Почему индикаторная отвертка светится на всех проводах

Как отличить друг от друга фазу и ноль?

Для того чтобы отличить «фазу» от других проводов можно воспользоваться таким инструментом, как индикаторная отвёртка.

Если дотронуться до металлической части провода, жалом этой отвёртки при этом, придерживая противоположный торец указательным пальцем то индикатор, будет светиться при наличии фазного провода. Также можно определить «фазу» с помощью мультиметра.

Для этого необходимо включить прибор в режим измерения переменного тока.

Выставить максимально возможное напряжение на приборе. Минусовой щуп необходимо подсоединить к какому-нибудь заземлённому предмету, например, к радиатору отопления, а другой попеременно подключать к проводникам.

Когда прибор покажет напряжение, которое примерно равно 220 В. то проводник, к которому вы подключились и есть фазный провод.

Как определить «фазу» и «ноль» без измерительных приборов.

Для того чтобы обнаружить фазу можно использовать проверенный временем, очень простой и недорогой способ.

С помощью обыкновенного патрона с лампой накаливания несложно определить пару «ноль» — «фаза». Нужно взять патрон и два провода, которые отходят от него попеременно подсоединять к проводам с предполагаемыми фазным и нулевым проводами.

Когда же лампочка загорится это будет означать что один из подключённых проводов является фазным. Теперь останется узнать какой именно. Очень просто это сделать если в электрической сети включена система УЗО. В этом случае если подключить патрон с лампой одним концом к третьему проводу, который является в данном случае заземлением, а другой попеременно к другим проводникам.

В момент, когда произойдёт автоматическое отключение электричества, будет означать то, что второй провод, к которому вы подсоединили щуп мультиметра, является «фазой». Соответственно третий проводник будет «ноль».

Если нет УЗО то после определения пары «фаза» — «ноль», один провод следует подключить к заземлению, а второй будет слегка искрить при соприкосновении с «фазой».

Заблуждения, которые могут возникнуть при определения фазного провода.

Это не совсем заблуждения, просто, если следовать этому способу определения фазы можно неправильно сделать вывод о том, где именно она находится.

Способ определения фазы по цвету провода

Если рабочие, которые занимались монтажом проводки сделали всё правильно то фазный провод должен быть чёрного или коричневого цвета.

Но полностью полагаться на такой способ определения фазы нельзя, т. к. не исключено, что при подключении, провода просто перепутали. И вместо фазного провода чёрного цвета там будет «земля» или «ноль».

В заключении стоит отметить, что заниматься самостоятельными электромонтажными работами стоит только в том случае если вы очень хорошо разбираетесь в том, что делаете, в противном случае стоит обратиться к специалистам, которые выполнят работы по монтажу проводки, качественно и в срок.

Хозяин квартиры или частного дома, решивший проделать любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или настенного светильника, неизменно сталкивается с необходимостью определить, где в месте производства работ находятся фазный и нулевой провод, а также кабель заземления. Это нужно для того, чтобы правильно подсоединить монтируемый элемент, а также избежать случайного удара током. Если вы имеете определенный опыт работы с электричеством, то такой вопрос не поставит вас в тупик, но для новичка он может оказаться серьезной проблемой. В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.

Причины появления двух фаз

Причиной того, что индикаторная отвертка показывает две фазы действительно может быть наличие двух фаз. Происходит это из-за различных неисправностей электропроводки.

Обрыв нейтрали в линии электропередач или вводном щите

Причиной того, почему индикаторная отвертка светится на всех проводах, может быть обрыв нейтрального провода. Это связано с тем, что современные трёхфазные сети 0,4кВ подключаются к контуру заземления по системе TN и к потребителям проложены 4 провода — 3 фазных и 1 нейтральный.

Из-за того, что нагрузка по фазам распределена неравномерно по нулевому проводнику протекает уравнительный ток. Благодаря этому напряжение между нулевым и фазным проводниками одинаковое на всех фазах.

При обрыве соединения нулевого провода с нейтралью трансформатора равенство нарушается, величина напряжения между фазным и нейтральным проводом в менее нагруженных фазах растёт и между нейтральным проводом и землёй появляется напряжение, величина которого может достичь 100-200В, что достаточно для свечения индикатора.

Высокое сопротивление в нулевом проводнике

Все провода обладают сопротивлением электрическому току, поэтому при расчёте линии электропередач учитывается не только допустимый нагрев, но и падение напряжения, в том числе и в нулевом проводнике.

Дополнительный вклад в падение вносят плохие контакты в местах соединения проводов.

Если нагрузка на электросеть соответствует номинальной, тот напряжение на этом проводе между нейтралью трансформатора и потребителем составляет не более 23В, но при росте нагрузки и её неравномерном распределении ток и потери растут, что вызывает перекос напряжения аналогично обрыву нейтрали.

Короткое замыкание

Вторая фаза может появиться в розетке из-за замыкания между нулевым и фазным проводником. Если установлена исправная защита, то произойдёт аварийное отключение участка сети.

Кроме того, может отгореть соединение в нулевом проводе между местом замыкания и трансформатором. При этом возможны несколько вариантов развития событий, при которых отвёртка показывает фазу на обоих проводах:

  • На обоих контактах в розетках потребителей, подключённых к замкнувшей фазе, будет одна и та же фаза. Напряжение между ними будет равно «0».
  • На контактах розеток потребителей, подключённых к другим фазам, напряжение будет вместо 220 (230)В 380 (400)В.

Важно! Наличие в розетке двух РАЗНЫХ фаз и, как результат, повышенное напряжение, является аварийным и может привести к выходу из строя подключённых к сети электроприборов

Немного теории

Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу.

Возьмем, к примеру, замкнутую электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания. От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу. Так вот, провод, по которому ток течет к лампе, называют фазным или просто фазой (L), а провод, по которому ток возвращается от лампы, называют нулевым или просто нулем (N).

При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением (фазой). Остальная же часть фазного и нулевого проводов будут обесточены.

При разрыве нулевого провода движение тока также прекратится, но теперь под фазным напряжением окажутся фазный провод, оба вывода лампы и часть нулевого провода, отходящего от цоколя лампы к месту разрыва.

Убедиться в наличии фазы на обоих выводах лампы и на нулевом проводе, отходящем от лампы, можно индикаторной отверткой. Но если на этих же выводах и проводе измерить напряжение вольтметром, то он ничего не покажет, так как в этой части цепи присутствует одна и та же фаза, которую относительно себя измерить нельзя.

Вывод: между одной и той же фазой никакого напряжения нет. Напряжение есть только между нулевым и фазным проводом.

Совет. Для определения наличия фазы и напряжения в электрической сети необходимо совместное использование индикаторной отвертки и вольтметра. В качестве вольтметра можно использовать мультиметр.

А теперь перейдем к практике и рассмотрим некоторые ситуации с нулем, которые можно самостоятельно определить и по возможности устранить без привлечения службы коммунэнерго:

1. Обрыв нуля во входном щитке дома или квартиры; 2. Обрыв нуля на входе или внутри распределительной коробки; 3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.

Альтернативные методы без использования приборов

Если ситуация складывается так, что ни индикаторной отвертки, ни мультиметра нет, а выяснить, какой контакт фазный, необходимо, используют визуальный способ определения контакта.

На кабеле часто встречается буквенное обозначение характеристик проводников. Так, за «фазой» закрепилась буква L, за «нулем» — N, а за «землей» — PE.

Иногда электрики при монтаже дополнительно маркируют фазный провод подвешенной биркой с обозначением. Но более простым решением считается цветовая маркировка проводов. Правильное подключение их (в соответствии со стандартом) впоследствии облегчает работу электрикам, позволяя быстро ориентироваться в проводке.

По цвету провода

Цвета изоляции проводов подбирают таким образом, чтобы они максимально отличались друг от друга:

  1. «Фаза» имеет часто белый, черный или коричневый цвет.
  2. «Нуль» — синий и его оттенки.
  3. «Земля» — желто-зеленый.

Но не всегда нормативы подключения проводников соблюдаются. Потому ради безопасности лучше проверить напряжение в проводах независимо от их визуальной маркировки.


Стандарт маркировки проводов

С помощью контрольной лампы

Этот способ считается самым рискованным, но выручает в ситуации, когда привычных тестеров нет под рукой. Проверяющему нужна лампа, закрученная в патрон, из которого отходят 2 провода. Для безопасного использования такого «прибора» лучше к концам проводов прикрепить щупы, а саму лампу обернуть защитным кожухом.

Одним отводом лампы нужно прикоснуться к металлической трубе (или другому заземляющему элементу), а вторым проверять контакт. Если лампа загорится, то диагностируемый контакт — «фаза».

Определить проводники можно и путем исключения:

  1. Поочередно прикасаются отводами лампы к двум из трех контактов, которые нужно идентифицировать. Если лампа горит, значит, на этот момент задействована пара «фаза» — «нуль».
  2. Чтобы определить фазный и нулевой проводники, одним из отводов тестера дотрагиваются до следующего из проверяемой тройки контакта. Лампочка тухнет при отсоединении от «фазы». Но случится это, только если в сети установлен защитный автомат. При его отсутствии индикатор горит даже в положении «земля» — «нуль».
  3. Для идентификации «земли», если не установлен защитный автомат, следует убрать заземление с кабеля и повторить тест. Теперь на этом проводнике лампа гореть не будет.

Собрать контрольную лампочку в домашних условиях несложно. Для этого понадобятся 2 проводника, соединенные с патроном, и сама лампочка, вкрученная в него.

В целях безопасности лампу лучше использовать неоновую, а на провода электрики рекомендуют закрепить щупы — это обезопасит и облегчит эксплуатацию «контрольки».

Контрольная картофелина

Для самого необычного способа определения фазы потребуются 2 провода и картофель. В разрезанный пополам клубень вставляют 2 проводника на максимальном друг от друга расстоянии. Один накидывают на что-то заземленное (трубу отопительной системы), другой — на проверяемый контакт. Спустя 5-10 минут осматривают срез картофелины. Если на нем появилось пятно, то проверяемый проводник — «фаза». Если пятно отсутствует — «нуль».

Область применения

Представленный инструмент сможет выполнить не только самые простые функции — как определить фазу индикаторной отверткой — но и множество дополнительных.

Возможно проверить кабель на обрыв, исправность удлинителя, обнаружить проводку в стене.

Все функции необходимо проводить по определенной инструкции применения индикаторной отвертки. Замеры возможно производить контактным или бесконтактным способом.

Контактный способ поможет найти напряжение в сети переменного тока. Это самая простая процедура. Щупом инструмента касаются оголенного кабеля. Если светодиод загорелся, значит найдена фаза. В случае когда индикатор не загорелся, это может быть нулевой провод, а также это случается при отсутствии в сети питания или ее обрыва.

Бесконтактный способ поможет найти скрытую проводку. Для этого ручку подносят к поверхности, за которой находится провод. Если неоновый элемент загорелся, проводник найден.

Индикаторы-пробники для поиска фазы и ноля

Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.

На неоновой лампочке

Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.

Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.

Светодиодный индикатор-пробник

Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.

Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.

Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом к металлической площадке на торце рукой касаются нельзя

. Эта площадка используется только при проверке целостности электрических цепей. Если при поиске фазы Вы будете касаться этой площадки, то светодиод будет светить и при касании индикатором к нулевому проводу!

Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.

Как самому сделать индикатор-пробник для поиска фазы и ноля на неоновой лампочке

При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.

Для этого нужно к одному из выводов любой неоновой лампочки, даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.

Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.

Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.

При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться онлайн калькулятор.

Понятия ноля и фазы

Электрическая энергия в жилой дом поступает от трансформаторной подстанции, основное назначение которой — преобразование высокого напряжения чаще всего в 380 В. К домам электроэнергия подземным или воздушным способом подводится на вводной распределительный щит. Затем напряжение подается к щиткам каждого подъезда. В квартиру от него заходит только одна фаза с нулем, т.е. 220 В и защитный проводник (зависит от конструкции электрической проводки).

Таким образом, проводник, обеспечивающий подачу тока к потребителю, называется фазным. Внутри трансформатора обмотки соединены в звезду с общей точкой (нейтраль), заземленной на подстанции. К нагрузке она подводится отдельным проводом. Ноль, представляющий собой общий проводник, предназначен для обратного протекания тока к источнику электроэнергии. Кроме этого, нулевой провод выравнивает фазное напряжение, т.е. значение между нулем и фазой.

Заземление, которое часто называют просто землей, не подключается к напряжению. Его назначение — защита человека от воздействия электрического тока в момент возникновения неполадок с потребителем, т.е. при пробое на корпус. Это может происходить при повреждении изоляции проводников и касании поврежденного участка корпуса прибора. Но поскольку потребители заземляются, при возникновении опасного напряжения на корпусе заземление притягивает опасный потенциал к безопасному потенциалу земли.

Причины появления двух фаз

Причиной того, что индикаторная отвертка показывает две фазы действительно может быть наличие двух фаз. Происходит это из-за различных неисправностей электропроводки.

Обрыв нейтрали в линии электропередач или вводном щите

Причиной того, почему индикаторная отвертка светится на всех проводах, может быть обрыв нейтрального провода. Это связано с тем, что современные трёхфазные сети 0,4кВ подключаются к контуру заземления по системе TN и к потребителям проложены 4 провода — 3 фазных и 1 нейтральный.

Из-за того, что нагрузка по фазам распределена неравномерно по нулевому проводнику протекает уравнительный ток. Благодаря этому напряжение между нулевым и фазным проводниками одинаковое на всех фазах.

При обрыве соединения нулевого провода с нейтралью трансформатора равенство нарушается, величина напряжения между фазным и нейтральным проводом в менее нагруженных фазах растёт и между нейтральным проводом и землёй появляется напряжение, величина которого может достичь 100-200В, что достаточно для свечения индикатора.

Высокое сопротивление в нулевом проводнике

Все провода обладают сопротивлением электрическому току, поэтому при расчёте линии электропередач учитывается не только допустимый нагрев, но и падение напряжения, в том числе и в нулевом проводнике.

Дополнительный вклад в падение вносят плохие контакты в местах соединения проводов.

Если нагрузка на электросеть соответствует номинальной, тот напряжение на этом проводе между нейтралью трансформатора и потребителем составляет не более 23В, но при росте нагрузки и её неравномерном распределении ток и потери растут, что вызывает перекос напряжения аналогично обрыву нейтрали.

Короткое замыкание

Вторая фаза может появиться в розетке из-за замыкания между нулевым и фазным проводником. Если установлена исправная защита, то произойдёт аварийное отключение участка сети.

Кроме того, может отгореть соединение в нулевом проводе между местом замыкания и трансформатором. При этом возможны несколько вариантов развития событий, при которых отвёртка показывает фазу на обоих проводах:

  • На обоих контактах в розетках потребителей, подключённых к замкнувшей фазе, будет одна и та же фаза. Напряжение между ними будет равно «0».
  • На контактах розеток потребителей, подключённых к другим фазам, напряжение будет вместо 220 (230)В 380 (400)В.

Важно! Наличие в розетке двух РАЗНЫХ фаз и, как результат, повышенное напряжение, является аварийным и может привести к выходу из строя подключённых к сети электроприборов

Типы индикаторных отверток

Варианты отверток с индикацией различны по своей функциональности.

Отвертки индикаторные без элемента питания позволят найти только фазу сети.

Представленные модели являются наиболее простыми, надежными и широко используются для определения напряжения в сетях жилых домов.

Ограничение минимального уровня силы тока до 60В делают инструмент непригодным для работы с маломощными системами.

Существуют модели прибора с батарейкой, что позволяет определять бесконтактно такие параметры сети, как ноль и фаза. Индикаторная отвертка этого типа позволит определить целостность электрического провода. Прибор протестирует кабель даже без подачи тока.

Универсальная индикаторная отвертка позволит определить ноль и фазу как контактным, так и бесконтактным способом. Может применяться в сетях низкого напряжения.

Выключатель должен разрывать фазу!

На схемах видно, что в обоих случаях на выключателе разрывается фаза, а ноль идёт на лампочку или светильник напрямую. И это правильно! Ибо, как говорил Остап Бендер, ибо…..

А что произойдёт, если сделать наоборот?

В принципе, ничего особенного, всё будет работать. Но. Самый большой минус такого подключения это безопасность. Так как безопасность эксплуатации электроустановок имеет большое значение, то подключение выключателя оговорено в ПУЭ (Правила устройства электроустановок).

«В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного». (7 издание ПУЭ, 6.6.28)

Это правило для подключения автоматического выключателя. И говорит оно о том, что нельзя разрывать нулевой провод не разрывая и фазный.

Так что произойдёт если выключатель будет стоять в нулевом проводнике?

При включённом выключателе всё будет работать так как к лапочке будет приходить и ноль (через выключатель) и фаза (напрямую).

А вот при выключенном выключателе на лампочке ноль исчезнет, а фаза останется. Причем на обоих проводах, если это лампа накаливания.

Чем это чревато?

Если светильник исправен и работает, то ничем не чревато. А вот если вы захотите поменять перегоревшую лампу в люстре или светильнике подключённом неправильно, то при случайном прикосновении к контактам в цоколе вас может ударить током. А может и не ударить. Всё зависит от того как хорошо заземлены ваши ноги. Но лучше не экспериментировать!

Что ещё может произойти?

Если люстра или светильник не новые, может потрескаться изоляция проводов и (не дай Бог) они замкнут на корпус люстры или светильника. На металлическом корпусе люстры может оказаться фаза. Простое прикосновение к корпусу может быть чревато поражением электрическим током. Всё зависит от особенности организма и качества заземления ваших ног. Исход может быть непредсказуем.

Ну а почему не сработала защита?

Да потому, что ноля то на люстре у нас нет — выключатель выключен, ноль разорван и не подается на светильник. Если же выключатель включён и ноль подается на светильник, он может и не быть на корпусе люстры. На корпусе люстры может быть только фаза. Автомат же дифференциальной защиты в цепи освещения можно не ставить согласно ПУЭ.

Ещё одна неприятная проблема при неправильном подсоединении выключателя это мерцание светодиодных ламп и светильников при постоянной фазе на них. Не факт, что это будет происходить, но у светильников не очень высокого качества это может случиться.

Определение рабочей фазы и нуля с помощью приборов

Фазный проводник предназначен для подачи тока потребителю, поэтому на него подается рабочее напряжение ( в бытовой сети 220 В). В отличие от него нулевой проводник выполняет функции замыкания цепи и его потенциал близок к нулю. На этом отличии как раз основан принцип как идентифицировать фазу и ноль с помощью электрических приборов.

С использованием индикаторной отвертки

Основное предназначение индикаторных отверток проверка наличия/отсутствия напряжения. Данная техническая характеристика прибора позволяет определить фазный и нулевой провода питающей сети.

Устройство отвертки обеспечивает удобное и безопасное ее использование. Принципиальная схема представлена на изображении.

Токопроводящий металлический стержень с плоским жалом на конце выполняет функции непосредственно контактирующего элемента с испытуемым проводом. В схеме присутствует ограничивающий величину тока до безопасных значений для человека высокоомный резистор. Он соединяется с индикаторной лампочкой с помощью пружины.

Замыкается цепь из перечисленных элементов на колпачке с контактом. Колпачок располагается на корпусе отвертки изготовленной из прозрачного пластика с возможностью удобного касания рукой человека. Его тело после контакта с колпачком будет выступать в качестве элемента цепи, по нему ток сбрасывается в землю.

Загорание лампочки дает необходимую информацию, как определить фазу и ноль индикаторной отверткой. С касанием токопроводящим стержнем фазного провода лампочка индикатора горит, контакт с нулем оставляет ее потухшей.

Определение фазы и ноля мультиметром

В однофазной проводке из трех проводов с помощью индикаторной отвертки можно определить только фазу, ноль и землю отличить с ее помощью невозможно. Мультиметром или как он называется в быту тестером можно решить весь комплекс вопросов как проверить функциональную принадлежность всех трех проводов.

Мультиметры принадлежат к многофункциональным приборам, поэтому для определения принадлежности того или иного провода следует выбрать и установить рабочее состояние в положение «вольтметр». Предел измерения выставить больше 220 В.

  • Первое действие заключается в проверке напряжения на всех трех проводах щупом, который находится в гнезде тестера «V» (обозначение гнезд могут различаться, это самое распространенное). Провод с максимальным значением напряжения будет фазой.
  • Далее один из двух щупов соединяем с фазой, а другим касаемся поочередно двух оставшихся проводов.
  • В случае если напряжение на шкале мультиметра будет равно 220 В, то этот провод нулевой. При напряжении на проводе меньшем, чем 220 В, найдем заземляющий.

Как определить ноль и фазу без приборов

Согласно ПУЭ (Правил Устройства Электроустановок) каждому проводу имеющему свое функциональное назначение соответствует своя определенная цветовая маркировка:

  • фазный провод имеет изоляцию черного, белого, коричневого (наиболее часто используемого) цветов и их многочисленных оттенков;
  • нулевой провод имеет изоляцию синего цвета с любыми его оттенками;
  • земля находится в изоляции желто — зеленого цвета в полоску.

Если бы нормативные акты строго соблюдались, то проблем с определением, где фаза, где ноль, а где земля не существовало. Для того чтобы легче было ориентироваться в коммутационных схемах на многих электрических приборах вводятся обозначения фазы, ноля и земли. Все проводники обозначаются в соответствии с государственными стандартами:

  • L — этой латинской буквой обозначается фаза;
  • N — по этому знаку находят нулевой провод;
  • PE — этим сочетанием букв всегда обозначалась земля.

Однако визуальный метод имеет долю субъективизма, не всегда можно точно определить правильно цвет изоляции проводника. Кроме этого не все электрики придерживаются нормативных документов при проведении электромонтажных работ. В зданиях старой постройки, говорить о каких — либо стандартах цветовой маркировки проводки вообще не приходится.

Поэтому такой метод найти фазу и ноль без приборов существует с большой степенью условности, 100 % гарантии он не имеет. Однако он является единственным реальным способом среди других, типа применения сырой картошки, как определить фазу и ноль без приборов. Для получения достоверного результата лучше воспользоваться данными о соответствии проводов фазе, нулю или заземлению проверенных с помощью индикаторной отвертки или мультиметра.

КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ

Итак, начнем по порядку:

ОПРЕДЕЛЕНИЕ ФАЗЫ

Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ

Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.

Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки — загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.

Принцип действия индикаторной отвертки прост — внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня.

ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ

Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы

Способ неоднозначный, но действенный, требующий особой осторожности

Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым.

Определить фазу и ноль из двух проводов

В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.

Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.

Найти фазу, ноль и заземление из трех проводов:

В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой. Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.

Действуем методом исключения:

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.

После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:

— Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.

— Если после смены положения лампа ненадолго вспыхнет , при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.

— Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях . В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: