Цепь переменного тока с катушкой индуктивности: принцип работы и основные характеристики

Активное сопротивление. Действующие значения силы тока и напряжения

Подробности
Просмотров: 658

«Физика — 11 класс»

Активное сопротивление

Сила тока в цепи с резистором

Есть цепь, состоящая из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R.

Сопротивление R называется активным сопротивлением, т.к. при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора.
Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.
Напряжение на зажимах цепи меняется по гармоническому закону:

u = Um cos ωt

Мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения.
По закону Ома мгновенное значение силы тока:

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения, а амплитуда силы тока определяется равенством

Мощность в цепи с резистором

В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение меняются.
При прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет меняться во времени.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

Р = I2R

Мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой

Р = i2R

Cреднее значение мощности за период (используем формулу для мгновенного значения силы тока и выражение ):

График зависимости мгновенной мощности от времени (рис.а)

Тогда средняя мощность равна:

Действующие значения силы тока и напряжения.

Среднее за период значение квадрата силы тока:

Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы переменного тока.
Действующее значение силы переменного тока обозначается через I:

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Действующее значение переменного напряжения определяется аналогично:

Закон Ома для участка цепи переменного тока с резистором в действующих значениях:

В случае электрических колебаний важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность.
Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

Действующие значения непосредственно определяют среднее значение мощности Р переменного тока:

р = I2R = UI.

Итак:
Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

Следующая страница «Конденсатор в цепи переменного тока»

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях —
Аналогия между механическими и электромагнитными колебаниями —
Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний —
Переменный электрический ток —
Активное сопротивление. Действующие значения силы тока и напряжения —
Конденсатор в цепи переменного
тока —
Катушка индуктивности в цепи переменного тока —
Резонанс в электрической цепи —
Генератор на транзисторе. Автоколебания —
Краткие итоги главы

Индукторы

Когда ток течет через индуктор, он создает магнитное поле. Скручивание большого количества проволоки увеличивает силу магнитного поля. Направление магнитного поля определяется с помощью правило большого пальца правой руки. 

Когда ток впервые начинает течь через катушку, магнитное поле начинает расширяться, затем через некоторое время оно стабилизируется и сохраняет некоторое количество магнитной энергии. Когда поле постепенно схлопывается, магнитная энергия снова превращается в электрическую. Индукторы производят магнитный поток, пропорциональный току, протекающему через них.

Чтобы узнать больше об индуктивном реактивном сопротивлении нажмите сюда.

Что такое индуктивность

Что такое индуктивность — это физическая величина, которая рассказывает нам о магнитных свойствах электрической цепи. Индуктивность измеряют в Гн (Генри).

Если вы вообще не понимаете о чём речь, то советую ознакомиться сначала с вот с этой статьей.

В электрических схемах например, нам встречаются какие-то непонятные катушки, дроссели и многие даже не знают их функциональную роль. В этой статье я постараюсь доступным языком рассказать, что такое индуктивность и как это явление применить на своей любимой работе.

Давайте посмотрим на рисунок

Давайте начнём движение проводника в магнитном поле таким образом, чтобы он пересек силовые линии постоянного магнита. Если это условие выполняется, то тогда в нашем проводнике появляется электродвижущая сила (ЭДС). Или наоборот проводник остаётся на месте, а магнит передвигают таким образом, чтобы силовые линии магнита пересекали проводник. Сейчас был пример электромагнитной индукции. Значение индуцированной электродвижущей силы в проводнике прямо пропорциональна магнитной индукции поля, скорости перемещения и длине проводника

Направление возникшей электродвижущей силы в проводнике определяют через правило правой руки.

Советуем изучить Вакуумные выключатели

Правая рука находится в таком положении чтобы силовые линии магнита заходили в ладонь. Следовательно, большой палец показывает нам направление перемещения проводника, а остальные пальцы покажут нам направление возникшей электродвижущей силы.

Для усиления электродвижущей силы индукции применяют электрические катушки

А если подать напряжение на катушку, то по её виткам потечёт ток, который создаёт своё магнитное поле.

Явление самоиндукции

Если ток, идущий через проводящий контур, изменяется по величине, то возникает явление самоиндукции. В этом случае изменяется магнитный поток через контур, и на выводах рамки с током возникает ЭДС, называемая ЭДС самоиндукции. Эта ЭДС противоположна направлению тока и равна:

ε=-∆Ф/∆t=-L*(∆I/∆t)

Очевидно, что ЭДС самоиндукции равна скорости изменения магнитного потока, вызванного изменением протекающего по контуру тока, а также пропорциональна скорости изменения тока. Коэффициент пропорциональности между ЭДС самоиндукции и скоростью изменения тока называется индуктивностью и обозначается L. Эта величина всегда положительна, и имеет единицу измерения в СИ 1 Генри (1 Гн). Также используются дробные доли – миллигенри и микрогенри. Об индуктивности в 1 Генри можно говорить, если изменение тока на 1 ампер вызывает ЭДС самоиндукции в 1 Вольт. Индуктивностью обладает не только контур, но и отдельный проводник, а также катушка, которую можно представить как множество последовательно включенных контуров.

В индуктивности запасается энергия, которую можно вычислить, как W=L*I2/2, где:

  • W – энергия, Дж;
  • L – индуктивность, Гн;
  • I – ток в катушке, А.

И здесь энергия прямо пропорциональна индуктивности катушки.

Общая формула для расчета индуктивности физической катушки имеет сложный вид и для практических вычислений неудобна. Полезно запомнить, что индуктивность пропорциональна количеству витков, диаметру катушки и зависит от геометрической формы. Также на индуктивность влияет магнитная проницаемость сердечника, на котором расположена обмотка, но не влияет ток, протекающий по виткам. Для вычисления индуктивности каждый раз надо обращаться к приведенным формулам для конкретной конструкции. Так, для цилиндрической катушки её основная характеристика вычисляется по формуле:

L=μ*μ*(N2*S/l),

где:

  • μ – относительная магнитная проницаемость сердечника катушки;
  • μ – магнитная постоянная, 1,26*10-6 Гн/м;
  • N – количество витков;
  • S – площадь витка;
  • l – геометрическая длина катушки.

Для вычисления индуктивности для цилиндрической катушки и катушек других форм лучше воспользоваться программами-калькуляторами, в том числе онлайн-калькуляторами.

Маркировка

Для обозначения номинала катушки индуктивности используют буквенную или цветовую маркировку. Есть два вида буквенной маркировки.

  1. Обозначение в микрогенри.
  2. Обозначение набором букв и цифр. Буква r – используется вместо десятичной запятой, буква в конце обозначения обозначает допуск: D = ±0.3 нГн; J = ±5%; К = ±10%; М = ±20%.

Цветовую маркировку можно распознать аналогично таковой на резисторах. Воспользуйтесь таблицей, чтобы расшифровать цветные полосы или кольца на элементе. Первое кольце иногда делают шире остальных.

На это мы и заканчиваем рассматривать, что собой представляет катушка индуктивности, из чего она состоит и зачем нужна. Напоследок рекомендуем посмотреть полезное видео по теме статьи:

Варианты измерения

Индуктивность катушки в физике определяется путём выполнения вычислений. Однако эту величину можно не только рассчитать, но и измерить. Делается это при помощи прямого или косвенного метода.

Прямой метод

Для измерения индуктивности катушки этим методом необходимо использовать специальные мостовые или прямопоказывающие устройства. С их помощью можно получить максимально точные данные, которые помогут выбрать требуемую катушку для схемы.

Порядок проведения измерений включает в себя следующие этапы:

  1. К прямопоказывающему приспособлению подключают катушку.
  2. После этого постепенно изменяют диапазоны измерений. Это делается до тех пор, пока получаемый результат не будет находиться примерно в середине интервала.
  3. Полученный результат фиксируют и высчитывают с учётом цены деления прибора, а также коэффициента, соответствующего положению переключателя.

Виды сопротивления в электрической цепи

Если используется постоянный ток, то рассматривается только обычное сопротивление, которое также называется активным или омическим. При переменном существует не только активное, но и реактивное сопротивление. Последнее бывает индуктивным и емкостным. Его величина определяется по соответствующим формулам. Сопротивление называется реактивным потому что не вызывает безвозвратных потерь энергии.

В цепях переменного тока полное сопротивление представляет собой сумму омического, индуктивного и емкостного сопротивлений. Определить его можно по правилам векторного сложения слагаемых. Если рассматривать цепь, которая не содержит конденсаторов, то основную роль будет играть реактивное сопротивление катушки индуктивности.

Принцип работы

Чтобы понять принцип действия катушки индукции, следует знать:

  • вокруг движущихся электрически заряженных частиц (электрический ток) возникает электромагнитное поле. Если проводник с протекающим током смотан в катушку, поле многократно усиливается. Еще большим оно становится при использовании металлического сердечника, что объясняется высокой магнитопроницаемостью металлов по сравнению с воздухом;
  • переменное магнитное поле наводит в проводнике ЭДС (закон электромагнитной индукции, открытый М. Фарадеем).

Способность катушки превращать электрическую энергию в магнитное поле, называется индуктивностью. Она измеряется в генри (Гн), в формулах обозначается литерой L. Катушка индуктивностью в 1 Гн при изменении силы тока со скоростью dI = 1 А/с (ампер в секунду) создает ЭДС в 1 В. Индуктивность катушки зависит от ее длины, потому шаг витков стремятся делать как можно меньшим.

Сердечник в катушке может быть регулируемым, тогда элемент имеет переменную индуктивность. Также применяют катушки вовсе без сердечника. Если катушка включена в цепь постоянного тока, то весь эффект от нее состоит в создании электромагнитного поля. Так устроены, например, электрические магниты для захвата металлолома, устанавливаемые на погрузочных кранах.

При проведении эксперимента надо ограничить ток в цепи, посредством включенной последовательно с катушкой нагрузки, иначе возникнет короткое замыкание.

Реактивное сопротивление индуктора на 10 мГн:

Частота (Гц) Реактивное сопротивление (Ом)
60 3,7699
120 7,5398
2500 157,0796

В уравнении реактивного сопротивления выражение «2πf» (в правой части формулы, без L) имеет особое значение. Это количество радиан в секунду, показывающее насколько быстро «обращается» переменный ток, если представить один цикл переменного тока как один полный круговой оборот.

Радиан является единицей измерения угла: один полный круг содержит 2π радиан, так же как в полном круге 360°. Если в цепи двухполюсный генератор переменного тока, он производит один цикл на каждый полный оборот вала, что и составляет 2π радиан или 360°.

Если эту константу 2π умножить на частоту в Герцах (циклов в секунду), результатом будет число в радианах в секунду, известное как угловая частота (или циклическая частота) переменного тока.

Конденсатор в цепи переменного тока

Постоянный ток не может существовать в цепи, содержащий конденсатор. Движению электронов препятствует диэлектрик, расположенный между обкладками. Но переменный ток в такой цепи существовать может, что доказывает опыт с лампой (см. рисунок ниже).

Пусть фактически такая цепь разомкнута, но если по ней течет переменный ток, конденсатор то заряжается, то разряжается. Ток, текущий при перезарядке конденсатора нагревает нить лампы, и она начинает светиться.

Найдем, как меняется сила тока в цепи, содержащей только конденсатор, если сопротивление проводов и обкладок конденсатора можно пренебречь (см. рис. выше). Напряжение на конденсаторе будет равно:

u=φ1−φ2=qC..

Учтем, что напряжение на конденсаторе равно напряжению на концах цепи:

qC..=Umaxcos.ωt

Следовательно, заряд конденсатора меняется по гармоническому закону:

q=CUmaxcos.ωt

Тогда сила тока, представляющая собой производную заряда по времени, будет равна:

i=q´=−CUmaxsin.ωt=CUmaxcos.(ωt+π2..)

Следовательно, колебания силы тока опережают колебания напряжения на конденсаторе на π2.. (см. график ниже). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того, как напряжение достигнет максимума, сила тока становится равной нулю и т.д.

Амплитуда силы тока равна:

Imax=UmaxCω

Примем, что:

1Cω..=XC

Также будем использовать действующие значения силы тока и напряжения. Тогда получим, что:

Определение

I=UXC..

Величина XC, равная обратному произведению циклической частоты на электрическую емкость конденсатора, называется емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления R в законе Ома.

Обратите внимание, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля. В следующую четверть периода (при разрядке конденсатора), эта энергия возвращается в сеть

Пример №1. Максимальный заряд на обкладках конденсатора колебательного контура qmax=10−6 Кл. Амплитудное значение силы тока в контуре Imax=10−3 А. Определите период колебания (потерями на нагревание проводника пренебречь).

Согласно закону сохранения энергии максимальное значение энергии электрического поля конденсатора равно максимальному значения магнитного поля катушки:

q2max2C..=LI2max2..

Отсюда:

LC=q2maxI2max..

√LC=qmaxImax..

T=2π√LC=2πqmaxImax..=2·3,1410−610−3..≈6,3·10−3(с)

Угловая частота в цепях переменного тока

Угловая частоа может быть представлена ​​выражением 2πf. А также у неё для обозначения есть собственный символ – строчная греческая буква «омега», которая похожа на букву «w»: ω. Таким образом, формулу реактивного сопротивления XL = 2πfL можно также записать как XL = ωL.

Следует понимать, что эта «угловая частота» является выражением того, насколько быстро происходят колебания переменного тока, полный цикл равен 2π радиан. И это не обязательно совпадает с фактической скоростью вала генератора.

Если генератор многополюсный, угловая скорость кратна скорости вала. По этой причине ω иногда выражается в единицах «электрических радиан в секунду», а не просто в «радиан в секунду», чтобы отличать его от механического вращения вала.

Как бы мы ни выражали угловую частоту, очевидно, что она прямо пропорциональна реактивному сопротивлению катушки индуктивности. По мере увеличения частоты (или скорости вала генератора переменного тока) в системе переменного тока катушка индуктивности будет оказывать большее сопротивление току, и наоборот – снижение скорости вращения вала приведёт к уменьшению реактивного сопротивления.

Переменный ток в простой индуктивной цепи равен напряжению (в вольтах), делённому на индуктивное реактивное сопротивление (в Омах). В простых резистивных цепях то же самое – переменный или постоянный ток равен напряжению (в вольтах), делённому на сопротивление (в Омах). Пример:

Рис. 7. Схема, для которой надо рассчитать индуктивное реактивное сопротивление.

Рис. 8. Расчёт реактанса для схемы на рисунке 7.

Как бы мы ни выражали угловую частоту, очевидно, что она прямо пропорциональна реактивному сопротивлению в катушке индуктивности.

Маркировка

Для обозначения номинала катушки индуктивности используют буквенную или цветовую маркировку. Есть два вида буквенной маркировки.

  1. Обозначение в микрогенри.
  2. Обозначение набором букв и цифр. Буква r – используется вместо десятичной запятой, буква в конце обозначения обозначает допуск: D = ±0.3 нГн; J = ±5%; К = ±10%; М = ±20%.

Цветовую маркировку можно распознать аналогично таковой на резисторах. Воспользуйтесь таблицей, чтобы расшифровать цветные полосы или кольца на элементе. Первое кольце иногда делают шире остальных.

На это мы и заканчиваем рассматривать, что собой представляет катушка индуктивности, из чего она состоит и зачем нужна. Напоследок рекомендуем посмотреть полезное видео по теме статьи:

Конструкция катушки

По конструктивному исполнению индуктивные элементы различаются:

  • видом намотки: винтоспиральная, винтовая; кольцевая;
  • количеством слоёв: однослойные или многослойные;
  • типом изолированного провода: одножильный, многожильный;
  • наличием каркаса: каркасные или бескаркасные (при небольшом количестве витков толстого провода);
  • геометрией каркаса: прямоугольный, квадратный, тороидальный;
  • наличием сердечника: ферритовый, из карбонильного железа, электротехнической стали, пермаллоевый (магнитомягкий сплав), металлический (латунный);
  • геометрией сердечника: стержневой (разомкнутый), кольцо-образный или ш-образный (замкнутый);
  • возможностью изменять L в узких интервалах (движение сердечника по отношению к обмотке).

Существуют плоские катушки, в печатном исполнении устанавливаемые на платах цифровых устройств.

К сведению. Намотка провода может быть как рядовой (витком к витку), так и в навал. Последний способ укладки провода снижает паразитную ёмкость.

Конструкция катушек

Расчет

Точный расчет значения индуктивности проводников довольно сложен и выполняется средствами и методами высшей математики

Важно учесть, что индуктивность проводника зависит от его расположения в пространстве по отношению к иным проводникам и диэлектрикам. Это связано с тем, что любое вещество имеет определенное влияние на магнитное поле, усиливая или ослабляя его действие, искажая форму магнитных линий

Магнитное поле обмотки

Практические расчеты сводятся к принятию упрощенных моделей, с рядом допусков. К примеру, магнитный поток в многовитковой катушке в центре и на краях сильно отличается, поэтому для упрощения расчетов длинной катушки (соленоида) принимают, что ее длина во много раз больше диаметра, толщина обмотки, соответственно, меньше диаметра. Но даже в этом случае получается лишь приблизительный результат.

Методы снижения нежелательной индуктивности

В отдельных случаях индуктивностью проводника пренебрегать нельзя, там она носит нежелательный характер. Примером смогут служить высокоомные проволочные постоянные и переменные резисторы в цепях переменного тока.

Для уменьшения индуктивности обмотку выполняют бифилярным методом – в два провода. Получившиеся обмотки соединяют встречно. Таким образом, в соседних проводниках ток протекает навстречу друг другу, компенсируя таким образом образование электромагнитного поля.

В электрических сетях с большими значениями индуктивной нагрузки напряжение переменного тока получает большие искажения формы, что требует установки компенсаторов реактивной мощности.

Методы снижения нежелательной индуктивности

В отдельных случаях индуктивностью проводника пренебрегать нельзя, там она носит нежелательный характер. Примером смогут служить высокоомные проволочные постоянные и переменные резисторы в цепях переменного тока.

Для уменьшения индуктивности обмотку выполняют бифилярным методом – в два провода. Получившиеся обмотки соединяют встречно. Таким образом, в соседних проводниках ток протекает навстречу друг другу, компенсируя таким образом образование электромагнитного поля.

В электрических сетях с большими значениями индуктивной нагрузки напряжение переменного тока получает большие искажения формы, что требует установки компенсаторов реактивной мощности.

Магнитное поле

Под данным термином в физике подразумевается некое силовое поле, оказывающее определённое влияние на перемещающиеся заряженные частицы, и на прочие тела, имеющие определённый магнитный момент. Воздействие оказывается не зависимо от того, находятся ли эти частицы в состоянии покоя, либо же в движении. Кроме вектора магнитной индукции, дополнительной характеристикой поля выступает векторный потенциал. Он носит альтернативный характер, но при этом, в физическом смысле, неразрывно связан с магнитной индукцией.

Фактически, магнитное поле допустимо определить, как особую материю, с помощью которой происходит взаимодействие меж некими заряженными элементарными частицами, передвигающимися с определённой скоростью.

При этом не стоит путать магнитную и электромагнитную индукцию. Под электромагнитной индукцией понимается закономерность, установленная англичанином М. Фарадеем. Суть закономерности состоит в возникновении электромагнитного силового поля под действием переменного электротока, протекающего в замкнутом проводниковом контуре. В контуре возникает определённая движущая сила, в свою очередь, порождающая индукционный ток. Магнитное поле, наряду с электрическим полем, выступает как одна из двух частей электромагнитного поля.

Теория о постоянных магнитах, своим воздействием вызывающих возникновение индукции, была разработана французским физиком А-М. Ампером, в честь него позднее была названа единица мощности электротока. Он впервые установил, что движения электронов вокруг центра атома в итоге порождают микроскопические, или элементарные магнитные поля. Также им был открыто свойство металлических проводников сохранять магнитные свойства некоторое время после прекращения воздействия на них магнитным полем.

Включение катушки индуктивности в цепи с постоянным и переменным током

В целом, мы определили, что такое катушка индуктивности, для чего она нужна, и какие характеристики для расчета ее параметров важны, однако до сих пор неискушенному читателю наверняка не понятно, как будут изменяться параметры протекающего через эту деталь тока.

Цепь, питаемая постоянным током


Катушка индуктивности в цепи постоянного тока

Чтобы упростить изложение, будем проводить очень простой опыт:

Для начала нам потребуется блок питания, способный выдавать стабильные 12 Вольт напряжения на выходе, 12-ти вольтовая лампочка накаливания для создания сопротивления, а также сама катушка индуктивности.


Стержень из феррита

Катушку мы соберем своими руками из куска лакированной медной проволоки и ферритового стержня.


Изготовление катушки индуктивности

  • Инструкция предельно проста — берем проволоку и наматываем ее на стержень, после чего зачищаем ножом концы, чтобы можно было подсоединить клеммы от блока питания и подпаять провода.
  • Цена такой схемы минимальна, так что можете без проблем повторить опыт при желании дома.


Измерение индуктивности собранной катушки

При помощи LC-метра измеряем индуктивность полученной детали. Как видно из фото выше, в рассматриваемом примере она составила 132 мкГн.


Схема с включенной катушкой индуктивности

Теперь берем все наши детали и соединяем их по приведенной выше схеме.


Схема включена в сеть

Вот что получилось на практике. Как видим, постоянный ток протекает через катушку практически беспрепятственно, если не учитывать естественное сопротивление проводника, ведь ток не меняет своего направления на противоположное.

На данной схеме лампочку заменяет резистор, но это не важно

  • Значит ли это, что катушка индуктивности неприменима в цепях с постоянным током? Вовсе нет! Вот другая схема, в которую, как мы видим, уже включен некий выключатель, способный размыкать цепь. Именно в момент замыкания и происходит самое интересное.
  • Поскольку до этого ток был равен нулю, он начнет изменяться и расти, из-за чего изменится магнитное поле катушки, что в свою очередь приведет к возникновению ЭДС. В катушке появится индукционный ток, который потечет в обратном направлении основного потока от источника питания.
  • Именно в момент включения величина ЭДС будет максимальной, так как скорость изменения тока в этот момент наиболее высока, а значит, ток катушки индуктивности равен нулю.
  • Что произойдет дальше? А дальше мы увидим, что ток в катушке индуктивности начнет расти, тогда как ЭДС, наоборот, снижаться. Вот как это выглядит на графике.


Uвх – входное напряжение питания; Il- изменение величины тока; Ul – напряжение на катушке

На верхнем графике изображено изменение напряжения входной сети, сразу после включения. Как видим, моментально появляется постоянное значение.
Дальше показано, как меняется величина тока, протекающего через катушку. Он тоже достигает постоянно значения, но не сразу, а спустя какое-то время.
Напряжение на катушке (нижний график) также вырастает моментально, но тут же начинает падать

При этом обратите внимание, что графики силы тока и напряжения зеркально противоположны.
Если все это перенести на наш опыт с лампой, то мы увидим, что после соединения цепи через выключатель, она загорится не сразу, а с некоторой задержкой.

Похожая ситуация будет и при размыкании цепи.


Физические процессы в катушке при размыкании цепи

По графикам видна противоположная ситуация, означающая, что лампочка продолжить гореть еще какое-то время после размыкания цепи.

Дело в том, что при прекращении подачи питания, в катушке снова возникнет ЭДС, однако ток индукции потечет теперь в том же направлении, что и от источника питания, то есть запасенная энергия в катушке, поддержит питание цепи.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: