Блуждающие токи

Особенности врожденной патологии

В этом случае перекрывается часть зрительного поля, из-за чего развиваются опасные осложнения. У детей дошкольного и младшего школьного возраста подобная проблема приводит к задержке психического развития, а также формированию комплексов. Очень высока вероятность прогрессии амблиопии, гетеротопии, астигматизма, нарушения бинокулярного зрения.

В зависимости от тяжести патологии и индивидуальных особенностей организма пациента разрабатывается схема лечения с применением консервативной терапии. Если результата нет или изменения слишком масштабные – врачи назначают хирургическую операцию. Коррекция – это необходимость, иначе опущение приводит к искажению зрительных образов в мозгу ребенка. Врожденная форма в подавляющем большинстве случаев будет передана от родителей, возможна прямая связь с хромосомным сбоем. Разновидностью считается миастенический птоз, который более различим внешне в вечернее время, характерным признак – быстро возникающая усталость мышц лица, особенно в зоне вокруг глаз.

Повышают риск развития заболевания аутоиммунные болезни, внутриутробное нарушение формирования плода, опухоли. Врожденный птоз диагностируется и при синдромах Дуэйна и Горнера, сопутствующими симптомами становятся сужение глазных щелей, дефицит слезной жидкости, ухудшение качества сумеречного зрения.

Способы устранения

Единственный способ предотвращения появления блуждающих токов — убрать возможность утечки из проводников, в качестве которых выступают те же рельсы, в землю. Для этого и устраивают насыпи из щебня, устанавливают деревянные шпалы, которые нужны не только для получения прочного основания под рельсовый путь, но и повышают сопротивление между ним и грунтом.

Дополнительно практикуется монтаж прокладок из диэлектрических материалов. Но все эти способы больше подходят для ЖД магистралей, трамвайные пути изолировать таким способом сложно, так как это приводит к увеличению уровня рельсов, что в городских условиях нежелательно.

Также читайте: Формулировка закона Ома для участка электрической цепи

В случае с распределительными пунктами и подстанциями, ЛЭП, ситуацию можно исправить применением более совершённых систем автоматического отключения. Но возможности такого оборудования ограничены, да и постоянное отключение электроснабжения, особенно в промышленных условиях, нежелательно.

Поэтому в большинстве случаев прибегают к защите трубопроводов, бронированных кабелей и металлических конструкций, расположенных в зоне действия блуждающих токов.

Активная и пассивная защита

Существует два основных способа защиты:

  1. Пассивная — предупреждает контакт металла за счёт применения покрытий из диэлектрических материалов. Именно для этой цели применяют обмазку битумными мастиками, обмотку диэлектрическими изолентами, комбинацию этих способов. Но такие трубы стоят дороже, а проблема полностью не решается, потому что при глубоких повреждениях подобных покрытий защита практически не работает.

    Пассивная защита

  2. Активная — основана на отводе блуждающих токов от защищаемых магистралей. Может быть выполнена несколькими способами. Считается наиболее эффективным решением.

    Активная защита

В различных условиях применяют отличающиеся способы защиты от электрохимической коррозии. Рассмотрим несколько основных примеров.

Защита полотенцесушителей

Главное отличие — находятся на открытом воздухе, поэтому изоляция не поможет, а отвести блуждающие токи некуда. Поэтому единственно допустимый вариант — выравнивание потенциалов.

Для решения этой проблемы применяют простое заземление. То есть восстанавливают те условия, которые были до разрыва цепи при помощи полимерных труб. При этом требуется заземление каждого полотенцесушителя или радиатора отопления.

Защита водопроводных труб

В этом случае больше подходит протекторная защита с применением дополнительного анода. Такой способ применяется и для предотвращения образования накипи в электрических водонагревательных баках.

Анод, чаще всего магниевый, соединяется с металлической поверхностью трубы, образуя гальваническую пару. При этом блуждающие токи выходят не через сталь, а через такой жертвенный анод, постепенно разрушая его. Металлическая труба при этом остаётся целой. Следует понимать, что время от времени требуется замена защитного анода.

Защита газопроводов

Для защиты этих объектов применяют два способа:

  • Катодная защита, при которой трубе придают отрицательный потенциал за счёт применения дополнительного источника питания.
  • Электродренажная защита предполагает соединение газопровода с источником проблем проводником. При этом предотвращается образование гальванической пары с окружающим магистраль грунтом.

Отметим, что ощутимый ущерб, наносимый металлическим конструкциям, требует применения комплексных мер. Они включают защиту и предотвращение появления опасных факторов.

Диагностика и лечение

Диагноз «астенический невроз» устанавливает невролог. Врач собирает анамнез жизни и болезни пациента, учитывает жалобы.

Особенность постановки данного диагноза заключается в характере симптомов: они достаточно неспецифичны и могут сопровождать множество расстройств. Поэтому обязательно проводится дифференциальная (то есть сравнительная) диагностика неврастении с депрессивными состояниями, ипохондрией, астении в рамках шизофренического расстройства.

Обязательно исключается присутствие органических патологий, при которых неврастения может являться одним из симптомов: опухоли ГМ, нейроинфекции, а также травмы черепа. Для этого используют объективные методы обследования:

  • МРТ, КТ, другие инструментальные методы;
  • анализ крови, мочи;
  • бактериологические анализы;
  • консультации узких специалистов.

Если неврастения развивается как отдельное расстройство, ее симптомы отчетливо выражены. Когда же это проявления основного заболевания, признаки уходят на второй план.

Для определения наличия астенического состояния применяется «Шкала астенического состояния», являющаяся вариацией MMPI – Миннесотского многомерного личностного перечня.

Терапию расстройства начинают с определения его причины и устранения травмирующего фактора. Важным, одним из первостепенных мероприятий является налаживание режима дня пациента:

  • установление правильного режима труда и отдыха;
  • создание благополучного микроклимата внутри семьи;
  • спокойная, располагающая обстановка на работе;
  • полноценное питание, обогащенное витаминами;
  • умеренные физические нагрузки;
  • прогулки на свежем воздухе;
  • по возможности смена обстановки;
  • обязательно обеспечение полноценного сна.

Едва ли можно переоценить значение правильного режима дня и благополучной обстановки вокруг пациента. Положительный психологический климат и рациональное распределение нагрузки позволят гармонизировать состояние нервной системы, восстановить равновесие между процессами возбуждения и торможения.

Медикаментозное лечение допускается с назначения врачей. Прописывают общеукрепляющие средства для поднятия тонуса организма:

  • гопантеновая кислота;
  • глицерофосфат кальция;
  • препараты железа;
  • кофеин;
  • боярышник, валериана, пустырник – для поддержания сердечно-сосудистой системы;
  • препараты брома – бромкамфора. Она эффективна при доминировании процесса возбуждения в ЦНС, усиливает тормозные процессы, позволяя уравновесить возбуждение и торможение, снижая повышенную возбудимость. Улучшает сон, восстанавливает его структуру.

Из психотропных средств используют:

  • транквилизаторы (при повышенной возбудимости) – «Нитразепам»
  • снотворные (при расстройствах сна);
  • ноотропы (в гипостенической фазе) – улучшают обменные процессы в мозге, активизируют нейронные связи;
  • транквилизаторы в небольших дозах при гипостении – «Диазепам» (для снятия мышечного и эмоционального напряжения, нормализации сна);
  • «Тиоридазин» – препарат из группы нейролептиков. В малых дозах проявляет себя как антидепрессант, стимулируя работу нервной системы. В данном качестве применяется в гипостенической фазе. Большие дозы «Тиоридазина» оказывают седативное воздействие, назначаются в гиперстенической фазе неврастении.

Для поднятия тонуса рекомендуется пить чаи на основе женьшеня, китайского лимонника, корня аралии маньчжурской.

Назначают физиотерапевтическое лечение:

  • массаж;
  • рефлексотерапия;
  • электросон;
  • ароматерапия.

Следует отметить потенциальные риски, возникающие при использовании психотропных препаратов без назначения врача. Возможны побочные явления как со стороны внутренних органов, так и ЦНС. Например, самолечение фенобарбиталом приводит к развитию брадикардии, снижению давления, усиливает головные боли и головокружение, угнетает дыхательный центр и провоцирует сонливость, повышает нервозность, развивает тревогу.

Главным методом лечения неврастенических состояний является психотерапия. Предпочтение отдается рациональной психотерапии и аутотренингам. Психотерапевтические методы помогают осознать больному, что его состояние вызвано реально существующими причинами. Это не просто лень или неумение держать себя в руках, а результат травмирующего опыта, который можно проработать и избавиться от проблемы, таким образом, нормализовав свое состояние и взаимоотношения с социумом.

Аутотренинг – инструмент первой помощи. Он позволяет настроиться на «нужную волну», помочь себе самостоятельно в трудной эмоциональной ситуации.

В целом, только комплексное лечение, объединяющее психотерапию, фармакотерапию и правильный режим дня, позволяют избавиться от неврастении.

Нужно ли заземлять полотенцесушитель

Для начала необходимо знать, что заземление (сооружение контуров заземления собственноручно) не требуется, если:

  1. 1. Вы используете электрический полотенцесушитель (такие полотенцесушители обычно снабжены специальными вилками, в которых присутствует заземляющий провод , все это подключается в розетку, а сами розетки уже должны быть присоединены к контуру заземления).
  2. 2. Вы живете в частном доме или квартире, и у Вас отдельная система отопления.

Заземление полотенцесушителя обязательно производить в следующих случаях:

  1. 1. Если ваша сушилка соединена с системой отопления металлопластиковой трубой. Внутри металлопластиковой трубы находится алюминий, который проводит электрический ток: в местах соединения, где расположены фитинги, электрическая цепь разрывается. Соответственно, такой полотенцесушитель необходимо подключить к контуру заземления, либо к стояку горячего водоснабжения.
  2. 2. Если ваша система горячего водоснабжения сделана из металлопластиковых труб.

Как заземлить полотенцесушитель

Все электрические полотенцесушители, как было указано выше, подключаются к розетке с заземлением, при этом в таких сушилках предусмотрен заземляющий провод с отдельным контактом на вилке. Так как полотенцесушители обычно устанавливаются в ванной комнате, следует осмотреть розетку, к которой он будет подключен. Такая розетка должна быть в специальном защитном корпусе, предотвращающем попадание влаги внутрь самой розетки.

Существует 2 основных способа заземления полотенцесушителя:

  1. 1. Использование системы уравнивания потенциалов, которую необходимо смонтировать собственноручно, затем осуществить заземление этой системы на общее заземление электрического щитка. Так следует поступать, если в доме или квартире вместо металлических коммуникаций используются коммуникации, сделанные из полимеров (металлопластиковые трубы).
  2. 2. Заземление непосредственно трубы корпуса полотенцесушителя обычным проводом к стальному стояку.

Чтобы реализовать заземление полотенцесушителя вторым способом, нужно для начала обзавестись хомутом, предварительно сняв с него все изолирующие материалы. Этот хомут должен иметь клемму для присоединения провода. Затем хомут крепится на трубу корпуса полотенцесушителя.

Берется обычный медный провод, который должен иметь сечение 4 мм2. Этот провод с одной стороны подключается к клемме хомута, другой его конец необходимо подключить либо к заземлению электрического щитка, либо к стальному стояку. Помимо этого, не забудьте подключить к контуру заземления и другие устройства, находящиеся в вашей ванной комнате.

Такие методы не требуют много времени на их осуществление, но взамен достается долгая и бесперебойная работа полотенцесушителя, и в дальнейшем вопрос “как заземлить полотенцесушитель” не вызовет затруднений.

Друзья также смотрите видео для чего нужно заземлять полотенцесушитель.

Вы заметили, что полотенцесушитель из нержавейки в ванной комнате начинает покрываться пятнами ржавчины размером с 2-3 спичечные головки. А если это пятно вытереть, то за ним стоит маленькая еле заметная точечка, которая и ржавеет, и распространяется по поверхности. Это – коррозия металла. И рок здесь ни при чем. Находящиеся в воде и земле металлические конструкции подвергаются двум типам коррозии: гальванической и так называемой «коррозии от блуждающих токов».

Советы по минимизации электрических опасностей

Вот рекомендации по минимизации электрических опасностей:

  • Выключайте и отсоединяйте приборы, когда они не используются, и перед уборкой.
  • Выключайте все приборы в конце дня.
  • Не вставляйте штепсельную вилку в розетку, если она не подходит.
  • Не прокладывайте электрические шнуры через зоны с интенсивным движением, под коврами или через дверные проемы — это предотвратит износ шнуров и сведет к минимуму несчастные случаи.

Любое неисправное оборудование, проводка, штепсельные вилки и т.д. должны быть немедленно удалены из помещения. Розетки не должны быть перегружены, поэтому либо примите меры по подключению оборудования в другом месте, либо сообщите об этом компетентному лицу, которое должно принять меры и свести к минимуму необходимость их перегрузки.

Воздействие на металлические объекты

Как известно из школьного курса физики, для любого тока какие-либо металлические объекты служат лучшим проводником, нежели земля. Именно по этой причине блуждающий ток проходит по металлу, а не по почве. Токи, встречая на своём пути любой металлический объект, имеющий меньшее удельное сопротивление, чем окружающий его грунт, натекают на него. Место входа называется катодной зоной. Пройдя по металлическому пути, блуждающий ток выходит из него. И это место выхода принято называть анодной зоной. Именно здесь и происходит реакция, вызывающая коррозию. Такая коррозия может встречаться и в месте входа тока в землю из источника блуждающего тока.

Главная проблема заключается в том, что, в основном, блуждающий ток носит постоянный характер. Это служит причиной быстрого разрушения металлических объектов. Таким образом, разрушаются не только рельсы, но и, например, их скрепления.

Если повреждено защитное покрытие металлических конструкций, то в местах таких анодных зон возникают дыры. Читая всё вышеперечисленное, можно сделать вывод, что блуждающий ток может нанести не только достаточно серьёзные повреждения изделиям из металла, но и существенный экономический ущерб.

Связь блуждающего тока и коррозии на металле

Ввиду наличия в земле воды и растворенных в ней солей любая металлическая конструкция в почве подвержена коррозии. Но если металл помимо этого подвергается воздействию блуждающих токов, то процесс приобретает электролитическую природу. Согласно закону Фарадея скорость электрохимической реакции напрямую зависит от тока, протекающего между анодом и катодом. Следовательно, на скорость коррозии металлической трубы (уложенной в грунте) будет влиять электрическое сопротивление почвы, а также сложная природа процессов, протекающих в катодной и анодной зоне.

В результате металлическая конструкция помимо обычной коррозии подвергается воздействию токов утечки. Это может стать причиной образования гальванической пары, что существенно ускорит процесс коррозии. На практике отмечались случаи, когда участок трубопровода системы водоснабжения, подвергавшийся гальванической коррозии выходил из строя через два года, при расчетном сроке эксплуатации 20 лет. Пример такого воздействия представлен ниже.

Труба после воздействия блуждающих токов

Методика определения опасного действия переменного тока

1. Сущность метода

Сущность метода заключается в определении смещения среднего, значения разности потенциалов между трубопроводом и медносульфатным электродом сравнения.

2. Требования к образцам

Образцами для измерения являются участки стальных трубопроводов, на которых зафиксированы значения напряжения переменного тока между трубопроводом и землей, превышающие 0,3 В.

3. Аппаратура, материалы

Вольтметр для измерения постоянного и переменного напряжений с входным сопротивлением не менее 10 МОм (например типа В7-41).

Конденсатор емкостью 4 мкФ.

Переносной насыщенный медносульфатный электрод сравнения (МЭС).

4. Подготовка к измерениям

4.1. Вспомогательный электрод (ВЭ) зачищают шкуркой шлифовальной (ГОСТ 6456) зернистостью 40 и меньше, обезжиривают ацетоном, промывают дистиллированной водой.

ВЭ и МЭС устанавливают в специальном шурфе над трубопроводом. ВЭ устанавливают таким образом, чтобы его рабочая (неизолированная) поверхность была обращена к трубопроводу. Предварительно из части грунта, контактирующего с ВЭ, должны быть удалены твердые включения размером более 3 мм. Грунт над ВЭ утрамбовывают с усилием 3-4 кг на площадь ВЭ. При наличии атмосферных осадков предусматривают меры против попадания влаги в грунт.

4.2. Для измерения величины смещения потенциала собирают схему, приведенную на черт. 6 при разомкнутой цепи между ВЭ и трубопроводом.

5. Приведение измерений

5.1. Измерения выполняют в следующей последовательности:

через 10 мин после установки ВЭ в грунт измеряют его стационарный потенциал относительно МЭС;

подключают ВЭ к трубопроводу и через 10 мин снимают первое показание вольтметра. Следующие показания снимают через каждые 5 с. Продолжительность измерения не менее 10 мин.

5.2. Среднее значение смещения потенциала ВЭ за период измерений вычисляют по формуле:

где – сумма мгновенных значений потенциала ВЭ при подключении ВЭ к трубопроводу, мВ;

Uс – стационарный потенциал ВЭ, мВ;

п – общее число измерений.

Схема измерений смещения потенциала трубопровода

1 – стальной трубопровод; 2 – шурф; 3 – вольтметр; 4 – конденсатор; 5 – выключатель; 6 – медносульфатный электрод сравнения; 7 – вспомогательный электрод

Согласно исследованиям, ускоренное разрушение подземных коммуникаций из металла происходит по причине возникновения электрохимической коррозии. Ее причиной является целенаправленное перемещение заряженных частиц, являющихся блуждающими токами. Такая ситуация указывает на то, что для обеспечения сохранности металлоконструкций необходимо разобраться, как устранить блуждающие токи под землей в трубах для водоснабжения.

Способы защиты

Для защиты могут применяться различные методы Их разделяют на две основных разновидности: пассивные и активные. В первом случае речь идёт о надёжной изоляции труб от окружающего грунта. Для этого можно использовать несколько слоёв защиты. 

Наземный городской электрический транспортИсточник amperof.ru

Когда нужно исключить блуждающие токи в водопроводных трубах, могут применяться битумные мастики, специальные оболочки, изоляционные ленты

Работы нужно проводить с осторожностью, так как механические повреждения защитного слоя могут стать местами, где происходит активное разрушение объекта.. Эффективным способом защиты является замена металлических труб на пластиковые

После этого они перестанут быть местом, где протекает ток. В результате прекратятся электролитические процессы, разрушающие конструкцию.

Эффективным способом защиты является замена металлических труб на пластиковые. После этого они перестанут быть местом, где протекает ток. В результате прекратятся электролитические процессы, разрушающие конструкцию.

Для изоляции рельсов от грунта прокладывают специальную защиту. В результате пути располагаются выше, чем обычно. Обычно для этой цели используются насыпи из не проводящего электричество материала. Это приводит к увеличению затрат и не всегда приемлемо для электротранспорта, маршрут которого находится в городской черте.

При проектировании трубопроводов, расположения электрических кабелей, маршрутов электротранспорта стараются по возможности разнести их на значительное расстояние.

На практике редко удаётся сделать пассивную защиту от блуждающих токов достаточно надёжной. Поэтому наибольшее распространение получили активные методы. Их использование требует установки дополнительных рабочих конструкций и связано с дополнительными затратами электроэнергии. Действие такой защиты охватывает всего несколько десятков метров.

Принцип работы таких методов связан с ликвидацией анодных зон на защищаемых объектах. При этом разрушительное воздействие тока переключается на специальные объекты, разрушение которых не причинит вреда защищаемой конструкции. Для этого в нужных местах устанавливают станции катодной защиты. Знание того, что такое блуждающие токи, позволяет выстроить эффективную защиту от них.

Стоимость их использования пренебрежимо мала по сравнению с возможными проблемами. Поэтому их применение считается очень выгодным.

При использовании катодных станций подают положительный потенциал на защищаемый объект. Недалеко от него располагают катоды. На них дают отрицательный. Вследствие перераспределения энергии анодные зоны создаются на дополнительно установленных катодах. Металлические молекулы с них активно испарятся, постепенно приводя детали в негодность. В этом случае их сразу заменяют.

Результат воздействия блуждающих токовИсточник asutpp.ru

На объекте из-за блуждающих токов исключается образование анодных зон и разрушение не происходит

При установке защиты важно правильно произвести расчёты. При ошибке конструкция станет действовать противоположным образом — станет источником разрушения защищаемого объекта

Поэтому для каждого объекта планирование нужно производить с учётом его особенностей. 

Пассивная защита с использованием нескольких слоёвИсточник asutpp.ru

Защита от блуждающих токов может быть создана следующим образом. Для этого нужно подать определённый потенциал на защищаемый объект. В результате прекратится протекание через него блуждающих токов.

Для защиты может быть использован электродренажный метод. В этом случае в месте, где ожидается появление анодной зоны трубу соединяют проводником с местом, которой является источником проблемы и создаёт соответствующий потенциал. В этом месте исчезает разность потенциалов, которая была причиной для образования анодной зоны.

Использование активной защиты при помощи постоянного токаИсточник oooevna.ru

Что такое блуждающий ток?

Как известно, земля является проводником электрического тока, что позволяет применять это свойство для создания заземляющих устройств. Но в тоже время, когда почва выступает в качестве токопроводящей среды, в ней образуются утечки. Поскольку нельзя спрогнозировать в какое время начнется процесс, и где он будет протекать, то такие проявления получили термин «блуждающие».

Как мы помним из школьного курса физики, для образования электрического тока необходимо, чтобы возникла разность потенциалов между двумя участками цепи. Принцип возникновения блуждающих токов – аналогичный. Только роль проводника в данном случае исполняет земля.

На территории современных городов и населенных пунктов находится множество электрифицированных объектов, начиная от ЛЭП и заканчивая рельсовым транспортом, включая оборудование тяговых подстанций. Их объединяет один фактор – расположение на земле. Это приводит к довольно специфичному взаимодействию с последней, проявляющемуся в виде появления блуждающих токов. Ниже представлена таблица, которой приводятся их потенциальные источники и условия образования электросвязи связи с почвой.

Таблица 1. Потенциальные источники.

Название объекта Взаимосвязь с землей
Различные виды распределительных устройств, оборудование подстанций, ВЛ с нулевым проводником (глухозаземленная нейтраль), подключенным к повторным заземлителям. При наличии на объекте ЗУ.
ВЛ сетей с изолированной нейтралью, кабельные магистрали. Возникает при повреждении изоляционного покрытия токонесущих элементов кабелей.
Рельсовый электротранспорт, системы с заземленной нейтралью. Наличие технологической связи между одним из проводников и землей.

Разрушение металла в зависимости от почвы. Подземная коррозия трубопроводов

Металлические изделия служат нам не только в атмосферных условиях, но часто находятся в земле. Трубопроводы, по которым текут вода, газ, нефть, очень часто делают из металла и прокладывают под землей. Под землей также размещают кабели, по которым подают электрический ток или осуществляют телеграфно-телефонную связь. Почва, как вам известно, представляет собой смесь различных веществ. В ее состав входят минералы и различные органические вещества, являющиеся продуктами гниения. Почвенная вода всегда содержит растворы солей и кислот, т. е. она электролит. Вот почему так тщательно покрывают изоляционными материалами металлические трубы, прежде чем они будут зарыты в почву. Правда, по своим свойствам почва может быть различна. При раскопке трубопроводов в окрестностях Батуми, проложенных в 1878 г., т. е. труб, которые пролежали в почве около ста лет, выяснилась интересная картина. На отдельных участках не осталось и следа от металлических труб, так как они полностью были разрушены. В то же время в тех местах, где трубы проходили по глинистой почве, они полностью сохранились. Вид их был такой, как будто бы они только что были зарыты в землю. Следовательно, в глинистой почве не было доступа к металлу электролитов и кислорода, способствующих разрушению металла. Трубы здесь были изолированы самой почвой. Вот такую же роль играет покрытие труб различного рода смолами. Однако в больших городах такого рода покрытия не всегда сохраняют металл от разрушения. Коварную роль здесь играет электрический ток.

Это интересно: Низкое напряжение в сети – что делать и куда жаловаться

Определение коррозионной опасности для подземных сооружений

Для определения коррозионной опасности для подземных сооружений проводятся следующие геофизические работы:

  • определение сопротивления грунта;
  • определение наличия блуждающих токов в земле;
  • определение наличия блуждающих токов в подземных сооружениях;

Определение сопротивления грунта необходимо при различных инженерных работах, в том числе при прокладке трубопроводов и газопроводов, стальных подземных резервуаров и сооружений, силовых кабелей и кабелей связи в металлической оболочке для оценки коррозионной активности грунта.

Методика работ реализуется согласно ГОСТ 9.602-89 и ГОСТ 9.602-2005. Работы проводятся методом электрического профилирования установкой Венера, с расстоянием между электродами (а), равным глубине (для кабелей связи – двойной глубине) прокладки подземного сооружения. Электроды размещают на поверхности земли на одной линии с осью трассы для проектируемого сооружения, а для сооружения уже уложенного в землю, – на линии, проходящей перпендикулярно или параллельно, на расстоянии в пределах от 2 до 4 м от оси сооружения (рис.1.). Расстояние между точками наблюдения составляет 100 – 200 м.

Рис. 1. Установка Венера для определения кажущегося удельного сопротивления грунта

По результатам работ рассчитывается кажущееся сопротивление, которое по своим значениям близко к удельному электрическому сопротивлению (УЭС) грунта. , где k=2pa – коэффициент установки Венера, dU – разность потенциалов на приемных электродах, I – ток в питающей линии. После расчетов согласно таблице 1 определяют коррозионную активность грунта.

Таблица 1. Коррозионная агрессивность грунта по отношению к углеродистой и низколегированной стали

УЭС грунта, Ом*м

Средняя плотность катодного тока, А/м^2

Определение наличия блуждающих токов в земле. Блуждающие токи опасны, прежде всего, своей электрохимической активностью, которая приводит к ускоренной коррозии подземных металлических сооружений, в том числе трубопроводов и газопроводов.

Определение наличия блуждающих токов производится в полевых условиях методом естественного поля. Методика работ реализуется согласно ГОСТ 9.602-89 и ГОСТ 9.602-2005. В работе используются неполяризующиеся электроды, представляющие собой пористый керамический сосуд, в который заливается насыщенный раствор медного купороса, а в раствор погружается стрежень (рис.2.). Контакт в таком электроде осуществляется фильтрации раствора медного купороса в землю, через пористую поверхность электрода.

Рис.2. Неполяризующийся электрод. 1 – пористая часть электрода, 2 – глазированная часть электрода, 3 – медный стержень, 4 – пробка, 5 – клемма, 6 – насыщенный раствор медного купороса (CuSO4).

Для проектируемого сооружения разность потенциалов на трассе проектируемого сооружения измеряют между двумя точками земли через каждые 1000 м по двум взаимно перпендикулярным направлениям (рис.3.) при разносе измерительных электродов – 100 м. Значение разности потенциалов в каждой точки регистрируют через каждые 10 секунд в течение 10 минут.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: