↑ Второй вариант расчета параметрического стабилизатора [3 — 5]
Итак, исходными данными являются: стабилизированное напряжение на нагрузке Uвых, токи нагрузки Iн min, Iн max, номинальное входное напряжение Uвх и его отклонения ΔUвх н и ΔUвх в.
Параметры стабилитрона те же, что и в предыдущем расчете: Uст= Uвых, Iст max, Iст min, rд.
Вычисляем максимальное и минимальное значения рабочего тока стабилитрона:
Iст р max=0,8 Iст max,Iст р min=1,2 Iст min.
Если стабилизатор должен работать режиме холостого хода (Iн min=0), выбираем Iст р min=Iст min.
Проверяем пригодность выбранного по напряжению стабилизации стабилитрона заданных пределах тока нагрузки и питающего напряжения:
(Iст р max+ Iн min)(1- ΔUвх н)-(Iст min+ Iн max)(1+ ΔUвх в)>0,где ΔUвх н=(Uвх- Uвх min)/ Uвх, ΔUвх в=(Uвх max-Uвх)/ Uвх.
Номинальное напряжение Uвх, которое должен обеспечить выпрямитель, вычисляем по формуле:
Uвх= Uст/.
Сопротивление балластного резистора:
R= Uвх(ΔUвх в+ΔUвх н)/.
Также вычисляем мощность резистора с двукратным запасом:
Po=2(Uвх(1+ ΔUвх н)- Uст) 2 /R.
По приведенным в первом варианте расчета формулам находим Kст, КПД и Kф.
↑ Пример расчета №3
Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток Iн min =0, Iн max =10 мА; изменение входного ΔUвх н=10%, ΔUвх в=15%.
Выберем стабилитрон типа Д814Б, для которого Uст= Uн; rд=10 Ом; Iст max=36 мА, Iст min=3 мА.
После занесения исходных данных листе таблицы «Второй вариант расчета» получаем следующие результаты (рис. 4):
Uвх=14 В, R=221 Ом, Po=0,45 Вт, Kст=14,2.
Выбираем резистор сопротивлением 220 Ом мощностью 0,5 Вт.
Стабилизатор приобретается для одновременной защиты трех однофазных потребителей
Не будем акцентировать внимание на конкретном виде устройств, назовем их просто: потребитель 1, потребитель 2 и потребитель 3
Согласно заводским паспортам:
- номинальная мощность потребителя 1 составляет 600 Вт, потребителя 2 – 130 Вт, потребителя 3 – 700 Вт;
- коэффициент мощности потребителей 1 и 2 равен 0,7, потребителя 3 – 0,95.
Определяем мощность нагрузки. Пусть потребитель 1 относится к категории оборудования, характеризующегося наличием высоких пусковых токов. При расчёте используем не его номинальную мощность, а максимальную – пусковую, равную согласно технической документации 1800 Вт. Используя вышеуказанную формулу, переведём мощность каждого потребителя из Вт в ВА:
- 1800 / 0,7 = 2571,4 ВА – для потребителя 1;
- 130 / 0,7 = 185,7 ВА – для потребителя 2;
- 700 / 0,95 = 736,8 ВА – для потребителя 3.
Теперь определим суммарную потребляемую мощность планируемой нагрузки в Вт и ВА:
- 1800 + 130 + 700 = 2630 Вт;
- 2571,4 + 185,7 + 736,8 = 3493,9 ВА.
Дальнейший выбор стабилизатора будем проводить, учитывая, что полная мощность нагрузки на устройство составит 3493,9 ВА, а активная – 2630 Вт (обратите внимание на разницу значений в Вт и ВА). Далее определяем запас мощности
Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:
Далее определяем запас мощности. Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:
- 2630 х 0,3 = 789 Вт – запас активной мощности;
- 34,939 х 0,3 = 1048,17 ВА – запас полной мощности.
Следовательно мощность нагрузки с учётом запаса составит:
- 2630 + 789 = 3419 Вт;
- 3493,9 + 1048,17 = 4542,07 ВА.
Теперь выберем модели однофазного стабилизатора с необходимой мощностью для электропитания нашей нагрузки (с учетом запаса), используя стандартный мощностной ряд однофазных инверторных стабилизаторов производства ГК «Штиль»:
Полная мощность, ВА | Активная мощность, Вт |
350 | 300 |
550 | 400 |
1000 | 750 |
1500 | 1125 |
2500 | 2000 |
3500 | 2500 |
6000 | 5400 |
8000 | 7200 |
10000 | 8000 |
15000 | 13500 |
20000 | 16000 |
Ближайшая с большей стороны к расчётным значениям мощность – 6000 ВА и 5400 Вт, следовательно, именно такой стабилизатор подходит для подключения потребителя 1, потребителя 2 и потребителя 3.
Если взять модель с мощностью, ближайшей к расчетному значению в меньшую сторону (3500 ВА/ 2500 В), то стабилизатор окажется перегружен, так как выходная активная мощность устройства окажется меньше потребляемой активной мощности нагрузки: 2500 Вт
Стабилизатор двойного преобразования
Это устройство, называемое так же инверторный стабилизатор, по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.
Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:
- Фильтр сетевых помех;
- Корректор мощности – выпрямитель;
- Блок конденсаторов;
- Инвертор;
- Узел микропроцессора.
Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.
Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.
Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.
На базе инверторного принципа может быть реализована схема регулируемого стабилизатора напряжения. В этом случае можно на схемном уровне рассчитать величину напряжения на входе, которая может быть практически любой, а стабилизатор будет выдавать 220В.
С этим читают:
Выбираем электронный стабилизатор напряжения: принцип работы и характеристики
Стабилизаторы напряжения для дома: отзывы, какой лучше и по каким критериям делать выбор
Промышленный стабилизатор напряжения: по каким критериям делать выбор?
Изготовление силового трансформатора
Силовой питающий трансформатор T1, как было сказано выше, является одним из основных элементов стабилизатора напряжения, поэтому к его изготовлению следует отнестись ответственно. Но самостоятельное изготовление весьма проблематично.
Поэтому для большей простоты можно приобрести 2 готовых изделия марки ТПК-2-2. Выходное напряжение каждого преобразователя составляет 12 В, чтобы получить 24 В, трансформаторы следует соединить последовательно. Схема соединения приведена ниже (рисунок 3).
К сожалению, трансформатор Т2 нельзя приобрести, а только сделать самостоятельно. Для этого потребуется:
- тороидальный магнитопровод (в качестве которого можно использовать статор двигателя на 10 кВт);
- Провод ПЭВ-2 диаметром не менее 4.2 мм.
Выводы автотрансформатора, начиная от нижнего делаются от: 150, 164, 180, 196, 218 и 246 витка.
Схема линейного стабилизатора напряжения 12в
В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому – КРЕН142.
Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.
Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.
Принцип действия полевого транзистора
Полевой транзистор состоит из трех электродов – истока, стока и затвора. Вход заряженных частиц происходит через исток, а выход – через сток. Закрытие или открытие потока частиц осуществляется с помощью затвора, выполняющего функции крана. Заряженные частицы будут течь лишь при условии напряжения, которое должно быть приложено между стоком и истоком. Если напряжение отсутствует, то и тока в канале не будет. Следовательно, чем выше подаваемое напряжение, тем больше открывается кран. За счет этого ток в канале между стоком-истоком увеличивается, а сопротивление канала – уменьшается. Для источников питания предусмотрена работа полевых транзисторов в режиме ключа, обеспечивающая полное открытие или закрытие канала.
Данные свойства позволяют сделать расчет стабилизатора тока на транзисторе, обеспечивающего поддержание токовых параметров на определенном уровне. Использование полевых транзисторов определяет и принцип действия такого стабилизатора. Всем известно, что каждый идеальный источник тока обладает ЭДС, стремящейся к бесконечности и также бесконечно большим внутренним сопротивлением. Это позволяет получить ток с необходимыми параметрами, вне зависимости от сопротивления нагрузки.
В таком идеальном источнике возникает ток, который остается на одном и том же уровне, несмотря на изменения сопротивления нагрузки. Поддержание тока на неизменном уровне требует постоянного изменения величины ЭДС в диапазоне свыше нуля и до бесконечности. То есть сопротивление нагрузки и ЭДС должны изменяться таким образом, чтобы ток при этом стабильно оставался на том же уровне.
Однако на практике такая идеальная микросхема стабилизатора тока не сможет обеспечить всеми необходимыми качествами. Это связано с тем, что диапазон напряжения на нагрузке сильно ограничен и не поддерживает требуемого уровня тока. В реальных условиях источники тока и напряжения используются совместно. В качестве примера можно привести обычную сеть, напряжением 220 вольт, а также другие источники в виде аккумуляторов, генераторов, блоков питания и других устройств, вырабатывающих электроэнергию. К каждому из них могут последовательно подключаться стабилизаторы тока на полевых транзисторах. Выходы этих устройств по сути являются источниками тока с нужными параметрами.
Таким образом, зависимость нагрузки и выходных характеристик полевого транзистора оказывает влияние на значение тока при минимальном и максимальном значении входного напряжения. Однако токовые изменения незначительны и не оказывают отрицательного влияния на потребителей.
Источник
Теория
Цель работы
Ознакомиться с основными фотометрическими
величинами; ознакомиться с принципом работы
фотометра; проверить
выполнение закона Ламберта для источника света
Полупроводниковые диоды и стабилитроны
Выпрямительные диоды и стабилитроны представляют
собой полупроводниковые
приборы с одним электронно-дырочным переходом
(p–n-переходом).
Одним из свойств p–n-перехода является способность
изменять свое сопротивление в зависимости от
полярности
напряжения внешнего источника. Причем разница
сопротивлений при прямом и обратном направлениях тока
через
p–n-переход может быть
настолько велика, что в ряде случаев, например для
силовых диодов, можно считать, что
ток протекает через диод только в одном направлении –
прямом, а в обратном направлении ток настолько мал,
что им
можно пренебречь. Прямое направление – это когдаэлектрическое поле внешнего источника направлено
навстречу
электрическому полю p–n-
перехода, а обратное – когда направления этих
электрических полей совпадают.
Полупроводниковые диоды, использующие вентильное
свойство p–n-перехода, называются выпрямительными
диодами и
широко используются в различных устройствах для
выпрямления переменного тока.
Вольт-амперная характеристика (ВАХ) идеализированного
p–n-перехода описывается известным уравнением
где \(I_0\) – обратный ток p–n-перехода; \(q\) –
заряд электрона \(q=1,6\cdot 10^{-19}\ Кл\); \(k\) –
постоянная
Больцмана \(k = 1,38⋅10^{-23} Дж\cdot град\); \(T\) –
температура в градусах Кельвина.
Графическое изображение этой зависимости
представлено на рис. 1.1.
Вольт-амперная характеристика имеет явно выраженную
нелинейность, что предопределяет зависимость
сопротивления
диода от положения рабочей точки.
Различают сопротивление статическое \(R_{ст}\) и
динамическое \(R_{дин}\). Статическое сопротивление
\(R_{ст}\),
например в точке А (рис. 1.1), определяется как
отношение напряжения \(U_A\) и тока \(I_A\),
соответствующих этой точке: \(R_{ст} =
\frac{U_A}{I_A} = tg{\alpha}\)
Динамическое сопротивление определяется как отношение
приращений напряжения и тока (рис. 1.1):
\(R_{дин} = \frac{\Delta U}{\Delta I}\);
Рис. 1.1
При малых значениях отклонений \(∆U\) и \(ΔI\)
можно пренебречь нелинейностью
участка АВ характеристики и считать его гипотенузой
прямоугольного треугольника
АВС, тогда \(R_{дин} = tgβ\).
Если продолжить линейный участок прямой ветви
вольт-амперной характеристики
до пересечения с осью абсцисс, то получим точку
\(U_0\) – напряжение отсечки, которое
отделяет начальный пологий участок характеристики,
где динамическое сопротивление
\(R_{дин}\) сравнительно велико от круто
изменяющегося участка, где \(R_{дин}\) мало.
При протекании через диод прямого тока
полупроводниковая структура нагревается,
и если температура превысит при этом предельно
допустимое значение, то произойдет
разрушение кристаллической решетки полупроводника и
диод выйдет из строя. Поэтому
величина прямого тока диода ограничивается предельно
допустимым значением
\(I_{пр.max}\) при заданных условиях охлаждения.
Если увеличивать напряжение, приложенное в обратном
направлении к диоду, то
сначала обратный ток будет изменяться незначительно,
а затем при определенной величине
\(U_{проб}\) начнется его быстрое увеличение (рис.
1.2), что говорит о наступлении пробоя p–n-перехода.
Существуют несколько видов пробоя p–n-перехода в
зависимости от
концентрации примесей в полупроводнике, от ширины
p–n-перехода и температуры:
- обратимый (электрический пробой);
- необратимые (тепловой и поверхностный пробои).
Необратимый пробой для полупроводникового прибора
является нерабочим и недопустимым режимом.
Рис. 1.2
Поэтому в паспортных данных диода всегда
указывается предельно допустимое
обратное напряжение \(U_{проб}\) (напряжение
лавинообразования), соответствующее началу
пробоя p–n-перехода. Обратное номинальное значение
напряжения составляет обычно
\(0,5\ U_{проб}\) и определяет класс прибора по
напряжению. Так, класс 1 соответствует 100 В
обратного напряжения, класс 2 – 200 В и т. д.
В некоторых случаях этот режим пробоя используют
для получения круто нарастающего
участка ВАХ, когда малому приращению напряжения
\(∆U\) соответствует большое изменение тока
\(ΔI\) (рис. 1.2). Диоды, работающие в таком режиме,
называются
стабилитронами, т. к. в рабочем диапазоне при
изменении обратного тока от \(i_{обр. min}\) до
\(i_{обр. max}\) напряжение на диоде остается почти
неизменным, стабильным. Поэтому для
стабилитронов рабочим является участок пробоя на
обратной ветви ВАХ, а напряжение
пробоя (напряжение стабилизации) является одним из
основных параметров.
Принцип работы стабилитрона
Полупроводниковые приборы отличаются нелинейной реакцией при работе с разными токами (напряжениями). Для изучения функциональности пользуются вольтамперной характеристикой (ВАХ), которая наглядно демонстрирует взаимное влияние базовых параметров и особенности определенной конструкции.
ВАХ диода
Так как стабилитрон является одной из разновидностей диода, изучение принципов работы можно начать с рассмотрения типичного электронно-дырочного (n-p) полупроводникового перехода. В правой части показано включение диода в прямом направлении. Хорошо видно, как от порогового уровня Uп дальнейшее повышение напряжения сопровождается практически линейным увеличением тока в цепи. Определенные потери можно учесть при составлении электрической схемы.
При обратном включении источника питания (левая часть рисунка) увеличение напряжения до показанного значения незначительно изменяет ток. Далее (при значении Uпр) возникает пробой, который определяется особенностями перехода:
- тепловой,
- лавинный;
- туннельный.
Первый из отмеченных в перечне вариантов означает чрезмерное повышение температуры и разрушение полупроводникового прибора. Третий – сопровождается увеличением тока, образованного парными зарядами. Для стабилизации подходит лавинная реакция в переходе. Как показано на графике, напряжение в этом режиме изменяется незначительно.
Этапы изготовления
Чтобы собрать стабилизатор напряжения 220В для дома своими руками сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.
Смотрим видео, самодельный несложный прибор:
схема электрическая принципиальная
Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:
- магнитопровод площадью сечения 1,87 см²;
- три кабеля ПЭВ-2.
Первый провод используется для создания одной обмотки, при этом его диаметр составляет 0,064 мм. Число витков должно равняться 8669.
Два оставшихся провода потребуются для выполнения других обмоток. Они отличаются от первого диаметром, составляющим 0,185 мм. Количество витков для этих обмоток будет равно 522.
Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.
В случае изготовления этих деталей самостоятельно после того как будет готов один из них переходят к созданию второго. Для него будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.
Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод диаметром 3мм, а для остальных – шины, сечением 18 мм². Это поможет избежать нагревания трансформатора в процессе работы.
соединение двух трансформаторов
Все остальные комплектующие для прибора, создаваемого своими руками лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке. Начинать лучше всего с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 см². На него также монтируются симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.
Далее необходимо установить на плату светодиоды. Причем лучше выбирать мигающие. Если не получается расположить их согласно схеме, то можно разместить на стороне, где находятся печатные проводники.
Если сборка симисторного стабилизатора напряжения 220В своими руками для вас кажется сложной, то можно остановиться на более простой линейной модели. Она будет обладать аналогичными свойствами.
Эффективность изделия, выполненного своими руками
Что толкает человека на изготовление того или иного прибора? Чаще всего – его высокая стоимость. И в этом смысле стабилизатор напряжения, собранный своими руками, конечно, превосходит фабричную модель.
Кроме того, все детали для такого прибора предварительно покупались в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.
Если же сравнивать надежность стабилизатора, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать модель, отличающуюся высокой производительностью практически невозможно, так как нет специального измерительного оборудования.
Заключение
Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Но для этого придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант – приобретение устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.
Зачем нужны стабилизаторы напряжения и его важность
Все электрические устройства спроектированы и изготовлены для работы с максимальной эффективностью с типичным источником питания, который известен как номинальное рабочее напряжение. В зависимости от расчетного безопасного предела эксплуатации рабочий диапазон (с оптимальной эффективностью) электрического устройства может быть ограничен до ± 5%, ± 10% или более.
Из-за многих проблем источник входного напряжения, которое мы получаем, всегда имеет тенденцию колебаться, что приводит к постоянно меняющемуся источнику входного напряжения. Это изменяющееся напряжение является основным фактором, способствующим снижению эффективности устройства, а также увеличению частоты его отказов.
Рис. 2 — Проблемы из-за колебаний напряжения
Компенсационные стабилизаторы
В компенсационных стабилизаторах производится сравнение эталонного (опорного) потенциала с выходным. Разница через контур отрицательной обратной связи поступает на базу ключевого транзистора, управляя величиной его открытия.
Точность стабилизации зависит от точности формирования опорного напряжения. Так как устройство сравнения потребляет малый ток, то опорный потенциал можно сформировать при помощи параметрического стабилизатора на стабилитроне и резисторе.
Компенсационная схема
Еще больше повысить эксплуатационные характеристики можно, используя источник тока вместо токоограничительного резистора. В качестве такого источника наиболее удобно применять полевой транзистор. Компенсационные устройства обладают хорошими характеристиками, поэтому большинство производителей элементной базы выпускает готовые модули, позволяющие создавать конструкции с минимумом элементов.
Как работает стабилизатор напряжения
Основная работа стабилизатора напряжения заключается в выполнении двух необходимых функций: функции понижения и повышения напряжения.
Функция понижения и повышения — это не что иное, как регулирование постоянного напряжения от перенапряжения.
Эта функция может выполняться вручную с помощью селекторных переключателей или автоматически с помощью дополнительных электронных схем.
В условиях перенапряжения функция «понижения напряжения» обеспечивает необходимое снижение интенсивности напряжения. Аналогично, в условиях пониженного напряжения функция «повышения напряжения» увеличивает интенсивность напряжения. Идея обеих функций в целом заключается в том, чтобы поддерживать одинаковое выходное напряжение.
Рис. 4 — Принципиальная схема функции понижения в стабилизаторе напряжения
На приведенном выше рисунке показано подключение трансформатора в функции «Понижения». В функции понижения полярность вторичной катушки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом вычитания напряжения первичной и вторичной катушек.
В стабилизаторе напряжения есть схема переключения. Всякий раз, когда обнаруживается превышение напряжения в первичном источнике питания, подключение нагрузки вручную или автоматически переключается в конфигурацию режима «Понижения» с помощью переключателей (реле).
Рис. 6 — Принципиальная схема функции повышения напряжения в стабилизаторе напряжения
На рисунке выше показано подключение трансформатора в функции «Повышения». В функции повышения полярность вторичной обмотки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом сложения напряжения первичной и вторичной обмоток.
Стабилизированный регулируемый блок питания с защитой от перегрузок
Множество радиолюбительских блоков питания (БП) выполнено на микросхемах КР142ЕН12, КР142ЕН22А, КР142ЕН24 и т.п. Нижний предел регулировки этих микросхем составляет 1,2…1,3 В, но иногда необходимо напряжение 0,5…1 В. Автор предлагает несколько технических решений БП на базе данных микросхем.
Интегральная микросхема (ИМС) КР142ЕН12А (рис.1) представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2…37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.
Рис.1. ИМС КР142ЕН12А
На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе. Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DA1 и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга. В авторском варианте DA1 установлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2.
Рис.2. Регулируемый БП на ИМС КР142ЕН12А
Схема стабилизатора напряжения 220в своими руками
При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.
Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.
За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.
Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.
Для сборки стабилизатора на 220 вольт в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.
Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см² и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков – 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.
Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм². За счет этого предотвращается нагрев трансформатора во время работы.
Принцип работы (работа стабилизатора тока)
Пусть наша нагрузка это
R, будем считать, что её сопротивление почти не изменяется (R = const), ток мы хотим неизменный (I = const), а что у нас остаётся – только выходное напряжение на источнике тока, его то и будет подбирать схема, причём не просто от балды, а именно такое, при котором через вышеупомянутою нагрузку R потечёт ровно тот ток I, на который рассчитано устройство.
А вот разбор работы самой схемы:
Примечание. Детали для данного экземпляра взяты со старых плат, в частности мощный полевой N-канальный транзистор MTD20N06V в DPAK (TO-252) исполнении с материнки, у него сопротивление открытого канала 65 мОм, а максимальное длительно приложенное напряжение затвор-исток 20 Вольт, питается схема от БП 12 Вольт (скачки напряжения не более нескольких Вольт), поэтому диод Зенера не понадобится. Биполярный транзистор – это известный BC847A в SOT-23 корпусе. Резистор R1 = 11 кОм, R2 = 2 Ом типоразмера 1205 и мощностью 0.25 Вт. Этот экземпляр предназначен для стабилизированного тока:
Iстаб = UБЭ * R2 = 0.6 В / 2 Ом = 300 мА
Модуляция длины канала
К сожалению, даже когда проект нашей итоговой схемы гарантирует, что Q2 всегда будет в насыщении, наш источник тока на MOSFET транзисторах будет не совсем идеален. Виновником является модуляция длины канала.
Суть области насыщения заключается в «отсечке» канала, который существует, когда напряжение затвор-сток не превышает пороговое напряжение.
Рисунок 3 – Отсечка канала
Идея состоит в том, что ток стока становится независимым от Vит после того, как канал отсекается, потому что дальнейшее увеличение напряжения стока не влияет на форму канала. Однако в действительности увеличение Vит заставляет «точку отсечки» перемещаться к истоку, и это позволяет напряжению стока оказывать небольшое влияние на ток стока, даже когда полевой транзистор находится в насыщении. Результат можно представить следующим образом:
Рисунок 4 – Влияние перемещения «точки отсечки»
Iсмещ теперь является суммой Iопор (определяется Rнастр) и Iошибки (ток, протекающий через выходное сопротивление). Iошибки подчиняется закону Ома: более высокое Vит означает больший Iошибки и, следовательно, больший Iсмещ, и, таким образом, источник тока больше не независим от напряжения на его клеммах.