Танталовые конденсаторы: особенности применения

Супер конденсаторы

Высокоемкие электрохимические конденсаторы со значениями емкости, намного превышающими другие конденсаторы, называются суперконденсаторами. Они могут быть классифицированы как группа, которая находится между электролитическими конденсаторами и аккумуляторными батареями. Они также называются ультраконденсаторами

Есть много преимуществ с этими конденсаторами, такими как —

  • Они имеют высокое значение емкости.
  • Они могут хранить и доставлять заряд намного быстрее.
  • Они могут обрабатывать больше циклов зарядки и разрядки.

Эти конденсаторы имеют много применений, таких как —

  • Они используются в автомобилях, автобусах, поездах, лифтах и ​​кранах.
  • Они используются при рекуперативном торможении.
  • Они используются для резервного копирования памяти.

Типы суперконденсаторов: двухслойные, псевдо и гибридные.

Двухслойные конденсаторы

Двухслойные конденсаторы представляют собой электростатические конденсаторы. Осаждение заряда осуществляется в этих конденсаторах по принципу двухслойного.

  • Все твердые вещества имеют отрицательный заряд на поверхностном слое при попадании в жидкость.
  • Это связано с высоким диэлектрическим коэффициентом жидкости.
  • Все положительные ионы приходят к поверхности твердого материала, чтобы сделать кожу.
  • Осаждение положительных ионов вблизи твердого материала ослабевает с расстоянием.
  • Заряд, создаваемый на этой поверхности за счет осаждения анионов и катионов, приводит к некоторому значению емкости.

Все твердые вещества имеют отрицательный заряд на поверхностном слое при попадании в жидкость.

Это связано с высоким диэлектрическим коэффициентом жидкости.

Все положительные ионы приходят к поверхности твердого материала, чтобы сделать кожу.

Осаждение положительных ионов вблизи твердого материала ослабевает с расстоянием.

Заряд, создаваемый на этой поверхности за счет осаждения анионов и катионов, приводит к некоторому значению емкости.

Это двухслойное явление также называется двойным слоем Гельмгольца. На рисунке ниже поясняется процедура явления двойного слоя, когда конденсатор заряжается и когда он разряжается.

Эти конденсаторы просто называются электрическими двухслойными конденсаторами (EDLC). Они используют углеродные электроды для достижения разделения заряда между поверхностью проводящего электрода и электролитом. Углерод действует как диэлектрик, а два других — как анод и катод. Разделение заряда намного меньше, чем в обычном конденсаторе.

Псевдо-конденсаторы

Эти конденсаторы следуют электрохимическому

процессу для нанесения заряда. Это также называетсяфарадейским процессом . На электроде, когда какое-то химическое вещество восстанавливается или окисляется, генерируется некоторый ток. Во время такого процесса эти конденсаторы накапливают электрический заряд путем переноса электрона между электродом и электролитом. Это принцип работы псевдо-конденсаторов.

Они заряжаются намного быстрее и сохраняют заряд так же, как аккумулятор. Они работают с большей скоростью. Они используются в паре с батареями для улучшения жизни. Они используются в приложениях сетки для обработки колебаний мощности.

Гибридные конденсаторы

Гибридный конденсатор представляет собой комбинацию EDLC и псевдо-конденсатора. В гибридных конденсаторах активированный уголь используется в качестве катода, а предварительно легированный углеродный материал действует в качестве анода. Литий-ионный конденсатор является распространенным примером этого типа. На следующем рисунке показаны различные типы гибридных конденсаторов.

Они имеют высокую толерантность в широком диапазоне температур от -55 ° С до 200 ° С. Гибридные конденсаторы также используются в бортовых системах. Несмотря на высокую стоимость, эти конденсаторы очень надежны и компактны. Они прочные и выдерживают экстремальные удары, вибрацию и давление окружающей среды. Гибридные конденсаторы имеют более высокую плотность энергии и более высокую удельную мощность, чем любой электролитический конденсатор.

Свойства конденсаторов

Принципиальное свойство любого конденсатора – проводить переменный ток, причем чем выше частота и чем больше электрическая ёмкость устройства – и не проводить постоянный. С целью получения необходимой для функционирования электронных схем емкости в малом объёме широкое распространение получили электролитические конденсаторы – в них обкладки сделаны из специальным образом обработанной алюминиевой фольги, погруженной в электролит, заполняющий его корпус.

При перегреве или превышении напряжения на обкладках, из электролита выделяются газы, под действием которых корпус сначала деформируется, а затем взрывается. При этом происходит контакт положительной и отрицательной обкладок, в результате которого основное его свойство – не проводить постоянный ток – оказывается нарушенным.

Много прибыли из небольших деталей

Интересный факт заключается в том, что практически треть производимого тантала уходит под изготовление конденсаторов на основе этого материала. Элемент используется как анод радиоэлектронных емкостей, имеющий форму высокопористой гранулированной таблетки. Преимущество танталовых конденсаторов — продолжительность срока эксплуатации. Однако даже более стойкие изделия со временем приходят к непригодному состоянию.

Несомненно, рынок использованных танталовых конденсаторов не переполнен продукцией, поступающей из военного комплекса, вследствие сложности их реализации. Но изъять емкости из бытовых приборов, для рядового охотника за редкими металлами не проблема.

Танталовые конденсаторы. На самом деле добыча тантала из радиодеталей очень сомнительна

Марок конденсаторов, содержащих танталовые аноды, насчитывается более трех десятков, однако серий при этом, только две: К52 и К53. Следует отметить, что содержание тантала в емкостях варьируется достаточно широко. Нижний предел составляет 80 грамм, тогда как максимальный вес достигает 40 килограмм, обе величины приведены из расчета на тысячу единиц использованной продукции.

Наиболее танталовосодержащими емкостями оказываются изделия марок К52-5 4 и К52-7А. В целом, вся серия конденсаторов К52 содержит более грамма тантала на единицу продукции, за исключением нескольких габаритных моделей. Единственная белая ворона – марка К52-10. В этом изделии отсутствие тантала компенсируется высоким содержанием палладия.

Что такое танталовые конденсаторы?

Танталовые конденсаторы – устройства для аккумулирования заряда, на поверхности которых формируется слой оксида. Такие изделия пользуются широким спросом. Накопительная ёмкость конденсатора во многом зависит от исходных характеристик этого слоя.


Танталовые конденсаторы

При обработке тантала на производстве достаточно просто контролировать основные параметры:

  • Толщину.
  • Проводимость.
  • Равномерность структуры.


Производство танталовых конденсаторов Основные компоненты в таких конструкциях описываются следующим образом:

  • Анодный вывод для пайки.
  • Маркировочная линия.
  • Анод из гранулированного тантала, к которому добавляют слой пентаоксида.
  • Оксид, обладающий электролитическими характеристиками.
  • Комбинированное покрытие, с серебром и графитом.
  • Адгезивный серебряный слой.
  • Вывод для монтажа пайкой, с участием печатной платы.
  • Компаунд, за счёт которого формируется корпус.


Танталовые конденсаторы – что это Увеличенное сопротивление обеспечивается за счёт аморфности оксидного слоя. Серебро и графит, наоборот, улучшают проводимость. Диэлектрик пробивается, если его прогрев будет чрезмерно высоким.

Внимание! Самостоятельное восстановление конденсатора допустимо только при небольших повреждениях и дефектах, и особенности, исключающие пригодность к ремонту также надо учитывать

Вычисление безопасных рабочих напряжений

Для выбора правильного рабочего напряжения необходимо учитывать номинальный параметр. Значение не должно превышаться при сложении постоянного и переменного напряжений.

Важно! Наиболее губительно для твердотельных конденсаторов обратное напряжение. При расчете допустимых значений учитываются особенности танталовых конденсаторов

При расчете допустимых значений учитываются особенности танталовых конденсаторов.


График зависимости параметров из технической документации

На низких частотах

Индуктивный параметр сопротивления обычно не учитывают. Для более точного определения необходимо брать минимальное значение емкости, при этом будет получено наибольшее значение полного сопротивления.

На высоких частотах

Здесь главную роль играет рассеиваемая мощность. Поэтому необходимо обратиться к таблице типоразмеров и найти нужное значение.

Факторы, влияющие на максимальное значение среднеквадратичного тока

На него влияют два параметра: температура (25 градусов) и синусоида напряжения. Если эти условия изменяются, расчеты необходимо корректировать:

  1. При превышении температуры – применить соответствующий множитель;
  2. Если сигнал несинусоидальный – результаты делятся на другой коэффициент, заполнения.

В технических документах производитель обычно приводит таблицу, в которой можно отыскать значения с соответствующими множителями.

Кодовая маркировка, дополнение

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Код Емкость Емкость Емкость
109 1,0 0,001 0,000001
159 1,5 0,0015 0,000001
229 2,2 0,0022 0,000001
339 3,3 0,0033 0,000001
479 4,7 0,0047 0,000001
689 6,8 0,0068 0,000001
100* 10 0,01 0,00001
150 15 0,015 0,000015
220 22 0,022 0,000022
330 33 0,033 0,000033
470 47 0,047 0,000047
680 68 0,068 0,000068
101 100 0,1 0,0001
151 150 0,15 0,00015
221 220 0,22 0,00022
331 330 0,33 0,00033
471 470 0,47 0,00047
681 680 0,68 0,00068
102 1000 1,0 0,001
152 1500 1,5 0,0015
222 2200 2,2 0,0022
332 3300 3,3 0,0033
472 4700 4,7 0,0047
682 6800 6,8 0,0068
103 10000 10 0,01
153 15000 15 0,015
223 22000 22 0,022
333 33000 33 0,033
473 47000 47 0,047
683 68000 68 0,068
104 100000 100 0,1
154 150000 150 0,15
224 220000 220 0,22
334 330000 330 0,33
474 470000 470 0,47
684 680000 680 0,68
105 1000000 1000 1,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Код Емкость Емкость Емкость
1622 16200 16,2 0,0162
4753 475000 475 0,475

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

Код Емкость
R1 0,1
R47 0,47
1 1,0
4R7 4,7
10 10
100 100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Код Емкость
p10 0,1 пФ
Ip5 1,5 пФ
332p 332 пФ
1НО или 1nО 1,0 нФ
15Н или 15n 15 нФ
33H2 или 33n2 33,2 нФ
590H или 590n 590 нФ
m15 0,15мкФ
1m5 1,5 мкФ
33m2 33,2 мкФ
330m 330 мкФ
1mO 1 мФ или 1000 мкФ
10m 10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Код Емкость Напряжение
А6 1,0 16/35
А7 10 4
АА7 10 10
АЕ7 15 10
AJ6 2,2 10
AJ7 22 10
AN6 3,3 10
AN7 33 10
AS6 4,7 10
AW6 6,8 10
СА7 10 16
СЕ6 1,5 16
СЕ7 15 16
CJ6 2,2 16
CN6 3,3 16
CS6 4,7 16
CW6 6,8 16
DA6 1,0 20
DA7 10 20
DE6 1,5 20
DJ6 2,2 20
DN6 3,3 20
DS6 4,7 20
DW6 6,8 20
Е6 1,5 10/25
ЕА6 1,0 25
ЕЕ6 1,5 25
EJ6 2,2 25
EN6 3,3 25
ES6 4,7 25
EW5 0,68 25
GA7 10 4
GE7 15 4
GJ7 22 4
GN7 33 4
GS6 4,7 4
GS7 47 4
GW6 6,8 4
GW7 68 4
J6 2,2 6,3/7/20
JA7 10 6,3/7
JE7 15 6,3/7
JJ7 22 6,3/7
JN6 3,3 6,3/7
JN7 33 6,3/7
JS6 4,7 6,3/7
JS7 47 6,3/7
JW6 6,8 6,3/7
N5 0,33 35
N6 3,3 4/16
S5 0,47 25/35
VA6 1,0 35
VE6 1,5 35
VJ6 2,2 35
VN6 3,3 35
VS5 0,47 35
VW5 0,68 35
W5 0,68 20/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Другие способы маркировки ёмкости конденсаторов

В случае четырёхзначной маркировки на конденсаторе она расшифровывается также как описано выше. Только ёмкость закодирована тремя цифрами и только последняя — минусовая степень 10.

Ещё десятичные указатели заменяют мультипликаторами. Это условное обозначение единиц измерения.

  • p — пикофарад;
  • n — нанофарад;
  • μ — микрофарад;
  • m — миллифарад.

Причём играет роль и место буквы по отношению к цифрам. Она ставится вместо запятой. При расшифровке маркировки конденсаторов такого типа мысленно ставим запятую на место буквы. Рассмотрим несколько примеров чтобы было понятнее о чём идёт речь.

В цифробуквенных кодировках ставят буквы на место запятой

  • p50 — это 0,5 пФ;
  • 1p5 — это 1,5 пФ;
  • 15p — это 15 пФ;
  • 150p — расшифровывается как 150 пФ.

С другими буквами маркировка конденсаторов такого типа расшифровывается аналогично. В маркировке конденсаторов российского производства используются аналогичные буквы российского алфавита. Для пикофарад — п, для микрофарад — мк, для милифарад — м, нанофарды — н.

Кодировка номинального напряжения конденсатора Напряжение
m 25V
I 40 (50)V
a 63V
b 100V
c 160V
d 250V
e 400V
f 630V
h 1000V
i 1600V
без маркировки 500V

Номинальное напряжение указывает при каком максимальном значении конденсатор может работать длительное время без изменения свойств. Оно кодируется маленькими латинскими буквами. Стоять может в любом месте. Перед числовым значением, после него, в первой или второй строчке.

Что такое конденсатор

Конденсатор или как в народе говорят — «кондер», образуются от латинского «condensatus», что означает как «уплотненный, сгущенный». Он представляет из себя пассивный радиоэлемент, который обладает таким свойством, как сохранение электрического заряда на своих обкладках, если, конечно, перед этим его зарядить каким-нибудь источником питания.

Грубо говоря, конденсатор можно рассматривать как батарейку или аккумулятор электрической энергии. Но вся разница в том, что аккумулятор или батарейка имеют в своем составе источник ЭДС, тогда как конденсатор лишен этого внутреннего источника.

Конденсатор из поликарбоната

Конденсаторы из поликарбоната — это конденсаторы, в качестве диэлектрика которых используется поликарбонат. Эти типы конденсаторов доступны в диапазоне емкости от 100 пФ до 10 мкФ и имеют рабочее напряжение до 400 В постоянного тока. Эти поликарбонатные конденсаторы могут работать в диапазоне температур от -55 ° C до + 125 ° C без снижения номинальных значений.

Данные конденсаторы не используются в высокоточных устройствах из-за их высоких уровней допуска от 5% до 10%. Конденсаторы из поликарбоната также используются для переменного тока. Иногда они также встречаются в импульсных блоках питания.

Емкость конденсатора

Электрические заряды

Как вы знаете, существует два типа зарядов: положительный заряд и отрицательный заряд. Ну и все как обычно, одноименные заряды отталкивается, а разноименные  – притягиваются. Физика седьмой класс).

Давайте еще раз рассмотрим простую модель конденсатора.

Если мы соединим наш конденсатор с каким-нибудь источником питания постоянного тока, то мы его зарядим. В этот момент положительные заряды, которые идут от плюса источника питания, осядут на одной пластине, а отрицательные заряды с минуса источника питания – на другой.

Самое интересное то, что количество положительных зарядов будет равняться количеству отрицательных зарядов.

Даже если мы отсоединим источник питания постоянного тока, то у нас конденсатор так и останется заряженным.

Почему так происходит?

Во-первых, заряду некуда течь. Хотя с течением времени он все равно будет разряжаться. Это  зависит от материала диэлектрика.

Во-вторых, происходит взаимодействие зарядов. Положительные заряды притягиваются к отрицательным, но они не могут соединиться с друг другом, так как им мешает диэлектрик, который, как вы знаете, не пропускает электрический ток. В это время между обкладками конденсатора возникает электрическое поле, которое как раз и запасает энергию конденсатора.

Когда конденсатор заряжается, электрическое поле между обкладками становится сильнее. Соответственно, когда конденсатор разряжается, электрическое поле слабеет. Но как много заряда мы можем “впихнуть” в конденсатор? Вот здесь и применяется такое понятие, как емкость конденсатора.

Что такое емкость

Емкость конденсатора – это его способность накапливать заряд на своих пластинах в виде электрического поля.

Но ведь емкость может быть не только у конденсатора. Например, емкость бутылки 1 литр, или емкость бензобака – 100 литров и так далее. Мы ведь не можем впихнуть в бутылку емкость в 1 литр больше, чем рассчитана эта бутылка, так ведь? Иначе остатки жидкости просто не влезут в бутылку и будут выливаться из нее. Точно такие же дела и обстоят с конденсатором. Мы не сможем впихнуть в него заряда больше, если он не рассчитан на это. Поэтому, емкость конденсатора выражается формулой:

где

С – это емкость, Фарад

Q – количество заряда на одной из обкладок конденсатора, Кулоны

U – напряжение между пластинами, Вольты

Получается, 1 Фарад – это когда на обкладках конденсатора хранится заряд в 1 Кулон и напряжение между пластинами 1 Вольт. Емкость может принимать только положительные значения.

Значение в 1 Фарад – это слишком много. На практике в основном пользуются значениями микрофарады, нанофарады и пикофарады. Хочу вам напомнить, что приставка “микро” – это 10-6 , “нано” – это 10-9 , пико – это 10-12 .

Практическое применение на автомобиле

Далеко не все домашние мастера будут тестировать элементную базу материнских плат компьютеров. А вот навыки, как проверить конденсатор трамблера, пригодятся любому автолюбителю. Изучим методику на примере классики ВАЗ.

  • Для проверки необходимо отсоединить кабель, идущий от трамблера до конденсатора. Он обычно соединен с одним контактом прерывателя.

    Между контактами закрепляем лампу мощностью 35–50 Вт (разумеется, с напряжением 12 вольт). Если при включении зажигания лампа загорелась, конденсатор неисправен, то есть «пробит» (это самая характерная поломка). Если «контролька» не светится — конденсатор исправен.

  • Второй способ можно применять в крайнем случае, если у вас не нашлось лишней лампы. После включения зажигания, необходимо быстро и вскользь коснуться контактами друг к другу. Если ничего не происходит — конденсатор в порядке. При наличии искрения — радиоэлемент «пробит».

Для того, чтобы проверить твердотельные либо электролитические конденсаторы, не обязательно иметь образование радиоинженера. Руководствуясь нашими советами, вы сможете точно определить исправность радиодеталей, и сэкономить средства на покупку новых элементов. Учитывая высокую стоимость именно таких конденсаторов, снижение затрат на ремонт будет ощутимым.

Тест электролитических конденсаторов

Конденсаторы построены в порядке убывания качества звука. Все протестированные электролитические конденсаторы здорово уступают среднему по стоимости и качеству звука плёночному конденсатору Sоlеn.

  • Blаск Gаtе n – самый сбалансированный по звуку конденсатор среди всех тестируемых. Давно снят с производства – есть современные анти звуковые подделки.
  • Еvох Rifа – звук напоминает бумажный конденсатор – глубокие низкие частоты и красивая середина, немного не хватает верхних частот – это легко выправляется шунтированием “быстрой плёночной” ёмкостью 0.15- 0.01мкф. Выпускается в ограниченном количестве и применяется в военной – бортовой / силовой электронике, в авто / судо / космос / самолётостроении. Конденсатор низкоимпедансный, высокотемпературный – 150гр/ц и обладает повышенной надёжностью.
  • Blаск Wаtеr FК – правильно сбалансирован по всему частотному диапазону, но проиграл “ЕVОХ RIFА РЕG 124” по качеству воспроизведения низких и средних частот. Давно снят с производства – есть современные анти звуковые подделки.
  • Sаnyо Оsсоn – самый непонятный электролитический конденсатор, в разных схемах разный звуковой подчерк. По сравнению с другими звук трудно объяснимый – можно сказать “сладкий”. В начале подкупает, а потом чувствуешь искусственность, ненатуральность. Лучшее применение – шунтирование катодного резистора. В полупроводниковой схеме хорошо показал себя в обратной связи.
  • Еlnа Саrifunе – провал на средних частотах, излишний акцент на высоких. Применяется в современных дорогостоящих High Еnd Аudiо изделиях. Выдаёт звук на уровне “РАNАSОNIС FМ” и здорово уступает всем другим протестированным конденсаторам.

Надпись “Аudiо” на современных электролитических конденсаторах констатирует – это обыкновенный, серийный, низкоимпедансный, электролитический конденсатор повышенной стоимости (только за надпись “Аudiо”).

Всем пользователям хорошо знакомы с “глюки” мониторов, компьютеров, телеприёмников и.т.д. – это наглядная и негативная работа электролитических конденсаторов (любых производителей). Самые нелепые неполадки радиоаппаратуры происходящие в электронной природе провоцируют исключительно электролиты. Если схема тупо “глючит” – меняйте “кондёры” и проблема будет решена на 100%. Малейшее вздутие верхней части корпуса говорит – конденсатор пробит и никаким заряд/разрядом его не восстановить.

Будет интересно Что такое ионистор?

Другие дефекты танталовых конденсаторов

Кроме пробоя, в результате неправильной производственной технологии и нарушения правил транспортировки и хранения в конденсаторе возникают и другие дефекты:

  • Механические. Первый вид таких дефектов может появиться на выращенном диэлектрике в результате его резкого удара о твердую поверхность. Второй – при образовании электролитного слоя из-за совместного действия теплового удара и внутреннего давления газов в порах.
  • Примеси и включения. При нарушении производственной технологии на поверхности тантала могут появиться посторонние вещества – углерод, железо, кальций, которые приводят к неравномерности диэлектрического слоя.
  • Кристаллизованные участки диэлектрика, которые появились при изготовлении устройства. Кристаллизация может происходить из-за несоответствия состава электролита технологическим требованиям и неправильного температурного режима процесса.

Свойства тантала

Серовытый металл с голубым оттенков. Впервые открыт в 1802 году химиком из Швеции А.К. Экебергом. Химик нашел его в двух минералах, которые были найдены в Швеции и Финляндии. В переодической системе Д.И. Менделеева имеет атомный номер 73. Имеет тугоплавкое свойство, и начинает плавится при температуре 3017ºС. Относится к парамагнетикам. Также хорошо поглощает газ, при 800 °C он способен поглотить 740 объёмов газа.

Тантал не растворяется в кислотах, кроме смеси азотной и плавиковой кислот. На воздухе окисляется только при температуре свыше 280 °C. При нормальных таемпературах тантал не активен.

Термодинамические свойства тантала

Лом тантала — редкий вид вторичного сырья, поэтому статья будет посвящена больше самому металлу, его свойствам и области применения, нежели лому тантала.

Тантал относится к виду «стратегических» металлов, в силу ряда причин. Одна из них использование этого элемента для оборонной, аэрокосмической отрасли промышленности. Тантал эксплуатируется разнопланово, в частности для оборонки он применяется как:

металлическая облицовка зарядов;

внутри конденсаторов электронных приборов.

Конденсаторы с танталом

Еще один фактор отнесения этого металла к разряду «стратегический» – его применение для теплообменников ядерно-энергетических систем. Это связано с высокой степенью устойчивости материала к высоким температурам и парам цезия.

Условия хранения

Одним из важных условий является хранение конденсаторов при пониженной влажности. Высокая влажность ускоряет окисление соединений элемента, влияя на их паяемость. Кроме того, необходимо следить, чтобы компоненты не подвергались воздействию солнечного света и повышенных температур, т. к. в результате разрушаются резиновые уплотнения. Ослабление механических уплотнений снижает общую надежность и ускоряет испарение электролита, в т. ч. уменьшает его емкость.

С точки зрения затрат и преимуществ рекомендуется использовать надежные контролируемые шкафы с сухим воздухом и активным осушителем, поддерживающие относительную влажность менее 5% и низкую температуру окружающей среды (10°C).

Как работает полимерный конденсатор

Чтобы проверить любой прибор, желательно понимать механизм его работы. Поскольку тема нашего материала — твердотельные конденсаторы (аналоги электролитических), значит речь пойдет о радиоэлементах для постоянного тока, то есть полярных. Все со школьной скамьи помнят эту иллюстрацию:

Две металлические пластины с диэлектриком между ними (для лаборатории подойдет даже воздух). Если на контакты подать потенциал, между пластинами накапливается разноименные заряды, и в пространстве между ними возникает электрическое поле. При отсутствии электрической цепи это поле может сохраняться достаточно долго (современные элементы обеспечивают утечку заряда, стремящуюся к нулю). Именно это свойство лежит в основе применения конденсаторов.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: