Индуктивное сопротивление катушки формула. сопротивления в цепи переменного тока. индуктивное сопротивление. емкостное сопротивление. суммарное сопротивление

От чего зависит индуктивное сопротивление

Прежде чем ответить на поставленный вопрос, следует отметить, чем отличается активное и индуктивное сопротивление. При включении в постоянную цепь активного сопротивления произойдет изменение величины тока на этом участке.

На самом сопротивлении появится некое напряжение, свидетельствующее о наличии ограничения тока. Такое положение вещей будет сохраняться при включении и выключении питания.

Совсем иначе происходит при замене резистора на катушку индуктивности. При включении питания на катушке будет наблюдаться падение напряжения, свидетельствующее о затруднительном проходе тока. Через какое-то время падение напряжения снизится практически до нуля, что говорит о беспрепятственном проходе тока.

Ограничение может быть связано только с некоторым активным сопротивлением провода катушки. Такое состояние будет продолжаться до тех пор, пока питание не отключат. На катушке вновь появится напряжение, но обратное напряжению питания. Причем это напряжение может значительно превышать питающее напряжение.

Первое, от чего зависит индуктивное сопротивление, — частота изменения величины или направления тока. Второе – величина индуктивности самой катушки.

Отличие между индуктивным сопротивлением и обычным активным (омическим) заключается в том что при прохождении через катушку переменного тока в ней не происходит потеря мощности. Для постоянного тока индуктивное сопротивление равно нулю.

Вокруг точечного заряда всегда присутствует электромагнитное поле. При движении заряда, поле также перемещается. Причем это поле имеет свою инерционность, заставляя заряд двигаться прямолинейно. Чем больше зарядов скапливается, тем большую силу обретает поле. Так в одиночном проводнике сила поля будет одна, а скрученном в катушку проводе это электромагнитное поле будет намного сильнее.

Электроприбор для измерения силы тока

Для измерения силы электротока используют специальный прибор под названием амперметр. Если требуется измерить токи самых разных сил, то прибегают к использованию миллиамперметров и макроамперметров. Чтобы измерить им требуемую величину, его подключают в цепь последовательно. Ток, который проходит через устройство, будет изменяться им, и данные будут выведены на цифровой дисплей или аналоговые шкалы.

Советуем изучить — Методы защиты от электромагнитного излучения

Важно! Стоит помнить, что включать амперметр можно на любом участке сети, поскольку сила тока в простой замкнутой цепи без ответвлений одинакова во всех точках. Современные тестеры и мультиметры содержат функцию измерения силы электротока, поэтому нет необходимости прибегать к габаритным приборам, предназначенным для промышленного использования. Современные тестеры и мультиметры содержат функцию измерения силы электротока, поэтому нет необходимости прибегать к габаритным приборам, предназначенным для промышленного использования

Современные тестеры и мультиметры содержат функцию измерения силы электротока, поэтому нет необходимости прибегать к габаритным приборам, предназначенным для промышленного использования


Силу тока в домашних условиях можно измерить с помощью мультиметра

Таким образом, сила электротока – это основополагающая характеристика движущихся частиц. Она не только дает понять, какое в сети напряжение и сопротивление, но и определяет другие важные величины по типу ЭДС и т. д.

Общие сведения

Для того чтобы понять, от чего зависит индуктивность катушки, необходимо подробно изучить всю информацию об этой физической величине. Первым делом следует рассмотреть принятое международное обозначение параметра, его назначение, характеристики и единицы измерения.

Первая буква фамилии другого знаменитого физика — Эмилия Ленца — была взята в качестве обозначения индуктивности в формулах и при проведении расчётов. В наше время символ L продолжает использоваться при упоминании этого параметра.

Выдающийся американский физик Джозеф Генри первым обнаружил явление индуктивности. В его честь физики назвали единицу измерения в международной СИ, которая чаще всего используется в расчётах. В других системах (гауссова и СГС) индуктивность измеряют в сантиметрах. Для упрощения вычислений было принято соотношение, в котором 1 см равняется 1 наногенри. Очень редко используемая система СГСЭ оставляет коэффициент самоиндукции без каких-либо единиц измерения или использует величину статгенри. Она зависит от нескольких параметров и приблизительно равняется 89875520000 генри.

Среди основных свойств индуктивности выделяются:

  1. Величина параметра никогда не может быть меньше нуля.
  2. Показатель зависит только от магнитных свойств сердечника катушки, а также от геометрических размеров контура.

Практический расчёт

Например, пусть понадобится узнать, на какой ток необходимо приобрести устанавливаемый на участок цепи автоматический выключатель. При этом известно, что в линию, на которой он будет установлен, одновременно будут включаться холодильник с максимальной мощностью потребления энергии один киловатт, бойлер (два киловатта) и люстра, потребляющая 90 ватт. В месте установки используется однофазная сеть, рассчитанная на рабочее напряжение 220 вольт.

Советуем изучить — Диэлектрики в электрическом поле

На первом этапе расчёта понадобится суммировать всю мощность подключаемых к линии электроприборов. Так, P общ. = 1000 + 2000 + 90 +220 = 3310 Вт. Используя формулу P = I*U, находится необходимое значение тока: I = P/U = 3310/220 = 15,04 А.

Из стандартного ряда выключателей наиболее близкое значение имеет автомат на 16 А. Поскольку необходимо покупать устройство защиты с небольшим запасом, то для рассматриваемого примера подойдёт выключатель, рассчитанный на 20 ампер.

Катушка индуктивности

Самым распространенным элементом, обладающим индуктивностью, является катушка индуктивности. Что она из себя представляет? Как правило, для намотки используют каркас из диэлектрического материала. Он может быть круглый, прямоугольный или квадратный.

Если диаметр провода большой, а число витков незначительно, то можно обойтись и без каркаса. Несколько слов о самой намотке, она может быть:

  • однослойной или многослойной;
  • провод может быть одножильным или многожильным;
  • есть несколько способов намотки (внавал, универсал и подобные);
  • сами секции нередко делают раздельными;
  • для увеличения индуктивного сопротивления катушки индуктивности добавляют ферромагнитный сердечник, который перемещается внутри корпуса
  • относительно катушки, оказывая влияние на магнитное поле;
  • чтобы индуктивность понизить, используют диамагнитный сердечник.

Не совсем яблочко от яблоньки

Лучший способ понять, что же такое полное электрическое сопротивление – это сравнить его с чем-то уже вам известным, скажем – «простым» сопротивлением. Так мы сможем дать исчерпывающее определение полного электрического сопротивления одной фразой:

Вот и всё. Сейчас вы можете остановиться и записать еще одно слово в ваш словарь инженера-электрика. Просто и понятно: полное электрическое сопротивление – вид сопротивления, которое зависит от рабочей частоты электрической цепи. Но, разумеется, это еще не всё.

Резисторы выполняют в цепи постоянного тока чрезвычайно простую работу. Они оказывают сопротивление току, протекающему через какой-либо металл, например медь. Вы добавляете резистор на 220 кОм в цепь постоянного тока, и получаете определенное уменьшение тока, который втекает в резистор с одной стороны, и вытекает из него с другой стороны. Резисторы, подобно другим чисто омическим компонентам электрической цепи, не думают о том, какую же частоту выдает источник тока. Они просто делают то, что должны делать – оказывают некое постоянное сопротивление току.

Но что произойдет, если вы начнете работать с электроникой с питанием от источника переменного тока? Источник переменного тока не просто дает 5 В для питания вашей схемы. Кроме нового источника тока вы получили новые переменные, с которыми необходимо считаться. Например, сюда входит заранее известная частота переменного тока в сети питания. В Соединенных Штатах Америки частота тока в электрической сети составляет 60 колебаний в секунду (60 Гц). За океаном, в Европе, частота тока в сети 50 Гц.

В отличие от постоянного тока (DC), график которого представляет собой

прямую линию, переменный ток (АС) колеблется с определенной частотой.

В итоге получается следующее: в электронных устройствах, использующих переменный ток, необходимы не только активные компоненты, такие как резисторы, задачей которых является оказание сопротивления электрическому току, также нужны компоненты, которые могут реагировать на изменения тока и частоты, например конденсаторы и катушки индуктивности. В противном случае электрическая схема не будет работать так, как задумывалось. Зная все это уже можно посчитать полное сопротивление, которое является старшим братом активного сопротивления. Полное электрическое сопротивление включает в себя и активное, и реактивное сопротивления. Это можно записать в виде выражения:

Что такое катушка индуктивности

Данный элемент ещё называют дросселем. Это свёрнутый в спираль изолированный провод. Для такой спирали характерны большие индуктивные и маленькие ёмкостные параметры.

Важно! Дроссель препятствует протеканию переменного тока, потому что обладает существенной инерционностью. Она препятствует любому изменению проходящего через витки тока

При этом нет разницы, увеличивается он или уменьшается.

В связи с этим данные элементы применяют в электротехнике для осуществления:

  • токоограничения;
  • ослабления биений;
  • помехоподавления;
  • формирования магнитного поля;
  • изготовления датчиков движения.

Дроссель входит в систему колебательного контура в цепях резонанса и применяется в линиях задержки.

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции открыл Майкл Фарадей в ходе серии опытов.

Опыт раз. На одну непроводящую основу намотали две катушки таким образом, что витки одной катушки были расположены между витками второй. Витки первой катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушку замкнули на гальванометр, а магнит передвигали относительно катушки.

Вот что показали эти опыты:

  1. Индукционный ток возникает только при изменении линий магнитной индукции.
  2. Направление тока различается при увеличении числа линий и при их уменьшении.
  3. Сила индукционного тока зависит от скорости изменения магнитного потока. При этом как само поле может изменяться, так и контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна электродвижущей силе (ЭДС).

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

В каких единицах измеряется

Впервые индуктивность была вычислена американским ученым-физиком Джоном Генри и была названа в его честь – Генри, сокращенно Гн. Диапазон индуктивности очень широк, в приведенной ниже таблице видно, какие производные существуют:

Кратные Дольные
Величина Название Обозначение Величина Название Обозначение
101 декагенри даГн daH 10-1 децигенри дГн dГн
102 гектогенри гГн hH 10-2 сантигенри сГн cГн
103 килогенри кГн kH 10-3 миллигенри мГн mГн
106 мегагенри МГн MH 10-6 микрогенри мкГн µГн
109 гигагенри ГГн GH 10-9 наногенри нГн nГн
1012 терагенри ТГн TH 10-12 пикогенри пГн pГн
1015 петагенри ПГн PH 10-15 фемтогенри фГн fГн
1018 эксагенри ЭГн EH 10-18 аттогенри аГн aГн
1021 зеттагенри ЗГн ZH 10-21 зептогенри зГн zГн
1024 иоттагенри ИГн YH 10-24 иоктогенри иГн yГн

Первые две строчки производных в каждой части таблицы применять не рекомендуют, указывают либо в десятых или сотых долях генри, либо десятках и сотнях. В СИ используется указанное обозначение в других системах, таких как СГМС обозначение может отсутствовать, либо применяется статгенри ≈ 8,987552⋅1011 или абгенри.

Индуктивность, L — измеряется в Генри (Гн). Индуктивное сопротивление XL — измеряется в Омах (Ом)

Самоиндукция

Представим себе любую электрическую цепь, параметры которой можно менять. Если мы изменим силу тока в этой цепи — например, подкрутим реостат или подключим другой источник тока — произойдет изменение магнитного поля. В результате этого изменения в цепи возникнет дополнительный индукционный ток за счет электромагнитной индукции, о которой мы говорили выше. Такое явление называется самоиндукцией, а возникающий при этом ток — током самоиндукции.

Формула магнитного потока для самоиндукции

Ф = LI

Ф — собственный магнитный поток

L — индуктивность контура

I — сила тока в контуре

Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.

Самоиндукция — это возникновение в проводящем контуре ЭДС, создаваемой вследствие изменения силы тока в самом контуре.

Самоиндукция чем-то напоминает инерцию: как в механике нельзя мгновенно остановить движущееся тело, так и ток не может мгновенно приобрести определенное значение за счет самоиндукции.

Представим цепь, состоящую из двух одинаковых ламп, параллельно подключенных к источнику тока. Если мы последовательно со второй лампой включим в эту цепь катушку, то при замыкании цепи произойдет следующее:

  • первая лампа загорится практически сразу,
  • вторая лампа загорится с заметным запаздыванием.

При размыкании цепи сила тока быстро уменьшается, и возникающая ЭДС самоиндукции препятствует уменьшению магнитного потока. При этом индуцированный ток направлен так же, как и исходный. ЭДС самоиндукции может во многом раз превысить внешнюю ЭДС. Поэтому электрические лампочки так часто перегорают при отключении света.

ЭДС самоиндукции

ξis — ЭДС самоиндукции

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

ΔI/Δt — скорость изменения силы тока в контуре [А/с]

L — индуктивность

Знак минуса в формуле закона электромагнитной индукции указывает на то, что ЭДС индукции препятствует изменению магнитного потока, который вызывает ЭДС. При решении расчетных задач знак минуса не учитывается.

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится осциллограф, генератор частоты, собственно сама катушка индуктивности и резистор на 100 Ом.  Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:

Получилось как то так:

Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал — желтым. Следовательно, красная синусоида — это частота, которую нам выдает генератор частоты, а желтая синусоида — это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал  с частотой  в 1 Килогерц.

Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф

Красный кружок с цифрой «1» — это замеры «красного»канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой «2». F=1 Килогерц, а Ма=1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц

Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц

Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется сдвиг фаз. Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Увеличиваем частоту до 200 Килогерц

На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.

Амплитуда  желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц

Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц

Амплитуда желтого канала  стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца

Амплитуда «желтого» сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:

Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет,  а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.

Итак, прогоняем все по тем же значениям частоты

При  частоте в 1 Килогерц у  нас значение почти не изменилось.

10 Килогерц

Здесь тоже  ничего не изменилось.

100 Килогерц

Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

200 Килогерц

Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

300 Килогерц

Сдвиг фаз стал больше и амплитуда просела еще больше

500 Килогерц

Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

1 Мегагерц

Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. ;-)

2 Мегагерца, предел моего генератор частоты

Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах  на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Трансформатор Тесла: принцип действия

Не было бы трансформаторов катушек индуктивности в роли первичной и вторичной обмоток — не было бы ни передачи, ни распределения электроэнергии. Для соединения используется последовательное подключение. Тем не менее, вот вам снова применение катушки индуктивности, главного ее свойства. На втором этапе колебания высокой частоты генерируются в первичном контуре. Для постоянного тока катушка не является сопротивлением, разве что сопротивление ее провода выступает активным сопротивлением, а вот для тока переменного, да высокочастотного коим являются например коммутационные помехи — катушка станет препятствием.


Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник. Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.


Для чего нужны и какие бывают В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. В данном случае катушка индуктивности работает одновременно и как трансформатор, и как колебательный контур, и как приемная антенна с открытой емкостью. Регулируя ток в обмотках, схема изменяет параметры суммарного магнитного поля всех катушек системы, в результате лучу создается определенный путь для попадания в точно рассчитанное место на экране. Их сердечник изготавливают обычно из феррита.


Фото — принцип работы Помимо этого, индуктивные каркасные и бескаркасные катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети. И так далее. Подключение автомобильный катушки зажигания

Расчет параметров катушки

Приходится при расчётах рассматривать разные варианты. Расчет индуктивности зависит от исходных данных и заданных конечных параметров.

Расчет L в зависимости от заданной конструкции

Если исходными параметрами являются: w, D каркаса и длина намотанного провода, то формула для расчёта имеет вид:

L = 0,01*D*w2/(l/D) + 0,46,

где:

  • D – диаметр каркаса, см;
  • w – число витков;
  • l – длина намотки, см;
  • L – индуктивность, мкГн.

Подставляя численные значения в формулу, получают значение L.

Расчет количества витков по индуктивности

Зная D каркаса и L, рассчитывают количество витков в катушке, формула имеет вид:

w = 32*√(L*D),

где:

  • L – индуктивность, мкГн;
  • D – диаметр каркаса, мм.

Если в качестве исходных параметров берутся длина навитого в ряд проводника и его диаметр, то количество витков находят, используя формулу:

w = l/d,

где:

  • l – длина намотки, мм;
  • d – диаметр провода, мм.

Измерения диаметра провода проводят линейкой или штангенциркулем.

Расчёт индуктивности прямого провода

Собираясь найти L круглого прямого проводника, обращаются к приближённой формуле:

L = (μ0/2π)*l*( μe*ln(l/r) + 1/4* μi,

где:

  • μ0 – магнитная постоянная;
  • μe – относительная магнитная проницаемость (ОМП) среды (для вакуума – 1);
  • μi – ОМП проводника;
  • l – длина провода;
  • r – радиус провода.

Формула справедлива для длинного проводника.

Расчёт однослойной намотки

Однослойные дроссели без сердечника легко и быстро можно рассчитать при помощи онлайн-калькулятора, в окно которого можно забить все известные характеристики, и программа выдаст значение L.

Вычисления проводятся и вручную, с использованием математического выражения. Оно имеет вид:

L = D2*n2/45D + 100*l,

где:

  • D – диаметр катушки, см;
  • l – длина намотанного провода, см;
  • n – количество витков.

Формула подходит для вычислений L дросселей без ферритовых сердечников.


Однослойная катушка виток к витку

Дроссель с сердечником

При наличии сердечника следует учесть его размеры и форму. В случае одинаковых катушках индуктивность больше у той, которая располагается на сердечнике.


Расчёт однослойной намотки с сердечником

Многослойная намотка

Особенности расчёта при подобном способе наматывания провода заключаются в том, что нужно учитывать его толщину. Формула для дросселя без сердечника имеет вид:

N²=(L*(3Dk+9l+10t))/0.008Dk²,

где:

  • Dk – общий диаметр (диаметр каркаса и намотки);
  • t – толщина слоя;
  • l – длина накрученного провода.

Все значения подставляют в мм, величину L – в мкГн.


Многослойная намотка

Что такое индуктивное сопротивление

Само понятие индуктивного сопротивления встречается в полном сопротивлении переменной сети. Объясняется тем, что как такового индуктивного сопротивления в природе не существует. Есть индуктивность, которая никак не связана с резистивным сопротивлением. Вот в это нужно разобраться.

Индуктивность – это электрическая инертность, возникающая в замкнутой цепи при прохождении электрического тока. Для примера, чтобы машина, идущая на какой-то скорости, могла остановиться, ей нужно время и место для тормозов. Что-то подобное происходит с индуктивностью.

Почему тогда используют понятие индуктивное сопротивление? При изменении направления или величины тока, магнитное поле, окутывающее проводник, по которому течет ток, своим влиянием мешает производить указанные изменения.

Его действие сопоставимо действию резистивного сопротивления, то есть, в каких-то случаях они могут быть похожи.

Где применяется катушка индуктивности

Свойства индуктивной катушки своеобразные, небольшая доработка добавляет ей новые свойства, что делает ее весьма востребованной. Рассмотрим лишь некоторые области, где она с успехом нашла свое применение:

  1. 1. Конечно, это сама электротехника. Сочетания катушки с резистором или конденсатором делает ее способной задерживать или пропускать определенные частоты.
  2. 2. В импульсной технике катушка индуктивности выступает в качестве накопителя энергии.
  3. 3. Соединенные определенным образом катушки образуют различные по назначению трансформаторы.
  4. 4. Катушка индуктивности дает возможность повышать напряжение постоянного тока.
  5. 5. Электромагнит – еще одно применение катушки.
  6. 6. Используются для выплавки металла в доменных печах.
  7. 7. Особенно в старых приемниках катушка часто выступала в качестве антенны.
  8. 8. Современные индукционные плиты никак не могут работать без катушки индуктивности.
  9. 9. Если сердечник катушки соединить с подвижным механизмом – получится отличный датчик движения.
  10. 10. Индукционные магнитометры имеют основным элементом катушку индуктивности.
  11. 11. Для ускорения частиц в лабораториях также применяют своеобразную катушку.
  12. 12. Специальные накопителя энергии не могут обойтись без этого элемента.

Это лишь основные области применения, но уже по этому списку видно, что катушка – хороший труженик. Рассмотрим некоторые области применения более подробно.

Катушка как электромагнит

Для получения электромагнита используют сердечник из магнитомягкого материала. Для этого подходят:

  • металлы: сталь, чугун;
  • сплавы железа с никелем или кобальтом.
Интересно. Если магнитопровод сделать цельным, тогда у него будут большие потери, поэтому его собирают из отдельных листов.

Электромагниты могут работать как от постоянного, так и переменного тока. Причем электромагнит постоянного тока может быть нейтральным, когда притягивающая сила образуется независимо от направления движения тока, и поляризованным. В этом случае используется две обмотки: основная и поляризующая. Основная создает магнитный поток, а вторая направляет его в нужном направлении.

Электромагниты, работающие на переменном токе, вырабатывают переменное магнитное поле, но на сердечник оно действует в одном направлении. Однако сила притяжения меняется от нуля до максимума. Частота притяжения вдвое выше частоты тока.

Катушка как источник ЭДС

Эта особенность используется в индукционных плитах. Катушка, расположенная прямо под плитой, при работе создает вокруг себя электромагнитные волны. Эти волны, воздействуя на материал кухонной посуды, нагревают ее. Причем сама плита остается достаточно холодной, нагревается лишь от самой посуды. Такие плиты перестают работать, если посуды на ней нет, что делает их безопасными в пожарном отношении.

Более мощные устройства используются на сталелитейных заводах. Доменную печь делают круглой и обвивают ее толстыми, обычно медными проводами. Когда по проводу пропускают ток большой мощности и частоты, создается мощное электромагнитное поле, воздействующее на металл, находящийся в печи. От действия этого поля металл нагревается и плавится.

Это же устройство, но меньшего размера используется, когда необходимо нагреть небольшой кусок металла, например, для ковки.

Катушки индуктивности в качестве трансформатора

В первых двух вариантах обычно используется одна катушка, но если соединить две и более катушки и по одной из них пропустить ток, то получится интересный момент. В этой катушке появится наведенная ЭДС. Она окутает все находящиеся в ее поле другие катушки и в них появится ток. Но это еще не все.

Регулируя число витков в других катушках, можно подобрать необходимое напряжение. То есть, число витков может увеличивать или уменьшать напряжение относительно напряжения, проходящего по рабочей катушке. Чтобы такая передача была более продуктивной, используют один из видов сердечника:

  • стержневой;
  • броневой;
  • тороидальный.

Конструкция сердечника особого влияния на трансформатор не оказывает, это больше предпочтение производителя. Осталось рассмотреть еще одну удивительную особенность катушки индуктивности – способность генерации.

Колебательный контур

Емкость и индуктивный элемент, соединенные в цепь, образуют колебательный контур с резко выраженными частотными свойствами и будут являться резонансной системой. В качестве системы используется конденсатор, изменяя емкость которого, можно производить коррекцию частотных свойств.


Последовательный и параллельный колебательные контуры

Если измерить резонансную частоту, используя известный конденсатор, то можно определить индуктивность катушки.

Индуктивность – важнейший элемент в разных областях электротехники. Для правильного применения нужно знать все параметры используемых элементов.

Устройство, которое позволяет определить параметры катушек индуктивности, в том числе добротность, может называться L-метр или Q-метр.


Q-метр для измерения добротности

Соленоид

Соленоид отличается от обычной катушки по двум признакам:

  • Длина обмотки превышает диаметр в несколько раз;
  • Толщина обмотки меньше диаметра катушки также в несколько раз.


Соленоидальный тип катушки

Параметры соленоида можно узнать из такого выражения:

L=µ0N2S/l,

где:

  • µ0 – магнитная постоянная;
  • N – количество витков;
  • S – площадь поперечного сечения обмотки;
  • l – длина обмотки.

Важно! Приведенное выражение справедливо для соленоида без сердечника. В противном случае необходимо дополнительно внести множитель µ, который равен магнитной проницаемости сердечника

Чем большую магнитную проницаемость будет иметь сердечник, тем больше увеличится итоговое значение.

Магнитный поток

Прежде чем говорить об электромагнитной индукции и самоиндукции, нам нужно определить сущность магнитного потока.

Представьте, что вы взяли в руки обруч и вышли на улицу в ливень. Потоки воды будут проходить через обруч.

Если держать обруч горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

Магнитный поток очень похож на поток воды, проходящей через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению:

  • модуля вектора магнитной индукции ​B​,
  • площади поверхности ​S​, которую пронизывает поток,
  • и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности).

Магнитный поток

Ф — магнитный поток

B — магнитная индукция

S — площадь пронизываемой поверхности

n — вектор нормали (перпендикуляр к поверхности)

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α < 90°) или отрицательным (α > 90°). Если α = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно, меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: