, который выделяет сигнал промежуточной частоты.

Именно в этом месте выполняется селекция. Далее промежуточная частота усиливается и поступает в детектор, выделяющий аудиосигнал. Последний преобразовывается УНЧ и подается на динамик или наушники. Схема в целом достаточно сложная, но зато она выигрывает с точки зрения стабильности работы.

Можно ли в этой схеме что-нибудь упростить? Да, можно! Если сделать промежуточную частоту достаточно низкой (~200 кГц), то полосовой фильтр можно заменить фильтром низких частот, что существенно упрощает конструкцию (собственно, так работает микросхема К174ХА34). А еще упростить схему можно? Конечно! Можно совместить смеситель с гетеродином, подобные приемники еще называют автодинами.

Добавление дисплея

Теперь, когда у нас есть устройство ввода, нам необходима возможность отображать настройки радиоприемника. Я не смог придумать ничего лучше, чем использовать дисплей от старых мобильных телефонов Nokia 5110/3310.

Дисплей Nokia 5110/3310

При работе с этим дисплеем необходимо учитывать два важных момента. Во-первых, существует несколько разновидностей этих дисплеев, и у них могут быть разные распиновки. Вы должны проверить распиновку на своем дисплее, убедиться, что он на самом деле работает от 3,3 В, и проверить правильность подключения к Arduino Pro Mini. Во-вторых, поскольку все входы/выходы Arduino используют напряжение 3,3 В, мне не пришлось использовать понижающие резисторы, которые вы обычно видите, когда эти дисплеи используются 5-вольтовыми платами Arduino, например, Uno.

Подключение дисплея Nokia 5110/3310 к Arduino
Вывод дисплея / Назначение Вывод Arduino или точка на схеме
1-RST D3
2-CE D4
3-DC D5
4-DIN D6
5-CLK D7
6-VCC Vcc (3.3v)
7-LIGHT GND
8-GND GND

В программе я решил использовать библиотеку LCD5110_Basic, которая быстра и очень проста в использовании.

На рисунке ниже показан заполненный данными дисплей радиоприемника.

Дисплей Nokia 5110/3310 при использовании в радиоприемнике (на скриншоте некорректно показаны единицы измерения частоты mHz, в прошивке это исправлено MHz)

Начиная с левого верхнего угла, мы показываем:

  • строка 1 – режим (AM/FM/SW) и номер диапазона;
  • строка 2 – частотный диапазон;
  • строка 3 – уровни громкости и баса/тембра;
  • строка 4 – текущая частота (МГц или кГц);
  • строка 1 – индикаторы стерео (только для FM) и выключения звука (если активно).

Разумеется, эта информация постоянно обновляется, чтобы показывать изменения в настройках или вводе с клавиатуры.

Постановка задачи

О ста­били­зации час­тоты и инди­кации я уже написал, это понят­но. Но есть еще один важ­ный момент: у при­емни­ков с низ­кой ПЧ име­ется труд­ноиз­лечимая проб­лема — зер­каль­ный канал. А про­явля­ет себя эта проб­лема, ког­да надо при­нять сла­бую стан­цию, рядом с которой находят­ся две силь­ные. В резуль­тате мы слы­шим сиг­нал силь­ной стан­ции, задева­ющий зер­каль­ный канал.

Эф­фектив­но бороть­ся с этим мож­но толь­ко повыше­нием ПЧ, нап­ример до стан­дар­тно­го зна­чения 10,7 МГц, а с такой ПЧ уже сле­дует исполь­зовать дроб­ный детек­тор. На том и порешим. В ито­ге вырисо­выва­ется при­емник с циф­ровым гетеро­дином, инди­каци­ей и клас­сичес­ким (поч­ти) лам­повым трак­том.

Подключение Arduino

Еще одна вещь, которую надо решить до включения схемы для тестирования, – это взаимодействие с Arduino. Здесь я решил использовать плату Arduino Pro Mini 3В/8МГц. Это небольшая плата Arduino, полностью работающая на напряжении 3,3 В и совместимая с Si4448-A10, что является главным преимуществом. Небольшой размер платы – второе преимущество. Подключение к Si4448-A10 осуществляется по четырем линиям, как описано ниже:

Подключение Arduino к Si4844-A10
Arduino (3.3 В) Si4844-A10
A5/SCL SCLK
A4/SDA SDIO
D2 INT
D12 RST

Кроме того, используется стандартный преобразователь USB/TTL для подключения Arduino к компьютеру для программирования. Таким образом, у Arduino также будут задействованы выводы TX, RX и GND. Так вы сможете программировать и тестировать Si4844-A10 «внутрисхемно», что облегчает разработку и экспериментирование. Когда всё будет завершено, это подключение может быть убрано для автономной работы нового радиоприемника. Питание платы радио и платы Arduino должно осуществляться внешним стабилизированным источником питания на 3,3 В. Не пытайтесь запитывать их от преобразователя USB/TTL, даже если у него есть выходной вывод 3,3 В – нельзя полагаться, что он обеспечит необходимый ток для питания и Arduino, и Si4844-A10.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: