Широтно-импульсная модуляция (шим)

ШИМ на постоянник с обратной связью

Ну да забыл написать, нас же хлебом не корми дай что нибудь поделать.

Продолжаем.

Как я писал, для шима проще всего взять готовую платку ВМ4511 «Регулятор яркости ламп накаливания».

Можете ее спаять с нуля, но по моему проще купить..

Значит берем эту платку, подключаем ее к источнику питания 12-20 вольт, в качестве нагрузки припаиваем лампочку на 12-20 вольт.

Убеждаемся что регулятор работает!

Не стоит в данный момент подключать двигатель!

Предлагаю следующую последовательность внесения изменений в регулятор.

Поменять местами выводы компаратора 2 и 3. Дело в том что при подачи питания на платку, компаратор держит транзистор открытым и двигатель стартует на полном напряжении питания (а так нельзя включать постоянники). Проверяем что схема работает.

Далее рассчитываем резистор R9.

ПРЕДУПРЕЖДЕНИЕ!!!!!

Если вместо отличного (лучшего) советского стабилитрона вы возьмете аналог (например 1N или 2N — не помню). То учитывайте что у советского стабилизатора КС512А1 минимальный ток стабилизации 0.001 А, а у аналогов (1N то-ли 2N) минимальный ток стабилизации начинается с 0.02 А.

Поэтому узнавайте минимальный ток стабилизации и прибавляйте его к значению 0.009 (например (Uпит-12)/0,029.

У меня напряжение питания 60 Вольт, я поставил резистор 5 кОм.

Меняем резистор R9, впаиваем стабилитрон в платку.

Выносим (а то и меняем) транзитор на радиатор, ну и силовую часть.

Кстати у меня транзистор IRFP4468. Но не обязательно использовать столь дорогие транзисторы, а на этапе отладки лучше попроще и подешевле (я таки спалил один).

Ставим переменный резистор в положение минимального опорного напряжения (стрелкой вниз), меняем нагрузку на лампочку с вашим рабочим напряжением.

Проверяем что все работает.

Меняем резисторы делителя R1, R2, R3 и ставим стабилитрон Д814А.

Проверяем что все работает. Уже можно подключать ваш двигатель, при включении желательно повернуть резистор в минимальное опорное напряжение (стрелку вниз).

Собственно немного о замене резисторов делителя и стабилитроне.

Так как мы поменяли выводы 2 и 3 компаратора, то выдаваемая мощность растет с увеличением опорного напряжения.

Но если на компаратор подать напряжение больше 10 вольт, то транзистор останется в постоянно открыт состоянии и выгорит.

Поэтому стоит поставить защиту от подачи большого напряжения на вход компаратора.

Для этого и используется стабилитрон Д814А. А чтоб он работал на 12 вольтах, у нему нужен резистор минимум 3 кОм.

В последствии уменьшенное сопротивление делителя тоже пригодится.

Про 10 Вольт пишут в темах, сам я не мерил (нужен осциллограф дабы посмотреть амплитуду пилы).

Стабилитрон Д814А, ограничивает напряжение ниже чем может выдать делитель. Но в крайних положениях регулирующего резистора у меня остается большой запас изменения напряжения практически не влияющего на работу двигателя. В мин — двигатель просто не крутится, около МАКС — двигатель не набирает оборотов.

Все вы уже можете подключать двигатель и пробовать регулировать обороты.

Но помните на самым минимальных оборотах (ну не совсем мин, так оборотов 100), скорее всего вы сможете остановить двигатель двумя пальцами.

PS: Далее (скорее завтра или послезавтра) по шагам пройдемся в создании обратной связи. Настраивается она легко — как я писал нужен только китайский тестер.

PS2: Да я забыл сказать: у меня двигатель с последовательным возбуждением (а может и вообще на магнитах — пока не разбирал). Поэтому я не озадачен изменением напряжения на двух обмокках.Изменено 18.11.2012 13:30 пользователем Alex_IZA

Цифровой ШИМ генератор на дискретной логике

Однажды мне в голову пришла идея сделать генератор сигнала ШИМ на дискретной логике с кнопочным управлением.

Да, я знаю, что существует не один десяток схем простых генераторов ШИМ сигналов, в том числе и на дискретной логике. Я понимаю, что взяв простенький МК (уже не говорю об arduino) можно было бы за 5 минут и меньше проблем сделать схему гораздо круче. Просто смотря на свои микросхемы дискретной логики мне хочется пускать их в дело. Мне кажется безумно интересным, соединяя несколько микросхем создавать работающие алгоритмы. Так что если вам эта тема так же нравится, то думаю и моя статья вам будет интересна.

Я решил придерживаться принципа генерации ШИМ сигнала используемого в микроконтроллере.

Некоторый счетчик считает от 0 до максимума и в момент обнуления генерирует сигнал сброса

В регистре хранится значение скважности ШИМ и каждый такт система сравнивает текущее значение счетчика с значением из регистра. Если они равны, то генерируется сигнал установки

В итоге получаем ШИМ сигнал.

Для начала необходим тактовый генератор. Так как в схеме будет кнопочное управление, для кнопки было решено применить схему подавления дребезга на триггере Шмидта, К155ТЛ2 или 7414. А значит тактовый генератор логичней всего собрать по следующей схеме.

Что такое ШИМ-регулятор?

регулировать напряжениегабаритным огням,

Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности. Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность. А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.

Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком. Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B … U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения. И как результат – использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора. Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.

Системы управления микросхемами

Важно знать не только из чего состоят микросхемы шим — контроллеров, но и какие существуют виды самих систем. В настоящее время доступно две основных системы широко — импульсной модуляции в которых шим — контроль принимает активное участие

Вот их некоторые особенности:

Цифровая система. В цифровой шим — системе все существующие процессы описываются цифровыми данными. Так на выходе в цифровом формате формируется показатель уровня напряжения. Заметим, что уровень напряжения может быть высокий (измеряется как 100%) и низкий (0%). Однако показатели напряжения, благодаря современным технологиям, можно изменять

Как? Необходимо изменить скважность импульсов. Только тогда изменится и напряжение

Любые совершенные перемены имеют свою частоту. Именно шим — контролёры регулируют описанные процессы. С их помощью вся система будет успешно работать. Эта специальная микросхема по праву называется сердцем всей цифровой системы шим — модуляторов.

А вот получить на выходе нужный сигнал можно как с программным, так и аппаратным методом.

Аппаратный метод. Получение сигнала этим способом происходит с помощью специального таймера, который изначально встроен в цифровую систему. Такой таймер генерирует или способствует включению импульсов на определённых этапах вывода сигнала.

Программный метод. В этом случае получения сигналов происходит посредством выполнения специальных программных команд. У программного способа больше возможностей, нежели у аппаратного. В то же время использования этого метода получения сигналов может занять много памяти.

А что можно сказать о «сердце системы». У шима — контролёра, который активно применяется в цифровых модуляторах есть свои преимущества. Стоит помнить о следующих:

  • Низкая стоимость.
  • Стабильная работа.
  • Высокая надёжность.
  • Возможность экономить энергию.
  • высокая эффективность преобразования сигналов.

Все перечисленные преимущества делают цифровую систему более востребованной среди потребителей.

Аналоговый модулятор. Принцип работы аналогового модулятора в корне отличается от принципа работы цифрового Вся суть работы такого модулятора состоит в сравнении двух сигналов. Эти сигналы отличаются между собой порядком частоты. Операционный усилитель — это главный элемент аналогового модулятора, который отвечает за сравнение сигналов. Сравнение сигналов осуществляется на выходе. В качестве сравнения усилитель используется два сигнала. Первый — пилообразное напряжение высокой частоты. Второй сигнал — низкочастотное напряжение. После сравнения на свет появляются импульсы прямоугольной формы. Длительность импульсов напрямую зависят от модулирующего сигнала.

Шим — контроллер в импульсных блоках питания

Многие электрические приборы сегодня оснащены специальными блоками питания. Эти блоки помогают преобразить один вид напряжения в другой. В процессе преобразования энергии принимают участия два устройства:

  • Импульсный блок питания.
  • аналоговые трансформаторные устройства.

В этой статье мы больше внимания обратим на первое устройство, так как именно в нём используется шим — контролёр.

Принцип шим-регулятора

Работа ШИМ регулятора сложностью не отличается. ШИМ-регулятор — устройство, выполняющее такую же функцию, что и традиционный линейный регулятор мощности (то есть, меняет напряжение или ток за счёт силового транзистора, рассеивающего значительную мощность на себе). Но ШИМ-регулятор отличается намного большим КПД. Достигается это благодаря тому, что управляющий силовой транзистор функционирует в ключевом режиме (либо включен, тогда пропускает большой ток, но мало падение напряжения, либо выключен — ток не проходит). В результате на таких силовых транзисторах мощность практически не рассеивается и энергия впустую не тратится.

После силового транзистора напряжение выходит как прямоугольные импульсы с изменяющейся скважностью в зависимости от необходимой мощности. Но сигнал нужно демодулировать (то есть, выделить среднее напряжение)

Этот процесс происходит или в самой нагрузке (когда она индуктивного характера) или если между нагрузкой и силовым каскадом располагают фильтр нижних частот.

Пример использования шим регулятора

Самый простой пример использования регулятора напряжения ШИМ — ШИМ микросхема NE555, с которой знаком каждый радио-любитель. Благодаря ее универсальности можно конструировать самые разнообразные детали: от простейшего одновибратора импульсов с 2 в обвязке до модулятора, состоящего из большого числа компонентов. ШИМ регулятор напряжения имеет широкую область применения — это схемы регулировки яркости светодиодов и лент, а также регулировка скорости вращения движков.

ШИМ-контроллеры в составе блоков питания

Блок питания является неотъемлемым элементом большинства современных девайсов. Срок его эксплуатации практически ничем не ограничен, но от его исправности во многом зависит безопасность работы подконтрольного устройства. Спроектировать блок питания можно и своими руками, изучив принцип его действия. Основная цель – формирование нужной величины напряжения питания, обеспечение её стабильности. Для большинства мощных устройств гальванической развязки, основанной на действии трансформатора, будет недостаточно, да и подобранный элемент явно удивит пользователей своими габаритами.

Увеличение частоты тока питания позволяет существенно уменьшить размеры используемых компонентов, что обеспечивает популярность блоков питания, работающих на частотных преобразователях. Один из самых простых вариантов реализации питающих элементов – блок-схема, состоящая из прямого и обратного преобразователей, генератора и трансформатора. Несмотря на видимую простоту реализации таких схем, на практике они демонстрируют больше недочетов, чем преимуществ. Большинство получаемых показателей стремительно изменяются под влиянием скачков напряжения питания, при загрузке выхода преобразователя и даже при увеличении температуры окружающей среды. ШИМ-контроллеры для блоков питания дают возможность стабилизировать схему, а также воплотить множество дополнительных функций.

Аналоговый и цифровой сигнал, ШИМ (PWM)

Аналоговый сигнал

Как мы уже рассмотрели, Arduino всего лишь управляет своими дверьми — пинами, выпуская или запуская электроны. Исходящие или входящие электроны несут в себе некоторый сигнал, который в технике делится на два вида: аналоговый и цифровой. И эти сигналы несут в себе некоторую информацию.

Аналоговый сигнал несёт информацию, зашифрованную уровнем его напряжения, то есть количеством электронов, которые входят в наш микроконтроллер. Чем больше разница электронов на входе в пин, относительно количества их на контакте GND, тем больше напряжение мы получим. Аналоговый сигнал мы можем получить со множества устройств, и обусловлено это принципами их работы. Например, мы можем измерить напряжение на фоторезисторе, который меняет своё сопротивление, а соответственно и напряжение в зависимости от того, сколько света на него падает. Или, например, микрофон — окружающие звуки создают в нём ток, а следовательно и некоторое напряжение, которое можно измерить и сохранить в память микроконтроллера.

Так работает аналоговая техника — мы измеряем, сохраняем, передаём по проводам напряжение, соответствующее некоторым данным об окружающем мире.

Цифровой сигнал

В отличии от аналогововго, цифровой сигнал устроен более просто: там нет никаких градаций напряжения, есть всего два варианта:

1. Напряжение близко к нулю. Это считается низким уровнем (LOW) напряжения, или логической нулём.

2. Напряжение близко к 5 вольтам. Это считается высоким уровнем (HIGH), или логической единицей.

Все остальные случаи сводятся к этому. Есть некоторое пороговое значение, например 2,7 вольт. Всё, что ниже порога считается нулём, а всё, что выше — единицей. Скажем, если на вход поступило два вольта — это ещё ноль, а три вольта уже единица.

Цифровой сигнал, в отличие от аналогового очень устойчив к помехам. Если аналоговый сигнал получит помеху в 0,5 вольта, то это уже приведёт к значительным искажениям. А в цифровом сигнале искажения должны быть более существенны, чтобы изменить ноль на единицу или наоборот.

Приведём пример такого цифрового устройства, например, обычная кнопка, которая имеет всего два состояния: либо ноль, либо единица.

Аналого-цифровой преобразователь

Микроконтроллер может работать только с цифровыми сигналами. Поэтому в нём стоит специальное устройство, которое называется Аналого-цифровой преобразователь (АЦП). Через него проходят сигналы с выходов, которые отмечены большой буквой А, например, А3.

Когда мы отправляем команду измерить аналоговый сигнал на этих входах, он поступает в АЦП, и тот преобразует его в цифровой сигнал, используя для этого 10 бит. С помощью этого количества бит можно сохранить число от 0 до 1023, где 0 соответствует нулю вольт, а 1023 соответствует максимальному напряжению (по умолчанию это напряжение питания контроллера, то есть 5 вольт).

Как осуществляется перевод измеренного значения в последовательность единиц и нулей, вы сможете узнать в теме системы счисления.

Широтно-импульсная модуляция

Проблема АПЦ в том, что оно работает только в одну сторону, то есть Arduino не способна формировать аналоговый сигнал, а может выдать только цифровой на выходах. А хотелось бы, присоединив светодиод, управлять его яркостью, или, например, скоростью вращения мотора.

Но на самом деле этим устройствам и не требуется изменение напряжения. Более того, светодиод очень чувствителен к таким изменениям, ему нужен строго определённый уровень электронов на входе. Если будет больше — он скорее сгорит, чем увеличит яркость. Да и мотор наиболее эффективен при определённом уровне.

Чтобы всё-таки сделать их управляемыми используют так называемую широтно-импульсную модуляцию (ШИМ или PWM).

Идея ШИМ в том, чтобы выдавать ток не постоянно, а короткими импульсами определённой ширины. Соотношение ширины импульса к ширине паузы определяет как раз уровень яркости на светодиоде, или скорость вращения мотора. Например, если мы зададим, что ширина импульса равна ширине паузы, то это будет соответствовать половине яркости. А если ширина имульса будет занимать 75% времени то и мощность будет соответственно 75%.

Генератор ШИМ работает только на определённых портах, которые подписаны как PWM, и позволяет использовать градацию от 0 до 255.

По сути ШИМ является некоторой заменой аналогового сигнала, поэтому для её записи используют команду analogWrite.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства

Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки

Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Что такое скважность

Одной из важнейших величин в импульсной технике является скважность S. Скважность S характеризует прямоугольный импульс, и определяет то, во сколько раз период импульса T больше его длительности t1

Так, меандр, например, имеет скважность равную 2, поскольку длительность импульса в такой последовательности равна половине его периода: S=T/t1=2.

Как видим, и в числителе, и в знаменателе стоят продолжительности, измеряемые в секундах, поэтому скважность — величина безразмерная. Для справки напомним, что меандр — это такая импульсная последовательность, где длительность положительной части импульса t1 равна длительности его исходного состояния t0

Величина обратная скважности называется коэффициентом заполнения D. Таким образом, теоретически скважность может изменяться от бесконечности до 1, тогда как соответствующий ей коэффициент заполнения может принимать значения от 0 до 1

Записывать величину скважности часто более удобно, чем коэффициент заполнения в виде дроби.

Например: D=0.5 – коэффициент заполнения меандра, или скважность S=2 – более удобочитаемая запись того же самого. Скважность S=10 соответствует коэффициенту заполнения D=0.1 — имеется ввиду, что продолжительность импульса в 10 раз меньше его периода (суммы его положительной и исходной частей)

Здесь и просматривается этимологическая связь с русским словом «скважина»: большая скважина (по сути — яма между импульсами в последовательности) — сам импульс выглядит как более узкий, маленькая скважина — импульсы широкие (а вот яма между ними — узкая).

В англоязычной литературе не используется термин «скважность», а используется лишь термин «duty cycle» — рабочий цикл, являющийся аналогом русскоязычного термина «коэффициент заполнения» (D), только указывается он обычно не дробью, а в процентах. Например, мы пишем D=0.5, а в англоязычной литературе можно встретить 50% duty cycle или D = 50%, когда речь идет о меандре

Или D = 30% если длительность импульса соотносится с его периодом как 30 к 100.

Давайте рассмотрим простой практический пример. Лампочка включается на одну секунду через каждые 59 секунд, затем на 59 секунд гаснет, и так все время повторяется в течение неопределенного времени.

Что это значит? Длительность импульса t1 = 1 секунда, период импульса T = 59+1 = 60 секунд

Следовательно с какой скважностью включается лампочка?. Со скважностью S = 60/1

Скважность 60. Значит коэффициент заполнения равен 1/60, то есть D = 0,01666 или duty cycle 1,66%. В данном примере отчетливо видно, что запись в терминах скважности S = 60 более удобочитаема и точна, чем запись в форме коэффициента заполнения D = 0,01666 или duty cycle 1,666%

Со скважностью S = 60/1. Скважность 60

Значит коэффициент заполнения равен 1/60, то есть D = 0,01666 или duty cycle 1,66%. В данном примере отчетливо видно, что запись в терминах скважности S = 60 более удобочитаема и точна, чем запись в форме коэффициента заполнения D = 0,01666 или duty cycle 1,666%.

Наконец, еще одно полезное применение скважности. Счетчики-дешифраторы импульсов (типа К561ИЕ8) способны делить импульсную последовательность на отдельные импульсы, здесь снова значение скважности подходит лучше, оно может быть определено через разрядность счетчика и сосчитано (пропорционально количеству импульсов, подсчитанных счетчиком)

Таким образом, даже для цифровой техники оперирование напрямую скважностью импульсов часто оказывается более удобным, чем свойственным принятому в англоязычной литературе коэффициентом заполнения

Почему применяется ШИМ

Основными причинами применения ШИМ являются лёгкость её реализации, для которой от подсветки нужна лишь способность часто включаться и выключаться, а также обеспечиваемый с её помощью широкий диапазон возможных значений яркости.

Снизить яркость CCFL-подсветки можно путём снижения тока, протекающего через лампу, но лишь примерно вдвое ввиду их строгих требований к току и напряжению. Это делает ШИМ единственным простым способом достижения широкого диапазона регулирования яркости. CCFL-лампа обычно управляется инвертором, включающимся и выключающимся с частотой в десятки килогерц, что находится за пределами мерцания, заметного для человека. Однако ШИМ обычно работает на гораздо более низкой частоте, около 175 Гц, что может приводить к заметным дефектам изображения.

Яркость светодиодной подсветки можно регулировать в широких пределах путём изменения проходящего через них тока, правда в результате несколько изменяется цветовая температура. Этот аналоговый подход к изменения яркости светодиодов также нежелателен ввиду того, что вспомогательные цепи обязаны учитывать тепло, выделяемое светодиодами. Светодиоды во включённом состоянии нагреваются, что уменьшает их сопротивление и дополнительно увеличивает протекающий через них ток. Это может привести к быстрому росту тока в сверхъярких светодиодах и послужить причиной выхода их из строя. При использовании ШИМ ток можно принудительно удерживать на постоянном уровне в течение рабочего цикла, в результате чего цветовая температура всегда одинакова и перегрузок по току не возникает.

Советуем изучить — Закон Ампера

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: