Как измерить заземление мегаомметром

Внутреннее строение измерительного устройства

Основными составными частями прибора являются:

  • генератор напряжения (постоянного тока);
  • измерительный блок, демонстрирующий показания;
  • переключатель диапазонов измерений (кОм-МОм), дающий возможность изменять выходное напряжение за счет включения различных встроенных резисторных схем;
  • резисторы – сопротивления, ограничивающие протекающий ток.

Внутренний генератор в приборах старого образца работает от ручного привода за счет динамо машины. Современные устройства действуют от батарей. Стрелочные (аналоговые) аппараты отображают показания на шкале за счет двух рамок: одной — рабочей и второй – противодействующей. Измерительный блок электронных мегаомметров выдает значения на табло в цифровом виде.

Обзор методик

Метод амперметра-вольтметра

Для проведения измерительных работ необходимо искусственно собрать электрическую цепь, в которой ток течет через испытуемый заземлитель и токовый электрод (его еще называют вспомогательным). Также в этой схеме задействуется потенциальный электрод, назначение которого – замер падения напряжения во время протекания электрического тока по заземлителю. Потенциальный электрод нужно расположить одинаково далеко от токового электрода и испытуемого заземлителя, в зоне с нулевым потенциалом.

Чтобы измерить сопротивление методом амперметра-вольтметра необходимо воспользоваться законом Ома. Итак, по формуле R=U/I находим сопротивление контура заземления. Такой метод хорошо подходит для измерений в частном доме. Чтобы получить нужный измерительный ток можно воспользоваться сварочным трансформатором. Также подойдут и другие виды трансформаторов, вторичная обмотка которых электрически не связана с первичной.

Использование специальных приборов

Сразу отметим, что даже для измерений в домашних условиях многофункциональный мультиметр не сильно подойдет. Чтобы измерить сопротивление контура заземления своими руками используются аналоговые приборы:

  • МС-08;
  • М-416;
  • ИСЗ-2016;
  • Ф4103-М1.

Рассмотрим, как измерить сопротивление прибором М-416. Сначала нужно убедиться, что у прибора есть питание. Проверим наличие батареек. Если их нет, нужно взять 3 элемента питания напряжением 1,5 В. В итоге получим 4,5 В. Готовый к использованию прибор нужно поставить на ровную горизонтальную поверхность. Далее калибруем прибор. Ставим его в положение «контроль» и, удерживая красную кнопку, выставляем стрелку на значении «ноль». Для измерения будем пользоваться трехзажимной схемой. Вспомогательный электрод и стержень зонда забиваем не менее чем на полметра в грунт. Подсоединяем к ним провода прибора по схеме.

Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с о. Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение.

На видео наглядно демонстрируется, как измерить сопротивления заземления прибором:

Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

samelectrik.ru

Приборы для замеров

Для измерения сопротивления контура применяются электронные мультиметры, сменившие аналоговые устройства. При этом увеличилась точность уровня измерения при упрощении выполнения операции. По правилам ПУЭ, сопротивление заземлителя не менее одного раза в шестилетний период. Поэтому не затратно будет вызвать для проведения замеров профессионалов, которые имеют более точные и новейшие разработки промышленности.

Но если вы решили провести эту операцию самостоятельно, потребуется запастись следующими измерительными приборами:

  • измеритель сопротивления типа «МС- 08»;
  • измеритель заземляющего контура типа «М-416»;
  • тестер или мощный мультиметр.

Для более низкого уровня измерения и определения неисправности защиты, можно использовать мультиметр, дополнительно оснащенный токовыми клещами.

Необходимость проверки заземления

Практические все розетки, выполненные в специальном исполнении, имеют три основных контакта:

  • фаза
  • ноль
  • земля

Первые два соединены со станцией, вырабатывающей электричество, а последний с грунтовым основанием. Все это обеспечивается через распредщит, расположенный в частном особняке.

При нарушении целостности изоляции электропроводов возникает утечка тока, при этом возникающее в линии избыточное напряжение отводится в землю до срабатывания системы защиты.

Не всегда при строительстве дома схема заземления соответствует нормативу или контур быстро становится неработоспособным. Чтобы обеспечить собственную безопасность следует проверять наличие заземления. Проверка заземления необходима чтобы:

  • Риск поражения электрическим током был исключен.
  • Не было поломки электробытовых приборов.

Проверить исправность заземления, значит обеспечить защиту от напряжения человека и электрооборудования.

Как измерить сопротивление заземления с помощью мультиметра и мегаомметра

«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.

Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев

И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата)

Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке.

Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Решение проблем с подключением

Если проверка контура заземления самодельной контролькой, вольтметром или мультиметром не дала результата, понадобится:

  • Включить в сеть электроприбор без касания к контакту и посмотреть, будет ли он работать.
  • Выключить питание в распредщитке, достать вилку из розетки.
  • Разобрать розетку и осмотреть провода, точки подключения контакта. Заземления нет, если отсутствует подсоединение.

Самостоятельные работы с электрической сетью при нарушении алгоритма могут стать причиной травм и пожаров в результате обрыва «нуля». Чтобы это предотвратить, воспользуйтесь услугами электриков.

Мегаомметр лучше использовать для оценки иных факторов безопасности

Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.

Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.

Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.

Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.

Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.

Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.

Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.

При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.

Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.

С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.

Методика проверки

Перед проверкой исправности заземления следует определить нулевой и фазный провода при помощи индикаторной отвертки. После контакта с одной клеммой лампочка в отвертке загорается — это фаза, если не горит — ноль. Наличие заземления даже при трехжильном проводе нужно проверить простыми методами: при помощи мультиметра или контрольки.

Проверка с помощью мультиметра

  • включить в распределительном щите электропитание в помещении (доме);
  • замерить напряжение в розетке, установив один щуп на фазу, а второй — на ноль;
  • переставить щуп контактного датчика из нуля на заземляющий проводник (РЕ);
  • проверить показатели тестера, если они практически не изменились, значит, система заземления в порядке, если показатели на нуле — система не работает.

Проверка контрольной лампочкой

Чтобы соорудить прибор, называемый «контролькой», нужно взять лампочку с патроном и подсоединить к нему два медных провода. При этом контакты такого тестера должны быть изолированы между всеми элементами. Проверка контрольной лампочкой проводится таким же способом, как и при помощи мультиметра: один щуп подсоединяют к нулю, второй — к фазе. Потом переставляется щуп от нуля на заземляющее подключение.

Если проводка не имеет цветового распознавания, можно определить фазу и ноль таким образом: один концевик приложить к клемме заземления, а второй поочередно к одному и второму подключению. Фаза расположена там, где загорится источник света. Если же лампочка не будет гореть, значит, схема РЕ не функционирует. В случае, когда лампа не горит при соединении фазы и нуля, нужно проверить контакты прибора, а также, не перегорела ли лампа и есть ли питание в распределительном щите. Иногда причиной отсутствия загорания лампы является то, что произошел обрыв на нулевом или фазном контуре.

Как нужно измерять сопротивление

Существует два документа, которые регламентируют нормы сопротивления заземления в контуре и другие показатели. Первый — ПУЭ (Правила устройства электроустановок), на которые опираются при проведении приемо-сдаточного контроля. Эксплуатационные замеры же должны соответствовать Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП).

В обеих сводах правил существует разделение контуров на несколько типов — их нужно учесть до того, как измерить сопротивление заземления. Они отличаются в зависимости от напряжения, которое используется в сети и разновидности цепи. Всего имеется три типа контуров:

  1. Для подстанций и пунктов распределения, в которых напряжение не превышает 1000 вольт (вне зависимости от того, используется в сети переменный ток или постоянный).
  2. Для воздушных ЛЭП (линий электропередач), которые передают ток напряжением менее 1000 вольт.
  3. Для электроустановок с таким же максимально допустимым напряжением, использующимся в промышленных или бытовых целях.

Проверка заземления мультиметром

Вы купили частный дом или квартиру, и вся электрическая часть в помещении уже смонтирована до вас, встает вопрос: как проверить заземление в розетке мультиметром и узнать есть ли оно вообще? Все это можно выполнить с помощью визуального осмотра и измерений.

Далее описан алгоритм, как проверить заземление в частном доме:

  1. Отключается вводной автомат, защищающий сеть от перегрузки.
  2. Разбирается одна, любая, розетка.
  3. На мультиметре устанавливается режим измерения напряжения.
  4. Щупы прибора крепятся к фазе и «нулю» сети (см. ниже).
  5. Включается вводной автомат. При рабочей электросети высветится значение «220» или около того.
  6. При соблюдении мер безопасности щупы переносятся на заземляющий и фазный контакты. Значение, которое появится на экране, не должно сильно отличаться от первоначального. Хотя могут появиться и другие цифры. Это тоже означает, что заземление работает. Если монитор не отобразит каких-либо цифр — заземления нет.

Определить отсутствие заземления проще всего визуально. Обычно это видно по отсутствию третьего, желто-зеленого, провода в розетке. Но и при его наличии заземление может работать не так, как нужно. Для того, чтобы исключить эту вероятность, применяется контроль с помощью мультиметра.

Составление протокола

Когда осмотр окончен, проведены все необходимые измерения и испытания, работники организации, проводившей работы, составляют «Протокол измерения сопротивления заземления». Он оформляется в соответствии с ГОСТом Р 50571.16-2007 Электроустановки низковольтные. Часть 6. Испытания. Приложение Н.

Этот нормативный акт условно состоит из трех структурных частей:

  • данные о специальной организации, которая выполняла порученные работы по измерению сопротивления заземления, и заказчике этих работ;
  • начальная статичная информация;
  • итоги проведения измерений.

Основываясь на ГОСТе, сведения об организации, проводившей измерения, должны представляться в развернутом виде. Необходимо указать название и адрес, на который зарегистрирована данная лаборатория, номер регистрации, информацию об аттестатах аккредитации (когда был выдан и до какой даты действует).

Указывают название организации, которая проводила аккредитацию или свидетельство о регистрации в структуре Государственного Энергонадзора.

Помимо этого протокол должен содержать сведения о заказчике, монтажной и проектной организациях.

Начальная статичная информация – это данные об электроустановке и ее системе заземления, информация о почве, в которой закреплено заземление, температуры окружающей среды, уровень атмосферного давления на момент испытаний. То есть это все данные об условиях, в которых проводились измерения сопротивления заземления, и приборах, которые для этого использовались.

Итоги проведенных измерений вносят в табличную форму, где указывают полученные приборами данные.

В конце протокола обязательно дается заключении о пригодности заземления для дальнейшего использования, а так же отражаются фамилии работников, которые проводили измерительные работы.

Как проверить мультиметром напряжение в розетке 220в?

Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом — не касаться руками токопроводящих частей щупов.

Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».

Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.

Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.

Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.

Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.

Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.

В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.

Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.

Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.

Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.

Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.

В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.

Измерение мультиметром

Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.

Почему данный тип измерительного прибора применяется лишь в редких случаях?

  • Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
  • Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
  • Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.

Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:

Как подготовить мультиметр

Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:

  • подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
  • заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
  • произвести калибровку (если она предусмотрена для конкретной модели).

Как подготовить рабочее место

Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.

Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).

Где измерять сопротивление

Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.

Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.

  • Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
  • Величина R заземления должна быть Измерение мегаомметром

Принцип измерений тот же самый. Отличия лишь в некоторых моментах.

  1. Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.
  1. Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).
  • Переключатель – в «Контроль».
  • Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.
  1. Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.

Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.

Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.

Особенности проверки заземления переносного электрооборудования

Чтобы не допустить поражения человека током, который течет в токоведущих металлических частях переносного или стационарного оборудования, выполняют периодическую проверку состояния заземляющих устройств. Результаты измерения сопротивления контура заземления позволяют сделать вывод относительно исправности изоляции и прочих нормативных предписаний. Чаще всего измерения выполняют в следующих случаях:

  • при плановых проверках техники безопасности
  • при проектировании сооружений
  • при проверке дымовых труб
  • при выяснении количества потребителей сети и суммарных затрат на электроэнергию

Как правило, сроки проверки сопротивления заземления стандартны – раз в год. Если электрические устройства, дымовые трубы или изоляция проводов уже ремонтировались, то периодичность осмотров рекомендуется увеличить до 1 раза в 6 месяцев.

Проверку принято чередовать по сезонам. Выделяют два основных периода для проверки сопротивления заземления токоведущего контура: летом и зимой. Отличия приведенных подходов следующие:

  • в первом случае имеет место высокое сопротивление из-за минимального количества жидкости в грунте
  • во втором случае сопротивление повышается из-за сильного промерзания почвы

Результаты исследований позволяют сделать вывод относительно эффективности заземляющих устройств и собрать ряд рекомендаций, которые позволят улучшить сопротивление зданий, оборудования, дымовых труб. Кроме плановых проверок значений сопротивления, исследования выполняют при восстановлении сети, а также при дополнении существующей системы заземления новыми техническими объектами.

Некоторые основные параметры и правила

Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:

Для источников с однофазным напряжением Для источников с трёхфазным напряжением Величина сопротивления заземления
127 В 220 В 8 Ом
220 В 380 В 4 Ом
380 В 660 В 2 Ом

Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

Периодичность проверки

Проведение визуальных осмотров, измерений и вскрытие грунта (если это нужно) проводится на основании графика, который составляется и утверждается предприятием, однако эти сроки должны находиться в пределах 12 лет.

Наиболее корректные результаты можно получить, если померить сопротивление заземления в середине лета или зимы. Именно тогда почва обладает максимальным сопротивлением.

Важно помнить, что измерения стоит проводить в сухую погоду

Минимальный уровень сопротивления заземляющих устройств, который допускается, нормируется «Правилами устройства электроустановок».

Если электроустановка работает с напряжением до 1000 В, то значение сопротивления должно находиться в пределах от 2 до 8 Ом в зависимости от уровня напряжения (2 – если 660 В, 4 – если 380 В, 8 – если 220 В).

В электроустановках напряжением свыше 1000 В уровень сопротивления не должен превышать 0,5 Ом.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: