Полупроводниковые датчики температуры
Температурной зависимостью обладают не только металлы, но и p-n переход. Падение напряжения на нем при протекании тока в прямом направлении будет меняться примерно на 2мВ с изменением температуры на 1 градус. Используя данную зависимость можно организовать измерение температуры в диапазоне примерно от -55 до 150 градусов. В качестве датчиков могут использоваться обычные диоды или один из p-n переходов транзистора. Схемотехника измерительных схем с использованием подобных устройств повторяет варианты с терморезисторами. Существуют и специализированные изделия, представляющие собой законченные измерительные устройства с аналоговым выходным сигналом, пропорциональным температуре. Такие устройства очень удобно применять совместно с АЦП микроконтроллера. Наряду с аналоговыми датчиками, можно найти полупроводниковые микросхемы, содержащие встроенный АЦП и цифровой интерфейс связи (SPI, I2C, 1-Wire). Такие датчики позволяют создавать наиболее простые схемы, но при этом отличаются относительно низкой точностью. Более подробно с данными приборами можно ознакомиться на странице Полупроводниковые датчики температуры.
Аналоговые и цифровые термометры
Аналоговые
Эти устройства обычно недороги и не требуют сложного ухода. Главная их проблема – шкала. Либо она показывает температуру с высокой точностью, но измерительный интервал при этом очень мал, либо охватывает широкий температурный диапазон, но точность показаний – приблизительна.
Цифровые
Такие устройства дороже, по сравнению с аналоговыми, но их точность гораздо выше. Позволяют производить измерения в широком интервале, применяются в быту и технике.
Конструктивные составляющие цифрового термометра:
- чувствительный элемент (обычно это терморезистор);
- аналогово-цифровой преобразователь, который трансформирует электрический сигнал от терморезистора в цифровой;
- дисплей;
- элемент питания;
- вводы-выводы сигналов, необходимые для взаимодействия с другими устройствами.
Аналоговые микросхемы термометров
Вместо использования термистора с постоянным резистором в делителе напряжения, альтернативным решением может стать аналоговый низкотемпературный датчик, такой как TMP36 от Analog Devices. В отличие от термистора, эта аналоговая микросхема обеспечивает выходное напряжение, которое почти линейно; наклон составляет 10 мВ/°C в температурном диапазоне от -40 до +125°C, а его точность равна ±2°C. Смотрите рисунок 6 ниже.
Рисунок 6 – График зависимости выходного напряжения TMP36 от температуры из технического описания
Хотя эти устройства и крайне просты в использовании, но они значительно дороже комбинации термистор-плюс-резистор.
Функции
Датчик температуры воздуха в помещении имеет следующие функции:
- Экономия: контролируется уровень температуры, и чтобы она не превышала установленного показателя, прибор отключается.
- Безопасность: если прибор неисправен, происходит уведомление с помощью звука. Есть датчик температуры воздуха в помещении с смс-оповещением.
- Комфорт: температура регулируется самостоятельно, поэтому людям не требуется это выполнять.
Самым простым устройством является датчик температуры воздуха в помещении, предназначенный для радиаторов отопления. Его устанавливают на трубе отопления, чтобы поддерживать благоприятный микроклимат.
Полупроводниковые термодатчики
Этот тип датчиков работает на принципе изменения характеристик p-n перехода под воздействием температуры. Так как зависимость напряжения на транзисторе от температуры всегда пропорциональна, можно сделать датчик с высокой точностью измерения. Несомненными плюсами такого решения является дешевизна, высокая точность данных, и линейность характеристик на всем диапазоне измерения. Кроме того, их можно монтировать прямо на полупроводниковой подложке, что делает этот тип датчиков незаменимым для микроэлектронной промышленности.
Примером такого устройства может стать датчик LM75A. Температурный диапазон — от -55 С° до +150 С°, погрешность измерений – ±2 С°. Шаг измерения – всего 0,125 С°. напряжение питания – от 2.5 до 5.5 В, а время преобразования сигнала – до 0.1 секунды.
Виды термометров по принципу действия
Процесс измерения температуры может основываться на разных физических процессах. Исходя из этого, выделяют 5 видов термометров.
Контактные
Такие приборы еще называют термометрами расширения. Они основаны на отслеживании изменения объема тел под действием меняющейся температуры. Обычно измеряемый диапазон температур составляет от -190 до +500 градусов по Цельсию.
К этой категории относятся жидкостные и механические устройства. Жидкостные представляют собой приборы в стеклянном корпусе, заполненные спиртом, ртутью, толуолом или керосином. Они прочные и устойчивые к внешним воздействиям. Температурный диапазон измерений зависит от типа используемой жидкости (наибольший — у ртутных, наименьший — у цифровых).
Механические могут работать с разными типами сред, включая жидкостные, газообразные, твердые или сыпучие. Универсальность позволяет использовать их в разных инженерных системах.
Термометры сопротивления
К этой категории относятся приборы, которые способны измерять электрическое сопротивление веществ, меняющееся в зависимости от температурных показателей. Рабочий диапазон этих устройств — от -200 до +650 градусов.
Такие термометры состоят из чувствительных термодатчиков и точных электронных блоков, контролирующих изменения проводимости, сопротивления и электрического потенциала. Обычно их встраивают в общую систему мониторинга и оповещения, туда, где нужно отслеживать меняющиеся параметры и не допускать их превышения.
В котельных установках наибольшее применение получили термометры сопротивления медные (ТСМ). Термометрами сопротивления можно измерять температуры от -50 до +600°С.
Электронные термопары
При нагревании эти приборы генерируют ток, что и позволяет измерять температуру. Принцип действия основан на замерах термоэлектродвижущей силы. Диапазон измерений в этом случае — от 0 до +1800 градусов.
Манометрические
Такие термометры учитывают зависимость между температурными показателями и давлением газа. В измеряемую среду помещают термобаллон, соединенный с манометром латунной трубкой. При нагреве термобаллона давление внутри него увеличивается, и эта величина измеряется манометром. Таким образом проводят замеры температуры в диапазоне от -160 до +600 градусов.
Бесконтактные пирометры
В основе этих приборов — инфракрасные датчики, считывающие уровень излучения. Они подразделяются на два вида: яркостные, проводящие измерения излучений на определенной длине волны (диапазон — от +100 до +6000 градусов), и радиационные, когда определяется тепловое действие лучеиспускания (от -50 до +2000 градусов). Они могут использоваться в том числе и для определения температуры нагретого металла, а также при наладке и испытаниях котлов.
Датчики температуры SIEMENS
Температурные измерители Сименс в зависимости от среды применения делятся на две основные группы:
- воздушные или детекторы температуры воздуха,
- жидкостные.
Благодаря большому количеству моделей различной конструкции, воздушные датчики работают в разных условиях. Поэтому данный тип подразделяют на:
- наружные,
- комнатные,
- канальные.
Датчики температуры для помещений Siemens
Используются внутри зданий. Модели имеют широкий диапазон чувствительности и минимальную погрешность измерений. Сочетание преимуществ как современных, так и более традиционных технологий, компактный вид и безукоризненный дизайн ставят температурные датчики Сименс вне конкуренции. Они отлично вписываются в любой интерьер офисного помещения или дома.
Канальные датчики температуры Siemens
Ни одна система климат-контроля не обходится без датчика контроля параметров воздуха. Канальные датчики температуры Siemens https://sbtpro.ru/datchiki_temperaturi/ это пассивные датчики, предназначенные для измерения температуры воздуха в воздуховодах. Они используются в различных типах систем в коммерческих и промышленных объектах.
Устройства представляют собой современные механизмы, которые гарантируют правильное измерение температуры, а значит, и эффективную работу всей установки. Они изготовлены из надежных материалов, благодаря которым хорошо справляются даже в самых экстремальных условиях.
Датчики температуры в воздуховоде могут использоваться как датчики температуры приточного или вытяжного воздуха, а также как ограничивающие датчики для ограничения минимальной температуры приточного воздуха. Их также можно успешно использовать в качестве эталонных и измерительных датчиков.
Погружной датчик температуры
Погружной датчик температуры разработан для измерения высоких и низких температур в системах отопления, вентиляции и установок кондиционирования воздуха. Он подключается двухжильным кабелем, который используется как для питания, так и для передачи сигнала.
Преимущества датчиков температур Сименс:
- Широкий ассортимент продукции, охватывающий все стандартные диапазоны измерения и выходные сигналы
- Энергосберегающие требования к теплу и высокий комфорт в помещении — результат сбалансированной коррекции измерения, короткого времени отклика и высокой точности измерения
- Инновационная и простая установка — благодаря конструкции и корпусу, совместимому со всеми методы измерения и требования к сборке.
Термометры сопротивления.
Наиболее простым и распространенным типом датчика температуры является термометр сопротивления. Принцип его действия основан на зависимости удельного сопротивления металлов от температуры. Это значит, что с ростом температуры сопротивление металлического провода будет расти. Коэффициент, описывающий подобную зависимость, называется температурным коэффициентом сопротивления (ТКС). Для металлов эта величина положительна.
Конструктивно, термометр сопротивления представляет собой миниатюрную катушку из медного или платинового провода, упакованную в защитный кожух. Для получения оптимальных характеристик измерения, провод стараются взять как можно большей длины. Для удобства применения все термометры стандартизуют по так называемому нулевому сопротивлению, т.е. сопротивлению при температуре 0 град.Цельсия. Промышленность выпускает термометры с нулевым сопротивлением 50,100,500,1000 Ом. Маркируются термометры по типу металла, используемому для измерения и нулевой температуре. Например, большое распространение имеют медные датчики ТСМ100 и платиновые ТСП100 и Pt100. Характеристики двух последних несколько отличаются, что необходимо учитывать.
Промышленный термометр |
Термометры сопротивления находят применение для измерения температур от -50 до 200 град.Цельсия. К их достоинствам следует отнести высокую точность измерений при невысокой стоимости. Для изделий промышленного применения величина погрешности находится в районе 0.1 градуса. Использование термометров сопротивления подразумевает создание специальных схем, позволяющих определить сопротивление датчика с высокой точностью.
Термистор
Как следует из названия, термистор (т.е., терморезистор) представляет собой датчик температуры, сопротивление которого зависит от температуры.
Термисторы выпускаются двух типов: PTC (с положительным температурным коэффициентом) и NTC (с отрицательным температурным коэффициентом). Сопротивление PTC термистора с ростом температуры увеличивается. А сопротивление NTC термистора, наоборот, с увеличением температуры уменьшается, и этот тип, по-видимому, является наиболее часто используемым типом термисторов. Смотрите рисунок 1 ниже.
Рисунок 1 – Условные графические обозначения термисторов PTC и NTC
Важно понимать, что связь между сопротивлением термистора и его температурой очень нелинейна. Смотрите рисунок 2 ниже
Рисунок 2 – Зависимость сопротивления NTC термистора от температуры
Стандартная формула сопротивления NTC термистора в зависимости от температуры определяется следующим образом:
\[R_T=R_{25C}\cdot e^{\left\{\beta\left[\left(1/\left(T+273\right)\right)-\left(1/298\right)\right]\right\}}\]
где
- R25C – номинальное сопротивление термистора при комнатной температуре (25°C). Данное значение, как правило, приводится в техническом описании;
- β (бета) – постоянная материала термистора в Кельвинах. Это значение обычно указывается в техническом описании;
- T – реальная температура термистора в Цельсиях.
Тем не менее, существует два простых метода, используемых для линеаризации поведения термистора, а именно режим сопротивления и режим напряжения.
Режим линеаризации сопротивления
В режиме линеаризации сопротивления параллельно термистору помещается обычный резистор. Если значение резистора равно сопротивлению термистора при комнатной температуре, область линеаризации будет симметрична относительно точки комнатной температуры. Смотрите рисунок 3 ниже.
Рисунок 3 – Режим линеаризации сопротивления
Режим линеаризации напряжения
В режиме линеаризации напряжения термистор ставится последовательно с обычным резистором, образуя при этом делитель напряжения. Этот делитель напряжения должен быть подключен к известному, фиксированному, стабилизированному источнику опорного напряжения VREF.
Эта конфигурация приводите к созданию выходного напряжения, которое относительно линейно зависит от температуры. И, как и в режиме линеаризации температуры, если сопротивление резистора равно сопротивлению термистора при комнатной температуре, то область линеаризации будет симметрична относительно точки комнатной температуры. Смотрите рисунок 4 ниже.
Рисунок 4 – Режим линеаризации напряжения
Преимущества продукции ЭЛЕМЕР-УФА
Компания предлагает большой выбор термопреобразователей (модели ТСМУ, ТСПУ, ТХАУ, ТХКУ, ТПУ), датчиков сопротивления, термопар, биметаллических термометров, отдельные чувствительные элементы для датчиков (платиновые и медные), а также кабели и провода для КИП. Доступны как высокоточные модели (класс точности АА), так и устройства с большим диапазоном рабочих температур, например, термопары с контролируемыми температурами -40. +1800 °С. По индивидуальным заказам возможно изготовление специфических моделей, например, с нижней температурной границей -200 °С.
Компания выпускает измерители РОСА-10 и ИПТВ, предназначенные для контроля температуры и влажности. Все приборы хорошо интегрируются в системы автоматического учёта и контроля благодаря поддержке интерфейса RS-232. Все датчики и преобразователи температуры изготавливаются в пыле- и влагозащищённом исполнении (классы: IP54, IP65 и IP5Х).
Квалифицированные инженеры компании предоставят полную информацию по продуктам КИПиА и помогут выбрать наиболее подходящее для целевых условий устройство. По вопросам подбора, комплектации и приобретения контрольно-измерительного оборудования можно обратиться по телефонам:
- в г. Уфа,
- в г. Казань, (843) 292-14-62
Подключение температурного датчика для котла
Все датчики температуры должны подключаться к термостату или специальному управляющему контроллеру, отвечающего за рабочие режимы котла. При этом необходимо тщательно изучить инструкцию по подключению, чтобы совпали требования к подсоединению с техническими характеристиками датчиков.
Обычно рекомендуется приобретать датчики, которые рекомендует производитель котла. Связано это с их высокой совместимостью и гарантией правильной работы
Если в продаже таковые отсутствуют, то нужно обращать внимание на сертифицированные аналоги
Подключение наружного датчика
Датчик наружной температуры для котла монтируется на внешней стороне стены дома с обязательным выполнением следующих требований:
- необходимо исключить попадание прямых солнечных лучей на его поверхность;
- поверхность контакта стены должна быть неметаллической;
- прокладка кабеля в местах с повышенной влажностью, при наличии химических или биологических факторов, которые могут повредить изоляцию, запрещена;
- высота расположения датчика на стене должна быть на уровне 2/3 высоты дома, если количество этажей до трёх, либо между вторым и третьим этажом, если здание многоэтажное;
- необходимо исключить негативные факторы, снижающие чувствительность или точность измерения датчика.
Наружные датчик температуры для котла
Подключение термодатчика осуществляется при выключенном электропитании котла. Для соединения применяется цельный кабель с сечением жил 0,5 мм 2 и длиной до 30 м. Места подключения проводов к котлу и датчику должны быть загерметизированы и изолированы.
При подсоединении важно соблюдать полярность, в зависимости от типа термодатчика. Если участок кабеля проходит по улице, то его следует защитить специальной гофрированной трубкой
После выполнения всех монтажных работ, необходимо проверить их качество, а затем настроить термостат. Если были допущены ошибки, то их следует исправить, иначе велика вероятность поломок котла или недостаточного обогрева помещений.
Подключение комнатного датчика
Датчик комнатной температуры для котла монтируется на внешней стене здания с внутренней стороны помещения. Требования по выбору места следующие:
отсутствие поблизости источников тепла или холода;
постоянный доступ к пространству помещения (отсутствие предметов декора, интерьера, которые могут заслонять датчик и влиять на достоверность измерений);
высота от пола должна составлять 1,2-1,5 м;
при монтаже электрических датчиков важно, чтобы поблизости не было источников электромагнитного излучения: проложенной электропроводки, установленных мощных электроприборов и т. п.. Комнатный датчик температуры для котла
Комнатный датчик температуры для котла
Способ подключения аналогичный методу для внешнего термодатчика, выполняется в соответствии с требованиями производителя котла. Может монтироваться в специально подготовленное углубление в стене или на поверхность, главное, чтобы чувствительный элемент не был закрыт снаружи.
Подключение датчика для газового котла
Беспроводной датчик температуры для газового котла монтируется непосредственно на контроллер или на газовый клапан. Проводные термодатчики присоединяются способом, который предусмотрен производителем и описан в инструкции.
Подключение водяного термодатчика
Датчик температуры воды для котла в многоконтурной системе устанавливается на поверхность возвратной трубы отопления либо внутрь неё, а также допустима установка на циркуляционный насос. Такое положение обусловлено необходимостью исключения попадания обратно в котёл теплоносителя с высокой температурой.
Термопары.
Принцип действия термопары основан на возникновении термоЭДС (эффекте Зеебека) в месте спая двух разнородных металлов. Величина ЭДС пропорциональна разности температур между «горячим» концом или спаем и «холодным» концом, представляющим собой точку подключения проводников к измерительному устройству. В нашей стране наибольшее распространение получили пары металлов хромель-алюмель ( международное обозначение — K, отечественное — ХА), хромель-копель(тип L или ТХК), платинородий-платина (тип S или ТПП). Также существуют и некоторые другие типы термопр.
Выходным сигналом термопары является напряжение, величина которого измеряется в мВ. Это означает, что для полноценных измерений необходимо использовать усилитель. Второй особенностью использования термопар становится необходимость компенсации температуры холодного спая. В общем случае термопара представляет собой спай двух разнородных проводников. Точки подключения данных проводников к измерительному устройству в свою очередь образуют аналог спая, вносящего погрешность в измерения. Для ее учета в месте, максимально приближенном к точке контакта устанавливают дополнительный датчик температуры, показания которого вычитают из показаний основного. Третья особенность заключается в необходимости использования соединительных кабелей специального типа, как правило выполняемых из того же материала, что и термопара. Пренебрежение данным требованием приводит к увеличению погрешности измерений, за счет появления дополнительных спаев.
Главным достоинством термопар является возможность измерения высоких температур. Так для типа ХА диапазон измерений составляет от -180 до 1300 градусов. Для некоторых специальных моделей, верхнее значение может достигать 1800 градусов. Наряду с широким диапазоном, термопары характеризуются сравнительно высокой погрешностью измерения, примерно равной 1 градусу. Также, особенно при большом диапазоне измеряемых температур, требуется учитывать нелинейность термопар.
Как подобрать?
При выборе датчика температуры необходимо руководствоваться такими критериями:
- если датчик будет соприкасаться или располагаться внутри измеряемой среды, то берется контактная модель, если находиться вне объекта, то бесконтактная;
- условия и состояние среды, в которой он будет функционировать (влажность, агрессивные вещества и т.д.) должны соответствовать возможностям датчика;
- шаг и градуировка измерений должны обеспечивать удобную эксплуатацию и датчика, и оборудования;
- если датчик подлежит замене в ходе эксплуатации, то устанавливаются сменные варианты;
- при выборе датчика температуры для замены неисправного, лучше воспользоваться его VIN кодом;
- предел рабочих температур должен охватывать все возможные значения нагрева, некоторые из них приведены в таблице ниже.
Таблица: температурные пределы датчиков термоэлектрического типа
Точность, стабильность и повторяемость
Эти три термина часто путают, поэтому важно понять их различие.
Точность
Стандарт IEC 751 определяет два класса точности —класс «A » и класс «B »:
- Класс «A »:t =±(0,15 +0,002 •|t |)
- Класс «B »:t =±(0,30 +0,005 •|t |)
- где:|t |— абсолютная температура в °C.
Класс «A » применяется для датчиков, работающих в температурном диапазоне от –200 до 650 °C, и только для трех-или четырехпроводной схемы подключения.
Класс «B » охватывает полный диапазон температур от –200 °C до 850 °C.
Стабильность
Стабильность — это способность датчика поддерживать свое неизменное сопротивление при постоянном входном воздействии. Физические или химические воздействия могут вызывать дрейф градуировки. Кроме этого, так как платина — материал достаточно жесткий, то провод на сердечнике или на подожке может расширяться или сжиматься, вызывая его деформацию и ухудшение стабильности. Дрейф, обычно указываемый изготовителями, составляет обычно 0,05 °C/год.
Повторяемость
Повторяемость — это способность датчика иметь неизменную характеристику в течение длительного времени при идентичных условиях применения
Во многих случаях не требуется получения абсолютной точности, а все внимание обращается на стабильность и повторяемость характеристик датчика. Если, например, РТД в точке 100,00 °C всегда показывает 100,06 °C, то схема обработки всегда может легко компенсировать эту ошибку
Повторяемость характеристик датчиков исключительна, в большинстве случаев она составляет 0,05 °C в течение пяти лет.
Термоэлектрические датчики температуры (термопары)
Принцип работы этой группы датчиков основан на том, что в замкнутых контурах проводников или полупроводников возникает электрический ток, если места спайки различаются по температуре. Для измерения температуры, один конец термопары помещают в среду измерения, а другой служит для снятия значений. Единственным, но существенным недостатком этого вида измерителей является их довольно большая погрешность, что недопустимо для многих технологических процессов.
Он применяется в металлообработке, и служит для контроля температуры подшипников. Диапазон измерения от -50 до +120 градусов по Цельсию, выходной сигнал для считывания – аналоговый.
Видео о датчиках температуры смотрите ниже: