Фотодиоды принцип работы основные характеристики. фотодиоды. виды и устройство. работа и характеристики

Фотодиоды

Фотодиод — это полупроводниковые приборы, принцип действия которых основан на внутреннем фотоэффекте, состоящем в генерации под действием света электронно-дырочных пар в рп-переходе, в результате чего увеличивается концентрация основных и неосновных носителей заряда в его объеме. Обратный ток фотодиода определяется концентрацией неосновных носителей и, следовательно, интенсивностью облучения. Вольт-амперные характеристики фотодиода (рисунок 1.2.7.1 (см. стр.28)) показывает, что каждому значению светового потока Ф соответствует определенное значение обратного тока. Такой режим работы прибора называют фотодиодным.

Фотодиоды применяются в качестве датчиков освещенности.

U,пр,В 0,01 0,2
Iпр,мА 1 4,5

Лабораторная работа

Тема: Односторонняя проводимость полупроводникового диода

Цель опыт: продемонстрировать принципиальное различие характеристик р-п перехода в зависимости от полярности приложенного к нему напряжения.

Оборудование: лампа 12В 21Вт -источник постоянного тока, диод — модуль с клеммами для -цифровой амперметр подключения источника питания,ключ

Полупроводниковый диод – это полупроводниковый прибор с одним р-n переходом и двумя выводами. Металлические выводы привариваются или припаиваются к противоположным областям р-n перехода ,а вся система заключается в металлический ,металлокерамический ,стеклянный или пластмассовый корпус.

Если положительный полюс источника питания подключается к p- области ,а отрицательный к n – области ,то включение перехода называют прямым. При изменении указанной полярности включение p –n .Перехода называется обратным .По аналогии с Электровакууными диодами ту сторону полупроводникового диода, к которой при прямом включении присоединяется отрицательный полюс источника питания, называют катодом, а другую – анодом.

Для демонстрации особенностей протекания электрического тока через p-n переход , или ,что одно и тоже ,через полупроводниковый диод ,соберите электрическую цепь, представленную на рис 1, Диод включается в цепь в прямом направлении .Обратите на это внимание учащихся и напомните им ,как по условному обозначению полупроводникового диода определить ,где у него анод ,а где катод. Установите выходное напряжение источника питания равным 10 В и замкните ключ

Лампа при этом начнет светится ,а амперметр покажет наличие тока в цепи. Попросите учащихся на какой из электродов диода подается положительный потенциал ,а на какой –отрицательный ,и в каком направлении протекает ток в цепи. Сделайте вывод о проводимости диода при данном подключении к источнику и объясните результат опыта на основе механизма протекания тока через p-n переход

Установите выходное напряжение источника питания равным 10 В и замкните ключ. Лампа при этом начнет светится ,а амперметр покажет наличие тока в цепи. Попросите учащихся на какой из электродов диода подается положительный потенциал ,а на какой –отрицательный ,и в каком направлении протекает ток в цепи. Сделайте вывод о проводимости диода при данном подключении к источнику и объясните результат опыта на основе механизма протекания тока через p-n переход.

Измените полярность включения диода на противоположную .Замкните ключ и продемонстрируйте, что лампа в этом случае не горит ,а амперметр показывает отсутствие тока в цепи. В место цифрового амперметра включите в цепь миллиамперметр .При этом чувствительность прибора , измеряющего ток в цепи ,увеличится в 100 раз, однако результат опыта останется прежним- ток в цепи нет. Объясните отсутствие тока в цепи на оcнове свойств p-n перехода. Сделайте общий вывод о том ,как влияет полярность подключения диода на его способность проводить электрический ток.

В заключение хочется сказать:

  1. Свойства диода изучено.
  2. Применение диода изучено.
  3. Поставленная цель выполнена.

Литература

  1. Виноградов Ю.В. «Основы электронной и полупроводниковой техники». Изд. 2-е, доп. М., «Энергия», 1972 г.
  2. Журнал «Радио», номер 12, 1978 г.
  3. Терещук Р.М. Полупроводниковые приемно-усилительные устройства: Справочник радиолюбителя / 4-е издание, стер. — Киев: Наук. Думка 1989.
  4. Бочаров Л.Н. Полевые транзисторы. — М.: Радио и связь, 1984.
  5. Полупроводниковые приборы: транзисторы: Справочник / Н.Н.Горюнова. М.; Энергоатомиздат, 1985.
  6. Справочник «Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы»; М.: Энергоатомиздат, 1987г.

Принципы действия

Фотодиоды преобразуют световые сигналы прямо в электрические,, используя обрат-лый пр сравнению со светодиодами физический процесс. В p-i-n-фотодиоде есть широкий внутренний (i-) полупроводниковый слой, разделяющий зоны р- и n-типа, как показано на рис. 6.9. На диод подается обратное смещение (5-20 вольт), это помогает удерживать лосители заряда от внутренней области.

  • а — полупроводниковая структура фоточувствительного элемента фотодиода с р—п- переходом; б — внешний вид; в — УГО;
  • г — ВАХ;
  • / — слой проводника с примесями, создающими избыток электронов (л-носителей);
  • 2— слой полупроводника с примесями, создающими избыток дырок (л-носителей); 3 — металлические контакты дящиеся на расстоянии от р — п-перехода, меньшем длины диффузии, достигают перехода и под воздействием потенциального барьера перехода переходят в область с п-проводимостью.

То же происходит с дырками, генерируемыми в /7-области. Неосновные носители, генерируемые в области освещения объемного заряда перехода, перемещаются в область с соответствующим типом проводимости. В результате разделения неравновесных носителей заряда высота потенциального барьера на границе р—п-перехода понижается и возникает обратный ток, пропорциональный освещенности.

Резюме

Кремниевые фотодиоды обеспечивают удобное и эффективное измерение освещенности в видимой области спектра. Стандартными материалами для детектирования инфракрасного излучения являются антимонид индия (InSb), арсенид индия-галлия (InGaAs), германий (Ge) и теллурид кадмия-ртути (HgCdTe). Для ультрафиолетовых приложений можно использовать кремний, а также стоит рассмотреть карбид кремния, если вам нужна надежная работа при высоких температурах, или если ваш детектор должен игнорировать видимый и инфракрасный свет.

Следующая статья в серии «Введение в фотодиоды»: эквивалентная схема фотодиода.

Оригинал статьи:

Robert Keim. Characteristics of Different Photodiode Technologies

Квантовая эффективность

Квантовая эффективность излучателя определяется как отношение числа выделенных электронов к числу падающих фотонов. У кремния и InGaAs пиковая квантовая эффективность около 80%.

Интересно почитать: фотореле в уличном освещении.

Скорость ответа

Скорость ответа детектора ограничена временем прохода, которое является временем преодоления свободными зарядами ширины внутреннего слоя. Это функция напряжения обратного смещения и физической ширины. Для быстрых p-i-n-диодов она колеблется от 1,5 до 10 нс. Емкость также влияет на ответ устройства, причем емкость перехода образует изолирующим внутренним слоем между электродами, образованными p- и n-областями. У высокоскоростных фотодиодов время ответа может достигать 10 пикосекунд при емкости в несколько пикофарад с очень маленькими площадями поверхностей.

Вольтамперная характеристика

Типичные вольтамперные (I-U) кривые для кремниевого p-i-n-фотодиода показа, на рис. 6.11. Можно видеть, что даже когда нет оптической мощности, течет небольшой обратный ток, который называется темновым током (dark current). Он вызывается температурным образованием свободных носителей зарядов, обычно удваиваясь через каждые 10°С прироста температуры после 25°С.

Будет интересно Что такое варикап?

Динамический диапазон

Линейная зависимость между напряжением и оптической мощностью, показанная на рис. 6.11 сохраняется обычно на протяжении около шести десятков, давая динамический диапазон около 50 дБ.


Фотодиод на схеме.

Температурная устойчивость

Обнаружители состоят из тонкой пленки на стеклянной подложке. Эффективная форма и рабочая площадь фотопроводящей поверхности могут значительно варьироваться в зависимости от условий эксплуатации. При этом рабочие характеристики прибора также меняются, в частности – чувствительность детектора изменяется в зависимости от рабочей температуры. Температурные характеристики запрещенных полос в соединениях PbS и PbSe отрицательны, поэтому охлаждение детектора сдвигает диапазон спектрального отклика на область более длинных волн. Для достижения наилучших результатов рекомендуется использовать фотодиоды в стабильной среде.

5.1.1 Принцип действия фотодиода

Существуют материалы, носители заряда в которых не проводят ток в отсутствие воздействия светового потока. Это происходит по ряду причин: либо носители заряда находятся в зоне, где они не могут принимать участие в проводимости (например, в заполненной валентной зоне), либо они блокированы потенциальным барьером, как в детекторе Шоттки, или захвачены связанными квантовыми состояниями. В основе работы ФД лежит эффект поглощения фотонов в полупроводниковом материале и рождение за счёт этого электронно-дырочных пар. Это происходит благодаря переходу электронов из валентной зоны на более высокий энергетический уровень в зону проводимости
Если на переход не подано внешнее напряжение и цепь разомкнута (рисунок 5.1), то освещение приводит к накопление фотоэлектронов в n-области и дырок в р-области. В результате образуется разность потенциалов Uф , т.е. появляется фото-ЭДС. Если внешняя цепь замкнута, то возникает фототок. В таких условиях диод работает как фотоэлемент.

Рисунок 5.1 – Процесс перехода электрона в зону проводимости

Для регистрации потока фотонов необходимы условия, при которых электронно-дырочные пары не рекомбинируют за счёт перехода электрона обратно в валентную зону. Эти условия в ФД создаются внутренним электрическим полем перехода. Известно, что в области перехода концентрация электронов в зоне проводимости и дырок в валентной зоне меньше, чем в прилегающих полупроводниках n- и p-типа, соответственно. Поэтому область в окрестности перехода называется обеднённым слоем. Именно здесь вероятность поглощения фотона велика, а среднее время, за которое созданная электронно-дырочная пара рекомбинирует, может быть сделано большим.
Процессу разделения подвергаются носители заряда, генерируемые в обеднённой области перехода и прилегающей к ней областях размером, примерно равным диффузионной длине неосновных носителей. Только с расстояния, меньшего диффузионной длины, неосновной носитель в процессе движения успевает пересечь границу перехода за время жизни.
Неосновные носители, генерируемые в р- и n-областях на большом расстоянии от границы перехода, вследствие рекомбинации не попадают в обеднённую область, где сосредоточено электрическое поле перехода.
На рисунке 5.2 показана зонная диаграмма энергетических уровней электрона при обратном смещении.

Рисунок 5.2 – Зонная диаграмма энергетических уровней электронов для р-n-перехода при обратном смещении U

Обеднённый слой не имеет свободных носителей, поэтому его сопротивление очень велико, и практически всё падение напряжения приходится на область контакта. В результате электрические силы очень велики в области контакта и пренебрежимо малы в других областях.
За счёт напряжения смещения U возникает дополнительное ускоряющее электрическое поле, которое действует на электроны в зоне проводимости и дырки в валентной зоне и перемещает носители, появившиеся при поглощении фотона, улучшая тем самым характеристики фотодиода. В результате электроны дрейфуют в n-область, а дырки – в p-область, где вероятность их рекомбинации мала. Величина приложенного напряжения напрямую связана с напряжённостью электрического поля, а, следовательно, и с кулоновской силой, действующей на заряженные частицы.
В конечном итоге напряжение смещения U определяет скорость их движения через обеднённую область. Эта скорость должна быть выбрана так, чтобы время пролёта частиц до внешних контактов ФД было бы существенно меньше, чем среднее время рекомбинации. Тогда практически все электронно-дырочные пары, появившиеся вследствие поглощения фотонов, участвуют в формировании фототока. Те носители, которые достигают обеднённой области быстро проходят её под действием сильного электрического поля, возбуждая при этом ток во внешней цепи. Данный ток возникает со сдвигом во времени по сравнению с поглощением фотона. Сдвиг во времени определяется первоначальным медленным диффузионным движением носителей по направлению к обеднённой области.
В идеальном фотодиоде весь падающий свет поглощается в обеднённом слое, и все рождающиеся носители собираются на контактах. Тогда фототок под действием оптической мощности P определяется из выражения

где Р – оптическая мощность;Eф– фото-ЭДС;e – заряд электрона.
На практике, конечно, часть падающего света отражается.

Фоторезисторы

Фоторезистор – это полупроводниковый резистор, сопротивление которого зависит от светового потока, падающего на полупроводниковый материал или от проникающего электромагнитного излучения. Наибольшее распространение получили фоторезисторы с положительным фотоэффектом (например, СФ2-8,СФ3-8). УГО такого элемента показано на рисунке:

В фоторезисторах сопротивление изменяется в результате облучения пластины из полупроводникового материала световым потоком в видимом, ультрафиолетовом или инфракрасном диапазоне. В качестве материала используется сульфиды таллия, теллура, кадмия, свинца, висмута.

Вольт-амперные характеристики фоторезисторов представляют собой линейные функции, угол наклона которых зависит от величины светового потока. В координатах I – U (ток по вертикали) угол, составляемый прямой с горизонтальной осью (ось напряжения), тем больше, чем больше световой поток. Темновое сопротивление резисторных оптронов составляет 107 – 109 Ом. В освещенном состоянии оно снижается до нескольких сотен Ом. Быстродействие их невелико и ограничивается значениями в несколько килогерц.

Оптические характеристики фотодиода:

Изображение Фото: КайМартин, Ответный кремниевый фотодиод, CC BY-SA 3.0

QE широко известен как процент падающих фотонов, которые вносят вклад в фототок.

                               QE=R набл/R Id (100%)

ОТВЕТСТВЕННОСТЬ, R

Чувствительность кремниевого фотодиода — это измерение чувствительности к свету. Он определяется отношением Ip к приходящей мощности света (P) для данной длины волны.

                              R = IP/P на определенной длине волны

НЕОДНОРОДНОСТЬ

Он четко определяется как вариации чувствительности, наблюдаемые по активной площади поверхности фотодиода с тривиальными пятнами света.

НЕЛИНЕЙНОСТЬ

Характеристики кремниевого фотодиода линейны по своей природе, хотя незначительное изменение тока регулирует линейность фототока.

Применение фотодиодов

Фотодиоды P−n используются в аналогичных применениях с другими фотоприемниками , такими как фотопроводники , приборы с зарядовой связью и фотоумножители . Они могут использоваться для генерации выходного сигнала, который зависит от освещения (аналоговый; для измерения и т.п.), или для изменения состояния схемы (цифровой; либо для управления и коммутации, либо для цифровой обработки сигналов).

Фотодиоды используются в устройствах бытовой электроники, таких как проигрыватели компакт-дисков , детекторы дыма , медицинские приборы и приемники для инфракрасных устройств дистанционного управления, используемых для управления оборудованием от телевизоров до кондиционеров. Для многих применений могут использоваться либо фотодиоды, либо фоторезисторы. Любой тип фотодатчика можно использовать для измерения освещенности, например, в измерителях освещенности камеры , или для реагирования на уровни освещенности, например, при включении уличного освещения после наступления темноты.

Фотодатчики всех типов могут использоваться для реагирования на падающий свет или источник света, который является частью той же схемы или системы. Фотодиод часто объединяется в один компонент с излучателем света, обычно светодиодом (LED), либо для обнаружения наличия механического препятствия для луча ( щелевой оптический переключатель ), либо для соединения двух цифровых или аналоговых цепи при сохранении чрезвычайно высокой электрической изоляции между ними, часто для обеспечения безопасности ( ). Комбинация светодиодов и фотодиодов также используется во многих сенсорных системах для характеристики различных типов продуктов на основе их оптического поглощения .

Фотодиоды часто используются для точного измерения интенсивности света в науке и промышленности. Они обычно имеют более линейный отклик, чем фотопроводники.

Они также широко используются в различных медицинских приложениях, таких как детекторы для компьютерной томографии (в сочетании со сцинтилляторами ), инструменты для анализа образцов ( иммуноанализ ) и пульсоксиметры .

намного быстрее и более чувствительны, чем p-n-переходные диоды, и, следовательно, часто используются для оптической связи и в регулировании освещения.

Фотодиоды P–n не используются для измерения очень низкой интенсивности света. Вместо этого, если требуется высокая чувствительность, лавинные фотодиоды , устройства с усиленной зарядовой связью или фотоумножители используются для таких применений, как астрономия , спектроскопия , приборы ночного видения и лазерное дальномеризация .

Фотодиоды являются основными элементами многих оптоэлектронных приборов.

(оптоэлектронные)

Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.

Фотоприемники с несколькими элементами

Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.

Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации.

Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.

Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.

В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.

Фотодиоды: принцип работы

В электротехнике широко используются различные приборы и устройства, связанные с особенностями и физическими свойствами материалов. Среди них особое место занимают фотодиоды, принцип работы которых основан на воздействии оптического излучения. В результате, материал изменяет свои качества, что позволяет ему выполнять различные функции в электрических цепях.

Принцип действия фотодиода

Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами.

Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей.

Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля.

В результате, дырки попадают в р-область. Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок.

Данный вид тока с участием фотоносителей получил название фототока.

Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС.

  Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии.

В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии.

Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве элементов солнечной батареи. Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше.

В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз.

Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами.

Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения.

Характеристики фотодиодов

Если рассматривать в целом непосредственно фотодиоды, принцип действия и другие параметры этих устройств, следует отметить то, как выходная мощность соотносится с общей массой и площадью солнечной батареи. Максимальное значение этих параметров может достигать соответственно 200 ватт на 1 кг и 1 киловатт на 1 м2.

Кроме того, значение имеет вольт-амперная характеристика, в которой выходное напряжение зависит от выходного тока. Значение спектральных характеристик показывает соотношение фототока и величины световых волн, падающих на фотодиод. Максимальное значение данного параметра находится в прямой зависимости от того, насколько возрастает коэффициент поглощения.

Фототок и освещенность определяют световую характеристику фотодиода. Обе величины имеют между собой прямую пропорциональную зависимость.

Эта величина представляет временной отрезок, на протяжении которого происходят изменения после того как фотодиод освещен или затемнен. Показатель соотносится с установленным значением.

Фотодиод также характеризуется в соответствии с сопротивлением при отсутствии освещения и другими параметрами, определяющими его работоспособность и область практического применения.

Области применения фотодиодов

  • Оптоэлектронные интегральные микросхемы. Полупроводники обеспечивают оптическую связь, что гарантирует эффективную гальваноразвязку силовых и руководящих цепей при поддержании функциональной связи.
  • Многоэлементные фотоприемники – сканисторы, фоточувствительные аппараты, фотодиодные матрицы. Оптоэлектрический элемент способен воспринимать не только яркостную характеристику объекта и ее изменение во времени, но и создавать полный визуальный образ.

Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.

Фотодиоды

В фотодиодах на основе p-n-переходов используется эффект разделения на границе электронно-дырочного перехода созданных оптическим излучением неосновных неравновесных носителей. Схематически фотодиод изображен на рисунке:

При попадании кванта света с энергией hγ в полосе собственного поглощения в полупроводнике возникает пара неравновесных носителей – электрон и дырка. При регистрации электрического сигнала необходимо зарегистрировать изменение концентраций носителя. Как правило, используется принцип регистрации неосновных носителей заряда.

При разомкнутой внешней цепи (SA разомкнут, R = ∞) для случая, когда внешнее напряжение отсутствует, ток через внешнюю цепь не протекает. В этом случае напряжение на выводах фотодиода будет максимальным. Эту величину VG называют напряжением холостого хода Vxx. Напряжение Vxx(фото ЭДС) можно также определить непосредственно, подключая к выводам фотодиода вольтметр, но внутреннее сопротивление вольтметра должно быть много больше сопротивления p-n–перехода. В режиме короткого замыкания (SA замкнут) напряжение на выводах фотодиода VG = 0. Ток короткого замыкания Iкз во внешней цепи равен фототоку Iф

Iкз = Iф

На рисунке показано семейство ВАХ фотодиода как при отрицательной, так и при положительной полярности фотодиода.

При положительных напряжениях VG ток фотодиода быстро возрастает (пропускное направление) с увеличением напряжения. При освещении же общий прямой ток через диод уменьшается, так как фототок направлен противоположно току от внешнего источника.

ВАХ p-n-перехода, располагаясь во 2 квадранте (VG > 0, I < 0), показывает, что фотодиод можно использовать как источник тока. На этом базируется принцип работы солнечных батарей на основе p-n-переходов (режим фотогенератора). Световая характеристика представляет собой зависимость величины фототока Iф от светового потока Ф, падающего на фотодиод. Сюда же относится и зависимость Vxx от величины светового потока. Количество электронно-дырочных пар, образующихся в фотодиоде при освещении, пропорционально количеству фотонов, падающих на фотодиод. Поэтому фототок будет пропорционален величине светового потока:

Iф = кФ,

где К — коэффициент пропорциональности, зависящий от параметров фотодиода.

При обратном смещении фотодиода ток во внешней цепи пропорционально световому потоку и не зависит от напряжения VG (режим фото-преобразователя). Фотодиоды являются быстродействующими приборами и работают на частотах 107- 1010 Гц. Фотодиоды широко применяются в оптопарах «cветодиод-фотодиод»

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: