Как определить катод и анод у светодиода

Полярность при работе полуавтоматом

Отличительная особенность полуавтоматических аппаратов – подача присадочной проволоки в автоматическом режиме, с фиксированной скоростью. Понятно, что в этом случае шовный валик получается аккуратным, ровненьким, ведь металл проплавляется равномерно. Для генерации тока используют инвертор – компактный преобразователь с электронной начинкой, дополнительными функциями, облегчающими процесс сварки.

Специфика автоматической сварки предусматривает несколько режимов работы оборудования:

  • на открытом воздухе с присадкой, образующей шлаковый слой;
  • с использованием проволоки, содержащей флюсы;
  • в среде защитного газа, покрывающего рабочую зону.

Подключение клемм зависит от вида режима. Прямая подходит для обычной порошковой проволоки. На обратную переходят:

  • применяя защитный газ, ионизированные молекулы отлично пропускают электроны, дуга быстро разгорается;
  • используя флюсовую присадку, тепло концентрируется на кончике наплавки, флюс выгорает полностью, формируется однородный диффузный слой.

Работая с современным сварочным оборудованием, при обратном подключении клемм можно скорректировать стабильность горения дуги.

Зная особенности работы на переменном токе, можно подобрать режим сварки под размер заготовок, тип металла. Постоянный ток дает большие возможности, меняя положение полюсов, сварщик контролирует положение высокотемпературной области дуги. Смещая положение анодного пятна, получают прочные соединения на любых заготовках.

Цоколевка светодиодов

Под цоколевкой принято понимать внешний вид (исполнение корпуса) светодиода. Каждый производитель выполняет светодиод в своем корпусе, в зависимости от структуры и назначения. Единого стандарта, как в светодиодных лампах не существует, напомню, самые распространенные цоколи ламп: е27, е14.

Из всего множества все – таки можно выделить пару небольших групп. Например, самые распространенные простые светодиоды выполняются в прозрачном или цветном корпусе из прочного пластика или стекла, и имеют форму цилиндра, край которого чаще всего закруглен.

Более дорогие светодиоды состоят из нескольких частей: основания и линзы. На основании расположены токопроводящие дорожки, а линза выполнена из качественного материала, которая служит в качестве рассеивателя света. Основание изготавливают в виде круга или квадрата. Полярность на квадрате обозначают скошенным уголком. Например, светодиоды CREE, выглядят следующим образом:

Нестандартная цоколевка может встретиться при ремонте электронных блоков и вызвать определенные затруднения в определении полярности.

По цоколевке светодиода определяется его полярность, знание которой требуется для ремонта или  правильного монтажа светодиода в схему. Не всегда есть возможность определить полярность привычными способами, из-за нестандартной цоколевки светодиода: особенное строение корпуса, утолщение одного из светодиодов и другие причины. Поэтому, в таких случаях, как не крути, придется прибегнуть к электрическому замеру.

Виды диодов

Светодиодные элементы делятся на 2 объёмных вида: полупроводниковые и неполупроводниковые. Устройство первого подразумевает небольшую ёмкость с выкачанным воздухом и двумя электродами внутри:

  • Плюсовым, обладающим электропроводностью P.
  • Минусовым, обладающим электропроводностью N.

Анод и катод в светодиодеИсточник multiurok.ru

Неполупроводниковые диоды делятся в свою очередь ещё на 2 группы:

  • Вакуумные (кенотроны), построенные по принципу лампы, имеющей 2 электрода, где один из них представлен как нить накаливания. В приоткрытом положении движение электронов осуществляется в сторону от полюса к минусу. В закрытом положении траектория перемещения изменяется в противоположную сторону или приостанавливается.
  • Наполненные газом (стабилитроны с тлеющим либо коронным зарядом игнитронов и газотронов). Из объёмного списка элементов наибольшая популярность присуща газотронам с дуговым зарядом (стабилитронам). Внутрь них закачивается инертный газ, помещаются оксидные термокатоды. Ключевой особенностью таких светодиодов является возможность к выдаче высокого напряжения на выходе и способность функционировать с напряжением, значение которого может достигать нескольких десятков ампер.

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками. 

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:

ширина запрещенной зоны должна быть близка к энергии кванта света; 

полупроводниковый кристалл должен иметь минимум дефектов.  

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами. 

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка). 

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения. 

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия. 

При помощи батарейки

Если источник питания отсутствует, можно попытаться определить расположение выводов от гальванического элемента, но следует иметь в виду особенности такой проверки:

  • батарейка может выдавать напряжение, недостаточное для открытия p-n перехода.
  • бытовые гальванические элементы имеют небольшую мощность, и выдаваемый ток нагрузки невелик – он зависит от начальной мощности батарейки и от остаточного заряда.

В таблице приведены параметры некоторых отечественных светодиодов. Очевидно, что распространенные полуторавольтовые химические источники тока не смогут зажечь ни один прибор из списка.

Тип прибора Прямое падение напряжения, В Рабочий ток, мА
АЛ102А 2,8 5
АЛ307А 2 10
АЛ307В 2,8 20

Чтобы увеличить напряжение, можно соединить батарейки последовательно. Для увеличения мощности – параллельно (только для элементов одного напряжения!). В итоге может получиться громоздкая конструкция, не гарантирующая конечного результата. Поэтому пользоваться таким методом лучше в тех случаях, когда других путей нет.

Мультиметром

Кстати, вполне можно задействовать и , который уже укомплектован всем необходимым – источником питания и щупами. Это даже еще лучше.

Способ определения полярности 1 – основан на свойстве светодиода «загораться» при прохождении по нему тока. Следовательно, его анод будет там, где «плюс» батарейки мультиметра (гнездо для щупа «+»), а катод, соответственно, где минус. Чтобы проверить на «свечение», переключатель прибора устанавливается в позицию «измерение диода».

Способ определения полярности 2 – здесь измеряется сопротивление p -n перехода. Переключатель мультиметра – в положение «измерение сопротивления», предел, в зависимости от модификации тестера, в положение более 2 кОм. Например, на 10.

Касание щупами выводов светодиода – лишь кратковременное, чтобы не вывести радиодеталь из строя. Если полярности п/п и источника питания совпадают, то сопротивление будет небольшим (от сотен Ом до нескольких кОм). В этом случае красный щуп (его принято вставлять в гнездо прибора «+») указывает на ножку-анод, а черный («–»), соответственно, на катод.

Если мультиметр показывает большое сопротивление, значит, при касании щупами выводов полярность была нарушена. Следует повторить измерение, изменив ее, чтобы удостовериться в отсутствии внутреннего обрыва. Только в этом случае можно говорить не только о полярности светодиода, но и о его исправности и готовности к использованию по назначению.

На различных тематических форумах встречаются суждения, что ничего страшного не произойдет; можно подключать источник питания в любой полярности, и на светодиоде это не отразится. Но это не совсем так.

  • Во-первых, все зависит от величины напряжения пробоя, то есть характеристики конкретного полупроводника.
  • Во-вторых, он может в дальнейшем и работать, но частично утратить свои свойства. Проще говоря, светить, но не так сильно, как должен.
  • В-третьих, подобные эксперименты негативно отражаются на эксплуатационном ресурсе светодиода. Если его гарантированная производителем наработка на отказ порядка 45 000 часов (в среднем), то после таких проверок на полярность он прослужит намного меньше. Подтверждено практикой!

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит . Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Ссылки[править | править код]

  1. OSRAM: green LED
  2. (2001) «Ultraviolet Emission from a Diamond pn Junction». Science 292 (5523): 1899. DOI:10.1126/science.1060258. PMID 11397942.
  3. (2007) «Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure». Science 317 (5840): 932. DOI:10.1126/science.1144216. PMID 17702939.
  4. (2004) «Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal». Nature Materials 3 (6): 404. DOI:10.1038/nmat1134. PMID 15156198.
  5. (2006) «An aluminium nitride light-emitting diode with a wavelength of 210 nanometres». Nature 441 (7091): 325. DOI:10.1038/nature04760. PMID 16710416.
  6. LEDs move into the ultraviolet, physicsworld.com, May 17, 2006. Проверено 2007-08-13.

  7. 1981 VW Rabbit Owner’s manual. Page 52. Volkswagen of America. 1980.
  8. «GaN-based blue light emitting device development by Akasaki and Amano» (PDF). Takeda Award 2002 Achievement Facts Sheet. The Takeda Foundation. 2002-04-05. http://www.takeda-foundation.jp/en/award/takeda/2002/fact/pdf/fact01.pdf. Retrieved 2007-11-28.
  9. U.S. Patent 5,578,839 «Light-emitting gallium nitride-based compound semiconductor device» Nakamura et al., Issue date: November 26, 1996
  10. Sensor Electronic Technology, Inc.: Nitride Products Manufacturer
  11. Mori, Mirei; Hamamoto, Akiko; Takahashi, Akira; Nakano, Masayuki; Wakikawa, Noriko; Tachibana, Satoko; Ikehara, Toshitaka; Nakaya, Yutaka et al. (2007). «Development of a new water sterilization device with a 365 nm UV-LED». Medical & Biological Engineering & Computing 45: 1237. doi:10.1007/s11517-007-0263-1.
  12. Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki (2006). «An aluminium nitride light-emitting diode with a wavelength of 210 nanometres». Nature 441 (7091): 325. doi:10.1038/nature04760. PMID 16710416.
  13. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. (2007). «Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure». Science 317 (5840): 932. doi:10.1126/science.1144216. PMID 17702939
  14. Watanabe, Kenji; Taniguchi, Takashi; Kanda, Hisao (2004). «Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal». Nature Materials 3 (6): 404. doi:10.1038/nmat1134. PMID 15156198.
  15. Koizumi, S.; Watanabe, K; Hasegawa, M; Kanda, H (2001). «Ultraviolet Emission from a Diamond pn Junction». Science 292 (5523): 1899. doi:10.1126/science.1060258. PMID 11397942
  16. J. H. Wold and A. Valberg (2000). «The derivation of XYZ tristimulus spaces: A comparison of two alternative methods». Color Research & Application 26 (S1): S222. doi:10.1002/1520-6378(2001)26:1+<::AID-COL47>3.0.CO;2-4.
  17. Ivan Moreno, Ulises Contreras (2007). «Color distribution from multicolor LED arrays». Optics Express 15 (6): 3607. doi:10.1364/OE.15.003607. PMID 19532605.
  18. Tanabe, S. and Fujita, S. and Yoshihara, S. and Sakamoto, A. and Yamamoto, S.. «YAG glass-ceramic phosphor for white LED (II): luminescence characteristics». Proc. of SPIE Vo 5941: 594112—1.
  19. Ohno, Y.. «Color rendering and luminous efficacy of white LED spectra». Proc. of SPIE Vol 5530: 89.
  20. WO patent 2008104936
  21. Burroughes, JH and Bradley, DDC and Brown, AR and Marks, RN and Mackay, K. and Friend, RH and Burns, PL and Holmes, AB, (1990). «Light-emitting diodes based on conjugated polymers,». Nature 347 (6293): 539–541. doi:10.1038/347539a0.
  22. Lawler, Richard (2007-01-08). «Sony’s 1,000,000:1 contrast ratio 27-inch OLED HDTV». Engadget. http://www.engadget.com/2007/01/08/sonys-1-000-000-1-contrast-ratio-27-inch-oled-hdtv/. Retrieved 2009-02-15.
  23. «New study says OLED efficiency is less than previously reported». LEDs Magazine (PennWell Corporation). 2008-08-20. http://www.ledsmagazine.com/news/5/8/18. Retrieved 2009-02-15.
  24. Quantum-dot LED may be screen of choice for future electronics Massachusetts Institute of Technology News Office, December 18, 2002
  25. Nanoco Signs Agreement with Major Japanese Electronics Company, 23/09/2009
  26. LED-design
  27. «Luminus Products». Luminus Devices, Inc.. http://www.luminus.com/content1044. Retrieved 2009-10-21
  28. «Luminus Products CST-90 Series Datasheet». Luminus Devices, Inc.. http://www.luminus.com/stuff/contentmgr/files/0/7c8547b3575bcecc577525b80d210ac7/misc/pds_001314_rev_03__cst_90_w_product_datasheet_illumination.pdf. Retrieved 2009-10-25.
  29. «XLamp XP-G LED». Cree, Inc.. http://www.cree.com/products/xlamp_xpg.asp. Retrieved 2009-09-28

Краткие технические характеристики

Хотя никакой информации о характеристиках smd светодиодов их цифровая маркировка не несет, все же некоторая связь между типоразмерами и параметрами приборов есть. Рассмотрим параметры самых распространенных видов светоизлучающих smd полупроводников:

Основные технические характеристики светодиодов smd    

Тип прибора

Размеры корпуса, мм

Количество кристаллов

Мощность, Вт

Световой* поток, лм

Рабочий ток, мА

Температура эксплуатации, °С

Телесный угол, °

Цвет свечения

3528 3.5х2.8 1 или 3 0.06 или 0.2 0.6 – 5.0* 20 -40 … +85 120 – 140 белый, нейтральный, теплый, синий, желтый, зеленый, красный, RGB
5050 5.5х1.6 3 или 4 0.2 или 0.26 2 – 14* 60 или 80 -20 … +60 120 – 140 белый, теплый, синий, желтый, зеленый, красный, RGB, RGBW
5630 5.6х3.0 1 0.5 57 150 -25 … +85 120 холодный, нейтральный, теплый
5730 5.7х3.0 1 или 2 0.5 или 1 50 или 158 150 или 300 -40 … +65 120 холодный, белый, нейтральный, теплый
3014 3.0х1.4 1 0.12 9 – 11* 30 -40 … +85 120 холодный, нейтральный, теплый, синий, желтый, зеленый, красный, оранжевый
2835 2.8х3.5 1 0.2 или 0.5 или 1 20 или 50 или 100 60 или 150 или 300 -40 … +65 120 холодный, нейтральный, теплый

* – зависит от цвета свечения кристалла

А теперь рассмотрим каждый из этих типов более подробно.

Какие бывают светодиоды

Рассмотрим классификацию приборов LED в зависимости от их назначения, и технических хаpaктеристик.

Свойства и параметры индикаторных моделей

Индикаторные светодиоды могут иметь диаметр: 3, 5, 10 или 8 мм. Их напряжение варьируется от 2,5 до 5 Вольт. При этом они потрeбляют электрического тока от 10 до 25 миллиампер. Средняя яркость такого диода – всего от 100 до 1000 милликанделл. Данные приборы обладают круглыми или прямоугольными линзами.

Осветительные диоды

Активнее всего диоды применяются в освещении. Осветительные диоды изготавливаются, путем покрытия синего светодиода слоем люминофора. Светодиоды COB представляют собой подложку с расположенными на ней полупроводниками. Кристаллы при этом залиты люминофором нужных цветов. Плотность размещенных кристаллов обеспечивает повышенную яркость излучаемого света.

Напряжение питания светодиодов

Светоизлучающему диоду, как и человеку, необходимо питаться правильно. Только в этом случае он гарантирует многолетнюю и безотказную работу. Светодиоды имеют нелинейную вольтамперную характеристику, схожую с обычным диодом. Поэтому их питание должно осуществляться стабильным током – это один из ключевых принципов. Если его не соблюдать, последствия для светодиодов могут быть самые плачевные.

Чтобы определить, какая схема питания будет оптимальной в том или ином случае, необходимо для начала узнать исходные данные:

  • параметры светодиода, нормируемые производителем;
  • параметры питающей сети (сеть 220 В, аккумулятор, батарейки или что-то другое).

Параметры светодиода

Самые важные параметры –  это номинальный и максимальный ток. При номинальном обычно нормируются световые характеристики – сила света в канделах или световой поток в люменах. Максимальный ток – это предельное значение, при котором можно эксплуатировать данный прибор. Значения этих параметров в современных однокристальных приборах варьируются от нескольких мА до 3 А.

Прямое падение напряжения – напряжение питания светодиодов, которое падает на p-n-переходе при номинальном токе. Его значение пригодиться при расчете выходных параметров источника питания.

Максимальная температура корпуса и p-n-перехода, максимальное обратное напряжение  — параметры тоже важные, но в случаях, когда соблюдаются токовые режимы и схема не предусматривает обратного включения, на них можно не обращать внимания.

Параметры питающей сети

При изготовлении любого устройства своими руками, необходимо определить параметры источника, который будет осуществлять питание светодиодов. Сеть 220 В, автомобильный аккумулятор на напряжение 12 В или простые батарейки – в любом случае необходимо определить диапазон питающего напряжения, то есть минимальное и максимальное его значение. На сеть 220 В дается (но не всегда соблюдается) допуск ±10%. Для аккумулятора берется в расчет напряжение при полной зарядке и в разряженном состоянии. С батарейками и так всё понятно.

В случае с автономными источниками питания важно также узнать их емкость и максимальный выходной ток

Простейшая схема

Пусть стоит задача сделать своими руками примитивный светодиодный фонарик, питающийся от одной батарейки. Возьмем, к примеру, светодиод C503C (CREE) с номинальным током ILED=20 мА и падением напряжения ULED =3,2 В.

В качестве источника питания используем литиевую батарейку на 3,7В (если использовать пальчиковые батарейки, то одной не обойдешься).

Если включать светодиод напрямую, то сила тока через светодиод будет ограничиваться только внутренним сопротивлением батарейки, что в лучшем случае будет приводить к очень быстрому ее разряду, а в худшем к выходу из строя светодиода. Простейшая схема включения показана на рисунке ниже.

Для ограничения тока используется резистор, сопротивление которого определяется по формуле R=(UБ-ULED)/ ILED. В нашем случае сопротивление составит 25 Ом.

При увеличении мощности диода, схема будет усложняться, т.к. при больших токах применять резистор нецелесообразно – слишком большие потери мощности. Если напряжение питания имеет большой диапазон, эта схема тоже не годится, потому что не обеспечивает стабилизацию тока.

Развиваем тему

Питание мощных светодиодов осуществляется с применением стабилизаторов тока – драйверов. Они могут быть выполнены как на основе дискретных компонентов, так и с применением специализированных микросхем. Драйвер можно приобрести в готовом виде, а можно изготовить своими руками – это не сложно, учитывая, что схем и рекомендаций в интернете с избытком.

Еще один важный момент организации питания полупроводниковых источников света: при объединении светодиодов в группы, рекомендуется их последовательное соединение. Это обусловлено тем, что падение напряжения на p-n-переходе имеет определенный разброс от прибора к прибору, и при параллельном включении токи через них будут отличаться.

Питание светодиодов от 220 В сети , организуется с помощью так называемых сетевых драйверов. По сути, это импульсные источники питания для светодиодов, они преобразуют сетевое напряжение в стабильный постоянный ток. Изготавливать такой источник своими руками – довольно сложно, если вы не специалист в этой области, а учитывая широкую номенклатуру, представленную на современном рынке еще и нецелесообразно.

Принцип работы[ | ]

При пропускании электрического тока через p-n-переход в прямом направлении носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).

Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ 101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

Реальная ситуация с LED-лампами в фарах

Реальная ситуация с наказанием водителей транспортных средств за лампы на светодиодах в галогеновых световых приборах состоит в том, что доказательство самого факта нарушения представляет немалую трудность для сотрудников ГИБДД, что определяется целым рядом факторов:

  • согласно внутренним документам МВД, контроль за техническим характеристиками фар могут производить только инспектора технических служб и только на оборудованных стационарных пунктах технической диагностики ГИБДД. Средства для диагностики должны иметь регистрацию в государственном реестре;
  • внешний осмотр на месте остановки автомобиля инспектор проводит без открытия капота, а доступ к подкапотному пространству уже называется досмотр и требует наличия двух понятых либо применение видеозаписи;
  • даже при наличии понятых и фиксации состояния подкапотного пространства, не допускается вскрытие или разборка фар, так как это ведет к нарушению пункта 1 статьи 27.9 КоАП:

Особая сложность диагностирования наличия LED-ламп ближнего или дальнего света в галогеновых устройствах состоит в том, что световые и технические параметры светодиодов во многом практически не отличаются от галогенных источников света. Универсальный характер светодиодов заключается в простом воспроизведении производителем светодиодов любых параметров галогеновых ламп — яркости, светового потока или цветовой температуры.

Сложный алгоритм обнаружения и доказательства наличия светодиодов в галогенных фарах приводит к тому, что сотрудники ГИБДД предпочитают не трогать владельцев фар со светодиодными лампами, кроме случаев откровенного нарушения световых режимов или прямой угрозы безопасности движения.

Основные выводы

На осветительном рынке представлены разные виды светодиодов. При выборе изделия нужно ознакомиться с его характеристиками, чтобы подобрать наиболее подходящее для вас

Важно учитывать величину тока, напряжение, сопротивление, мощность светового излучения, угол свечения, цветовую температуру. Также необходимо уметь расшифровать маркировку на ЛЕД-устройстве, которая указывает на его размер

Кроме того, необходимо знать, что существуют индикаторные и осветительные светодиоды. Первые применяются для цветовой индикации, а вторые – для освещения. Если вы будете разбираться в этой информации, то без проблем подберете наиболее подходящие led-элементы для конкретных целей.

Предыдущая

Лампы и светильникиОсобенности и характеристики распространенных типов ртутных ламп

Следующая

Лампы и светильникиКак правильно паять светодиодную ленту

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: