Ёмкостное сопротивление: конденсатора в цепи переменного тока, формула

§ 66. Цепь переменного тока, содержащая емкость

Если в цепь постоянного тока включить конденсатор (идеальный — без потерь), то в течение очень короткого времени после включения по цепи потечет зарядный ток. После того как конденсатор зарядится до напряжения, равного напряжению источника, кратковременный ток в цепи прекратится. Следовательно, для постоянного тока конденсатор представляет собой разрыв цепи, или, иными словами, бесконечно большое сопротивление.

Если же конденсатор включить в цепь переменного тока, то он будет заряжаться попеременно то в одном, то в другом направлении.

При этом в цепи будет проходить переменный ток. Рассмотрим это явление подробнее.

В момент включения напряжение на конденсаторе равно нулю. В течение первой четверти периода, когда напряжение сети будет возрастать (рис. 143), конденсатор будет заряжаться.

Рис. 143. Графики и векторная диаграмма для цепи переменного тока, содержащей емкость

По мере накопления зарядов на обкладках конденсатора напряжение конденсатора увеличивается. Когда напряжение сети к концу первой четверти периода достигнет максимального значения Um, напряжение конденсатора также станет равным Um, заряд конденсатора прекращается и ток в цепи становится равным нулю.

Ток в цепи конденсатора можно определить по формуле

i = Δq/Δt,

где Δq — количество электричества, протекающее по цепи за время Δt.

Из электростатики известно:

q = CuC = Cu,

где С — емкость конденсатора;

u — напряжение сети;

uС — напряжение конденсатора.

Окончательно для тока имеем

i = C ΔuC/Δt = C Δu/Δt.

Из последнего выражения видно, что, когда Δu/Δt максимально (положения а, в, д), i также максимально.

Когда Δu/Δt = 0 (положения б, г на рис. 143), то i также равно нулю.

Во вторую четверть периода напряжение сети будет уменьшаться, и конденсатор начнет разряжаться. Ток в цепи меняет свое направление на обратное.

В следующую половину периода напряжение сети меняет свое направление и наступает перезаряд конденсатора и затем снова его разряд.

Из рис. 143 видно, что ток I в цепи с емкостью в своих изменениях опережает по фазе напряжение конденсатора на 1/4 периода, или 90°.

Сравнивая векторные диаграммы цепей с индуктивностью и емкостью, мы видим, что индуктивность и емкость на фазу тока влияют прямо противоположно.

Пользуясь высшей математикой, можно доказать, что ток в цепи с емкостью пропорционален напряжению UС, приложенному к конденсатору, угловой частоте со и величине емкости конденсатора С;

I = UСωС = 2πfСUС.

Обозначим

xC = 1/2πfC = 1/ωC.

Величина xС называется емкостным сопротивлением, или реактивным сопротивлением емкости, и измеряется в омах. Выражение закона Ома для цепи переменного тока, содержащей емкость, имеет вид

I = U/xC.

Та часть напряжения сети, которая приложена к конденсатору, называется емкостным падением напряжения (или реактивной слагающей напряжения) и обозначается UC:

UC = I ⋅ xC.

Емкостное сопротивление хС, так же как индуктивное сопротивление xL, зависит от частоты переменного тока.

Но если с увеличением частоты индуктивное сопротивление увеличивается, то емкостное сопротивление, наоборот, будет уменьшаться.

Пример 6. Определить сопротивление конденсатора емкостью 5 мкф при частоте 50 гц:

xС = 1/2πfС = 1/2⋅3,14⋅50⋅5⋅10-6 = 636 ом,

при частоте 400 гц:

xС = 1/2⋅3,14⋅400⋅5⋅10-6 = 79,5 ом.

На рис. 144 показана кривая мгновенной мощности в цепи с емкостью. Из чертежа видно, что в первую четверть периода цепь с емкостью забирает из сети энергию, которая запасается в электрическом поле конденсатора.

Рис. 144. Кривая мгновенной мощности в цепи с емкостью

Энергию, запасаемую конденсатором к моменту, когда напряжение на нем равно максимальному значению, можно определить по известной формуле CUм2/2.

В следующую четверть периода конденсатор разряжается на сеть, отдавая ей ранее запасенную в нем энергию.

За вторую половину периода явление колебаний энергии повторяется. Таким образом, в цепи с емкостью происходит лишь обмен энергией между сетью и конденсатором без ее потерь.

Поэтому средняя за период мощность, или активная мощность, цепи с емкостью равна нулю, как и в цепи с индуктивностью.

Из графика, изображенного на рис. 144, видно, что мгновенная мощность в цепи с емкостью два раза в течение каждого периода (когда ωt = 45°, 135° и т. д.) достигает максимального значения, равного Uм/√2 ⋅ Iм/√2 = UI.

Этой величиной принято характеризовать количественно процесс обмена энергии между источником и электрическим полем конденсатора. Ее также называют реактивной мощностью и обозначают буквой Q.

Учитывая, что в рассматриваемой цепи U = IxC, получим следующее выражение для реактивной мощности:

Q = I2xC.

Ёмкостное сопротивление

Единицы измерения

Конденсатор, как обладатель электрической ёмкости, напоминает по своим показателям автомобильный аккумулятор. Но, в отличие от АКБ, ёмкостной заряд на нём держится совсем недолго, что объясняется наличием утечек в диэлектрике и частичной разрядкой через окружающую среду.

При этом ёмкость (как и у аккумулятора) определяет накопительные свойства конденсатора или его способность удерживать энергию между обкладками.

Обратите внимание! В системе СИ этот показатель измеряется в Фарадах, которые представляют собой очень крупную единицу измерения. На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

  • Пикофарады, соответствующие 10-12 Фарады (Ф);
  • Нанофарады, равные 10-9Ф;
  • Микрофарады (мкФ), составляющие 10-6 от Фарады.

Все эти единицы для кратности обозначаются как «пФ», «нФ» и «мФ» соответственно.

Пример расчета емкостного сопротивления

Иногда конденсаторы устанавливаются в цепочках гашения напряжения с целью получения меньших его значений (вместо понижающих трансформаторов).

Важно! Этот способ получения нужных напряжений считается не только очень простым, но и самым опасным, поскольку индуктивной развязки от высокого потенциала здесь не существует. Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками

При расчёте требуемой ёмкости обычно исходят из следующих соображений:

Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками. При расчёте требуемой ёмкости обычно исходят из следующих соображений:

  • Включаемый последовательно с нагрузкой конденсатор характеризуется импедансом, аналогом сопротивления для ёмкости;
  • Этот показатель соответствует отдельному плечу в делителе напряжения, вторым элементом которого является сопротивление нагрузки;
  • Соотношение сопротивлений обоих плеч выбирается с таким расчётом, чтобы на нагрузке осталось требуемое напряжение (12 Вольт, например), а весь остаток от 220 Вольт рассеивался бы на самом конденсаторе.

Дополнительная информация. Для улучшения переходных характеристик делительной цепочки иногда параллельно конденсатору включается ещё один из резисторов, называемый разрядным.


Схема для расчёта ёмкостного сопротивления

В нашем случае выбираются следующие данные:

  • Uвх=220 Вольт;
  • Uвых=12 Вольт;
  • Iнагр=0,1Ампер (ток в нагрузке выбирается согласно её паспорта).

Исходя из них, можно определить значение сопротивления нагрузки:

Rн=220/0,1=2200 Ом или 2,2 Ком.

Для вычисления величины ёмкости, на которой должны «упасть» оставшиеся 208 Вольт, используются следующие показатели:

  • Uс=208 Вольт;
  • Iс=0,1Ампер;
  • Fсети=50 Гц.

После этого можно вычислить омическое сопротивление конденсатора, достаточное для того, чтобы на нём было 208 Вольт:

Xc=Uс/Iс=208/0,1=2080.

Ёмкость конденсатора получается из рассмотренной ранее зависимости:

Xс=1/ ω C.

Исходя из этого, получим:

С = 1/Хс2 π Fсети = 1/2080х6, 28х50 = 0,0000015311 Фарады или 1,5 мкФ.

Сопротивление Rраз выбирается равным примерно 10 Ком или более.

Принятые единицы измерения

При использовании закона Ома для практических расчетов все математические вычисления выполняются в установленных единицах измерений для всех 3-х величин:

  • Сила тока – в амперах (А).
  • Напряжение – в вольтах (В/V).
  • Сопротивление – в омах (Ом).

Исходные данные и другие параметры, представленные в единицах, должны переводиться в общепринятые значения.

Действие основных единиц и физическое соблюдение закона Ома невозможно в следующих ситуациях:

  • Наличие высоких частот, при которых электрическое поле изменяется с большой скоростью.
  • Низкотемпературный режим и сверхпроводимость.
  • Сильно разогретые спирали ламп накаливания, когда отсутствует линейность напряжения.
  • Пробой проводника или диэлектрика, вызванный высоким напряжением.
  • Электронные и вакуумные лампы, заполненные газами.
  • Полупроводники с р-п-переходами, в том числе, диоды и транзисторы.

Сила тока

Сила тока возникает при наличии частиц со свободными зарядами. Они перемещаются через поперечное сечение проводника из одной точки в другую. Источник питания создает электрическое поле, под действием которого электроны начинают двигаться упорядоченно.

Таким образом, сила тока является количеством электричества, проходящего через определенное сечение за единицу времени. Увеличить этот показатель можно путем увеличения мощности источника тока или изъятия из цепи резистивных элементов.

Международная единица СИ для тока – ампер. Это довольно большая величина, поскольку для человека смертельно опасными считаются всего 0,1 А. В электротехнике малые величины могут выражаться в микро- и миллиамперах.

Кроме того, сила тока может записываться с помощью основной формулы, когда известны значения напряжения и сопротивления. В числом виде она будет гласить следующее:

I = U/R

Сопротивление

Рассматривая закон ома для участка цепи, нельзя забывать о таком понятии, как сопротивление. Данная величина считается основной характеристикой проводника, поскольку именно сопротивление влияет на качество проводимости. Разные материалы проводят ток лучше или хуже. Это объясняется неоднородностью их структуры, различиями в кристаллических решетках. Поэтому в одних случаях электроны движутся с большей скоростью, а в других – с меньшей.

Собственным электрическим сопротивлением обладают все проводники, находящиеся в твердом, жидком, газообразном и плазменном состоянии. У каждого из них своя характеристика, называемая удельным сопротивлением. Данная величина отражает способность каждого материала к сопротивлению. За эталон принимается проводник длиной 1 м с поперечным сечением 1 м².

По закону Ома на участке цепи эта величина определяется: R = U/I.

Напряжение

Напряжение относится к важным характеристикам электрического тока, протекающего в проводнике. С физической точки зрения, это работа электрического поля, которое перемещает заряд на какое-то расстояние. В электротехнике напряжением считается разность потенциалов между двумя точками участка цепи. На практике эта величина служит для определения возможности подключения к сети потребителей электроэнергии, продолжительность их работы в этом состоянии.

В электрической цепи напряжение возникает следующим образом:

  • Вначале цепь подключается к источнику тока путем соединения с двумя полюсами. Это может быть генератор или батарея.
  • На одном полюсе или клемме – избыточное количество электроном, а на другом – их недостает. Первый условно считается положительным, второй – отрицательным.
  • Электрическое поле источника энергии воздействуют на электроны положительного полюса и самого проводника, заставляя их двигаться в сторону отрицательного полюса и притягиваться к нему. Такое притяжение происходит из-за положительного заряда на этом полюсе, поскольку электроны здесь отсутствуют.
  • Между обеими клеммами возникает разность потенциалов с определенным значением, что приводит к упорядоченному движению электронов в проводниках и подключенных нагрузках. Постепенно избыток электронов положительного полюса уменьшается, соответственно, снижается и потенциал. Характерным примером служит аккумуляторная батарея. При подключении нагрузки, ее потенциал будет падать, вплоть до полной разрядки. Для восстановления первоначальных свойств, потребуется подзарядка от постороннего источника тока.

При неизменной мощности источника энергии, значение напряжения может быть разным под действием следующих факторов:

  1. Материал соединительных проводников. У каждого свой вольтамперный график.
  2. Количество потребителей, подключенных к сети.
  3. Температура окружающей среды.
  4. Качество монтажа самой сети.

Формулы вычисления тока в конденсаторе

Ёмкость конденсатора, включенного в цепь переменного тока, рассчитывается по формуле: C = q / U, где:

  • С — ёмкость;
  • q — заряд одной из пластин;
  • U — напряжение внутри.


Ёмкость Конденсаторы бывают разной формы, поэтому и их расчёт осуществляется по нескольким формулам:

  • плоский — C = E × E0 × S / d;
  • цилиндрический — С=2 π × E × E0 × l / ln(R2 / R1);
  • сферический — C = 4 π ×E × E0 × R1 × R2 / R2 — R.

Обратите внимание! Сопротивление в переменной цепи, которое может оказывать резистор, включённый в электрическую цепь, вычислить нельзя, так как она считается бесконечно большим. Однако в данном случае, это можно сделать по формуле: Хс = 1 / 2πvC = 1 / wC

Вам это будет интересно Подключение УЗО

Напряжение конденсатора в цепи переменного тока вычисляется по следующей формуле: Wp = qd E / 2.


Напряжение рассчитывается по определенной формуле

Чтобы рассчитать напряжение на конденсаторе в цепи переменного тока, необходимо воспользоваться актуальными формулами.

Лабораторные работы по разделу Электричество

  1. Краткое теоретическое описание

В цепи переменного тока кроме резисторов могут использоваться катушки индуктивности и конденсаторы. Для постоянного тока катушка индуктивности имеет только активное сопротивление, которое обычно невелико (если катушка не содержит большое количество витков). Конденсатор же в цепи постоянного тока представляет «разрыв» (очень большое активное сопротивление). Для переменного тока эти элементы обладают специфическим реактивным сопротивлением, которое зависит как от номиналов деталей, так и от частоты переменного тока, протекающего через катушку и конденсатор.

1.1. Катушка в цепи переменного тока.

Рассмотрим, что происходит в цепи, содержащей резистор и катушку индуктивности. Колебания силы тока, протекающего через катушку:

Основы электротехники выполнение курсовой работы Преобразовать соединение звездой сопротивлений в эквивалентное соединение треугольником сопротивлений

вызывают падение напряжения на концах катушки в соответствии с законом самоиндукции и правилом Ленца:

т.е. колебания напряжения опережают по фазе колебания силы тока на p /2. Произведение w LIm

является амплитудой колебания напряжения:

Произведение циклической частоты на индуктивность называют индуктивным сопротивлением

катушки:

(1)

поэтому связь между амплитудами напряжения и тока на катушке совпадает по форме с законом Ома для участка цепи постоянного тока:

(2)

Как видно из выражения (1), индуктивное сопротивление не является постоянной величиной для данной катушки, а пропорционально частоте переменного тока через катушку. Поэтому амплитуда колебаний силы тока Im

в проводнике с индуктивностьюL при постоянной амплитудеUL напряжения убывает обратно пропорционально частоте переменного тока:

1.2. Конденсатор в цепи переменного тока.

При изменении напряжения на обкладках конденсатора по гармоническому закону:

заряд q

на его обкладках изменяется также по гармоническому закону:

Электрический ток в цепи возникает в результате изменения заряда конденсатора, поэтому колебания силы тока в цепи будут происходить по закону:

Видно, что колебания напряжения на конденсаторе отстают по фазе от колебаний силы тока на p /2. Произведение w CUm

является амплитудой колебаний силы тока:

Аналогично тому, как было сделано с индуктивностью, введем понятие емкостного сопротивления

конденсатора:

(3)

Для конденсатора получаем соотношение, аналогичное закону Ома:

(4)

Формулы (2) и (4) справедливы и для эффективных значений тока и напряжения.

Порядок выполнения работы
Соберите цепь показанную на рисунке 1.
Установите следующие значения параметров:

Генератор – напряжение (эффективное) 100 В, частота 100 Гц;

Конденсатор – рабочее напряжение 400 В, емкость 10 мкФ;

Резистор – рабочая мощность 500 Вт, сопротивление 100 Ом.

Изменяя емкость конденсатора от 5 до 50 мкФ (через 5 мкФ), запишите показания вольтметров (напряжение на конденсаторе и на резисторе).
Рассчитайте эффективное значение токов, текущих в цепи, в зависимости от значения емкости конденсатора (для этого надо напряжение на резисторе разделить на его сопротивление).
Определите значения емкостных сопротивлений конденсатора для соответствующих значений его емкости и сравните их с рассчитанными по формуле (3).
Установите емкость конденсатора 10 мкФ. Изменяя частоту генератора от 20 до 100 Гц через 10 Гц, повторите измерения и расчеты емкостного сопротивления в зависимости от частоты переменного тока.
Соберите цепь показанную на рисунке 2.

Рис.1. Рис.2.

Установите следующие значения параметров:

Генератор – напряжение (эффективное) 100 В, частота 100 Гц;

Катушка — индуктивность 50 мГн;

Резистор – рабочая мощность 500 Вт, сопротивление 100 Ом.

Изменяя индуктивность катушки от 50 до 500 мГн (через 50 мГн), запишите показания вольтметров (напряжение на катушке и на резисторе).
Рассчитайте эффективное значение токов, текущих в цепи, в зависимости от значения индуктивности катушки (для этого надо напряжение на резисторе разделить на его сопротивление).
Определите индуктивные сопротивления катушки для соответствующих значений ее индуктивности и сравните их с рассчитанными по формуле (1).
Установите индуктивность катушки 100 мГн. Изменяя частоту генератора от 20 до 100 Гц через 10 Гц, повторите измерения и расчеты индуктивного сопротивления в зависимости от частоты переменного тока..
Постройте графики зависимостей индуктивного и емкостного сопротивлений от частоты переменного тока.

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе. Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние.

Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X < 0, в элементе проявляется ёмкостное сопротивление.

Ёмкостное сопротивление

Для понимания процесса следует представить конденсатор в электрической цепи, по которой течёт переменный ток. Причём в этой цепи нет других элементов. Значение тока, проходящего через конденсатор, и напряжения, приложенного к его обкладкам, изменяется по времени. Зная любое из этих значений, можно найти другое.

Пускай ток изменяется по синусоидальной зависимости I (t) = Im * sin (w*t+ f 0). Тогда напряжение можно описать как U (t) = (Im/C*w) *sin (w*t+ f 0 -p/2). При учёте в формуле сдвига фаз на 90 градусов, возникающего между сигналами, вводится комплексная величина j, называемая мнимой единицей. Поэтому формула для нахождения тока будет выглядеть как I = U /(1/j*w*C). Но учитывая, что комплексное число только обозначает смещение напряжения относительно тока, а на их амплитудные значения не влияет, его можно убрать из формулы, тем самым значительно её упростив.

Так как по закону Ома сопротивление прямо пропорционально напряжению на участке цепи и обратно пропорционально току, то преобразуя формулы, можно будет получить следующее выражение:

Xc = 1/w*C = ½*p*f*C. Единица измерения — ом.

Становится понятно, что ёмкостное сопротивление зависит не только от ёмкости, но и от частоты. При этом чем больше эта частота, тем меньшее сопротивление конденсатор будет оказывать проходимому через него току. По отношению к ёмкости это утверждение будет обратным. Вот поэтому для постоянного тока, частота которого равна нулю, сопротивление накопителя будет бесконечно большим.

На практике всё немного по-другому. Чем ближе частота сигнала приближается к нулевому значению, тем больше становится сопротивление конденсатора, но при этом разрыв цепи наступить всё равно не может. Связанно это с током утечки. В случае когда частота стремится к бесконечности, сопротивление конденсатора должно становиться нулевым, но этого тоже не происходит — из-за присутствия паразитной индуктивности и всё того же тока утечки.

Индуктивная составляющая

При прохождении переменного сигнала через накопитель, его можно представить в виде последовательно включённой с источником питания катушки индуктивности. Эта катушка характеризуется большим сопротивлением в цепи переменного сигнала, чем постоянного. Значение силы тока в определённой точке времени находится как I = I 0 * sinw .

Приняв во внимание, что мгновенная величина напряжения U 0 обратна по знаку мгновенному значению ЭДС самоиндукции E 0, а также используя правило Ленца, можно получить выражение E = L * I, где L — индуктивность

Следовательно: U = L*w * I 0 *cosw*t = U 0 *sin (wt + p /2) , причём ток отстаёт от напряжения на p /2. Используя закон Ома и приняв, что сопротивление катушки равно w * L, получится формула для участка электрической цепи, имеющая только индуктивную составляющую: U 0 = I 0 / w * L.

Емкостное сопротивление

Опыт показывает, что если последовательно с лампочкой соединить конденсатор и подключить их к генератору постоянного напряжения, то лампочка не горит. Это понятно, так как обкладки конденсатора разделены диэлектриком, и цепь оказывается разомкнутой. При подключении конденсатора к источнику постоянного тока возникает кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Но если эту цепь подключить к источнику переменного напряжения, то лампочка горит. Переменный ток представляет собой вынужденные электромагнитные колебания, происходящие под действием переменного электромагнитного поля генератора. При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается, и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор снова заряжается, но знак заряда на его обкладках изменяется на противоположный и т.д. Через диэлектрик, разделяющий обкладки конденсатора, как и в цепи постоянного тока, электрические заряды не проходят. Но по проводам, соединяющим обкладки конденсатора с источником напряжения, течет переменный ток разрядки и зарядки конденсатора. Поэтому лампочка, включенная последовательно с конденсатором, будет гореть непрерывно. Если теперь конденсатор отсоединить, то лампочка горит ярче. Следовательно, конденсатор оказывает переменному току
сопротивление, которое называется емкостным сопротивлением.

Рассмотрим цепь (рис. 1), состоящую из конденсатора и подводящих проводов, сопротивление которых пренебрежительно мало, и генератора переменного напряжения.

Рис. 1

Пусть напряжение на конденсаторе изменяется по закону \(~U = U_0\sin wt.\) Как известно, заряд на обкладках конденсатора можно определить по формуле \(~q = CU = CU_0\sin wt.\) Сила тока \(~I = q’.\) Следовательно,

\(~I = -wCU_0\cos wt = wCU_0\sin(wt+\frac {\pi}2).\)

Отсюда \(~I=I_0\sin (wt +\frac {\pi}2),\)

где \(~I_0=wCU_o\) — амплитудное значение силы тока:

\(~I_0=\frac {U_0}{\frac 1{wC}}; I_0 =\frac {U_0}{X_C},\)

где \(~X_C = \frac 1{wC}.\)

Выразив амплитудные значения через действующие \(~I_0 = \sqrt2 I \) и \(~U_0 = \sqrt2 U,\)
получим \(~I= \frac U{X_C}, \) т.е. действующее значение силы тока связано с деиству-Хс
ющим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение на участке цепи постоянного тока. Это позволяет рассматривать величину Хс как сопротивление конденсатора переменному току:

\(~X_C = \frac 1{wC}\) — емкостное сопротивление.

В СИ единицей емкостного сопротивления является ом (Ом).

Как видно из полученной выше формулы, если в цепи включено только емкостное сопротивление, колебания силы тока в этой цепи опережают по фазе колебания напряжения на конденсаторе на \(~\frac {\pi}2,\) что изображено на графике и на векторной диаграмме (рис. 2).

Рис. 2

Мгновенная мощность

\(~P=IU = I_0\sin (wt +\frac {\pi}2)U_0\sin wt = I_0U_0\sin wt \cos wt =\frac {I_0U_0}2 \sin 2wt,\)

т.е. мощность периодически изменяется с двойной частотой, а среднее значение мощности — за период \(\mathcal h P \mathcal i =0,\) так как \(~\mathcal h \sin 2wt \mathcal i = 0.\) Первую и третью четверти периода, когда конденсатор заряжается, он получает энергию от генератора, а вторую и четвертую четверти периода, когда конденсатор разряжается, он отдает энергию генератору.

Таким образом, так же, как активное сопротивление, емкостное сопротивление ограничивает силу тока в цепи, но в отличие от активного сопротивления на емкостном сопротивлении электрическая энергия не превращается необратимо в другие виды энергии.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного тока, на протяжении короткого периода времени будет наблюдаться течение по цепи зарядного тока. По окончании зарядки, когда напряжение конденсатора будет соответствовать напряжению источника тока, кратковременное течение тока в цепи прекратится. Таким образом, полностью заряженный конденсатор при постоянном токе будет своеобразным разрывом цепи или сопротивлением с бесконечно большим значением. При переменном токе конденсатор будет вести себя совершенно иначе. Его зарядка в такой цепи будет осуществляться поочередно в разных направлениях. Течение переменного тока в цепи в это время не прерывается.

Более подробное рассмотрение этого процесса указывает на нулевое значение напряжения в конденсаторе в момент его включения. После поступления к нему переменного напряжения сети начнется зарядка. В это время сетевое напряжение будет возрастать на протяжении первой четверти периода. По мере того как на обкладках накапливаются заряды, происходит увеличение напряжения самого конденсатора. После того как сетевое напряжение в конце первой четверти периода станет максимальным, зарядка прекращается и значение тока в цепи станет равным нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q является количеством электричества, протекающим по цепи в течение промежутка времени t. В соответствии с законами электростатики, количество электричества в устройстве составит: q = C x Uc = C x U. В этой формуле С будет емкостью конденсатора, U – напряжением сети, Uc – напряжением на обкладках элемента. В окончательном виде формула тока в цепи будет выглядеть следующим образом: i = C x (∆Uc/∆t) = C x (∆U/∆t).

При наступлении второй четверти периода произойдет уменьшение сетевого напряжения и начнется разрядка конденсатора. Ток в цепи изменит свое направление и будет течь в обратную сторону. В следующей половине периода направление сетевого напряжения изменится, наступит перезарядка элемента, а потом он вновь начнет разряжаться. Ток, присутствующий в цепи с конденсаторной емкостью, будет опережать по фазе напряжение на обкладках на 90 градусов.

Установлено что изменения тока конденсатора происходят со скоростью, находящейся в пропорциональной зависимости с угловой частотой ω. Поэтому в соответствии с уже известной формулой тока в цепи i = C x (∆U/∆t), аналогично получается, что действующее значение тока также будет представлять собой пропорцию между скоростью изменения напряжения и угловой частотой ω: I = 2π x f x C x U.

Далее уже совсем несложно установить значение емкостного сопротивления или реактивного сопротивления емкости: xc = 1/2π x f x C = 1/ ω x C. Данный параметр вычисляется, когда конденсаторная емкость включается в цепь переменного тока. Поэтому в соответствии с законом Ома в цепи переменного тока с включенным конденсатором, значение силы тока будет следующим: I = U/xc, а напряжение на обкладках составит: Uc = Ic x xc.

Часть сетевого напряжения, приходящаяся на конденсатор, получила название емкостного падения напряжения. Она известна также, как реактивная слагающая напряжения, обозначаемая символом Uc. Величина емкостного сопротивления хс, так же, как и значение индуктивного сопротивления xi напрямую связана с частотой переменного тока.

Электросопротивление — это параметр в электротехнике, характеризующий возможность вещества препятствовать прохождению электричества. В зависимости от качеств материала, электросопротивляемость может уменьшаться до крайне маленьких величин (микромилиОмы — у проводников, металлов) или повышаться до огромных значений (ГигаОмы — изоляторов, диэлектриков). Величина противоположная сопротивлению — проводимость.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: