Автомобильный датчик холла

Синхронный двигатель

В машине этого типа, в отличие от предыдущего, ротор вращается с той же частотой, что и магнитное поле.

Устройство

Основные части машины – якорь и обмотка возбуждения (индуктор). Ротор в таком электроприводе находится на статоре, а индуктор располагается на роторе, который от неподвижной части машины отделен неким зазором. 

Синхронный двигатель с постоянными магнитами

Можно сказать, что принцип действия синхронной машины – «вывернутый наизнанку» двигатель постоянного тока. Получение переменного тока обмоткой происходит от внешнего источника, а не от коллектора. 

Якорем синхронного двигателя является одна или несколько обмоток. С помощью токов, которые туда подаются, появляется магнитное поле, сцепляющееся с полем индуктора на роторе. Именно так происходит превращение электрического ресурса в механический.

Индуктор синхронной машины состоит из электромагнитов постоянного тока или постоянных магнитов. Существует две конструкции индукторов: 

  • явнополюсная конструкция машины имеет ярко выраженные полюса. Они очень похожи на устройство полюсов в агрегатах постоянного тока;
  • неявнополюсная конструкция схожа со строением фазного ротора, где обмотку укладывают в пазах сердечника. Принципиальная разница заключается в том, что в устройстве синхронной неявнополюсной машины есть место между полюсами, которое не заполняют проводниками. Это снижает механическую нагрузку на полюса.

Принцип действия

Принципом действия синхронного двигателя является взаимодействие между магнитным полем якоря и магнитным полем индуктора. Постоянные магниты используются для маломощных машин, а электромагниты в более мощных. 

Нужно также упомянуть о том, что есть так называемая обращенная конструкция синхронного двигателя. В ней индуктор размещен на статоре, а якорь на роторе. Такую вариацию использовали на уже устаревших двигателях и до сих пор используют при создании криогенных синхронных агрегатов (в их обмотках, как правило, используют сверхпроводники).

Первый тип двигателя. «Альфа»

Первой моделью, которая использовалась, стала «Альфа» Стирлинга. Особенность его конструкции состоит в том, что она имеет два силовых поршня, находящихся в разных в раздельных цилиндрах. Один из них имел достаточно высокую температуру и был горячим, другой, наоборот, холодным. Внутри теплообменника с высокой температурой располагалась горячая пара цилиндр-поршень. Холодная пара находилась внутри теплообменника с низкой температурой.

Основными преимуществами теплового двигателя внешнего сгорания стало то, что они имели высокую мощность и объем. Однако температура горячей пары при этом была слишком велика. Из-за этого возникали некоторые технические трудности в процессе изготовления таких изобретений. Регенератор данного устройства находится между горячей и холодной соединительными трубками.

Двигатель внешнего сгорания Лукьянова

Юрий Лукьянов – это научный сотрудник Псковского политехнического института. Он уже достаточно давно занимается разработкой новых моделей двигателей. Ученый старался сделать так, чтобы в новых моделях отсутствовали такие элементы, как коробка передач, распредвал и выхлопная труба. Основной недостаток устройств Стирлинга заключался в том, что они имели слишком большие габариты. Именно этот недостаток ученому и удалось устранить за счет того, что лопасти были заменены на поршни. Это помогло уменьшить размер всей конструкции в несколько раз. Некоторые говорят о том, что можно сделать двигатель внешнего сгорания своими руками.

Для чего нужен датчик Хола в автомобиле?

Прибор используется вместо контактных элементов и может применяться для слежения за величиной тока нагрузки. Благодаря этому датчику выполняется деактивация двигателя при появлении токовых перегрузок в бортовой сети. Если контроллер перегревается, производится включение температурной защиты.

Принцип работы

Скачки напряжения в электросети мотора могут иметь последствия для датчика. Поэтому современные устройства дополнительно комплектуются диодными элементами, которые препятствуют обратной активации напряжения. Принцип действия приспособления основан на эффекте Холла. Поперечная разность потенциалов образуется при перемещении одного из проводников в магнитное поле. Данный эффект достигается благодаря тому, что токи проходят через клеммные элементы пластины, которая находится в самом поле, с полупроводником.

Когда работает двигатель и вал силового агрегата вращается, стальные лопасти ходят по специальным прорезям, установленным внутри корпуса. Это способствует подаче электрического сигнала на коммутаторное устройство. В результате узел открывает транзисторный элемент и подает напряжение на катушку. Последняя выполняет процедуру преобразования низковольтного импульса в высоковольтный. Этот сигнал подается на свечи зажигания.

Подробно о принципе действия контроллера Холла рассказал канал «Радиолюбитель TV».

Где находится и как выглядит?

При необходимости замены неисправного устройства потребителю надо знать, где стоит контроллер. Он располагается в трамблере автомобиля и выполнен в корпусе в виде небольшого цилиндрического элемента. Чтобы получить доступ к устройству, необходимо разобрать распределительный узел и снять крышку, бегунок и прочие детали механизма. На наружной стороне трамблера к контроллеру Холла подключается разъем с проводкой.

Устройство

Оптический регулятор положения распределительного вала устроен так:

  • 1 — постоянное магнитное устройство;
  • 2 — лопасть роторного механизма;
  • 3 — магнитопроводы;
  • 4 — пластиковый корпус, в который заключаются все элементы устройства;
  • 5 — плата;
  • 6 — контактные выводы.

Схема приспособления контроллера Холла

Устройство комплектуется тремя контактами:

  • первый используется для подключения к массе, то есть кузову автомобиля;
  • второй необходим для подсоединения плюсового напряжения, рабочий параметр которого составляет примерно 6 вольт;
  • третий контакт предназначен для подачи с него импульса на коммутаторное устройство.

Общее краткое устройство двигателя

Двигатель двухтактного рабочего цикла состоит из картера (основной его части — базы), в который на шариковых подшипниках установлен коленчатый вал. Цилиндр крепится к блоку через винты или шпильки, которые проходят через все тело гильзы. Внутри цилиндра движется поршень — металлический стакан (чаще из алюминиевого сплава), опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне ниже жарового пояса. Во время сжатия или рабочего хода поршневые кольца не пропускают газы и запирают в промежутке между днищем поршня и стенками цилиндра. Поршень снабжен металлическим стержнем — пальцем, он соединяет поршень с шатуном. Шатун передаёт прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

Смазка всех трущихся поверхностей и подшипников внутри двухтактных двигателей происходит с помощью топливной смеси, в которое подмешано необходимое количество масла. Из анимации видно, что топливная смесь (голубой цвет) попадает и в кривошипную камеру двигателя (это та полость, где закреплен и вращается коленчатый вал), и в цилиндр. Смазки там нигде нет, а если бы и была, то смылась топливной смесью. Вот по этой причине масло и добавляют в определенной пропорции к бензину. Тип масла используется специальный, именно для двухтактных двигателей. Оно должно выдерживать высокие температуры и сгорая вместе с топливом оставлять минимум зольных отложений.

Системы охлаждения, воздухозабора и запуска двигателя

В большинстве автомобилей система охлаждения состоит из радиатора и водяного насоса. Охлаждающая жидкость циркулирует по охлаждающей рубашке цилиндров, затем попадает в радиатор для охлаждения. В некоторых автомобилях (преимущественно в Volkswagen Жук) и в большинстве мотоциклов и газонокосилок используется воздушное охлаждение двигателей (двигатель с воздушным охлаждением легко узнать по ребрам на внешней стороне цилиндров, которые рассевают тепло). Двигатели с воздушным охлаждением намного легче, но охлаждаются хуже, что снижает их срок эксплуатации и производительность. Для получения более подробной информации читайте статью «Как работает система охлаждения».

На схеме представлено соединение патрубков системы охлаждения
 
Итак, теперь Вы знаете, что и как охлаждает двигатель Вашего автомобиля. Но почему так важна циркуляция воздуха? Большинство двигателей является безнаддувными, т.е. воздух поступает через воздушные фильтры непосредственно в цилиндры. Более мощные двигатели либо имеют турбонаддув, либо наддув, т.е. воздух поступает в двигатель под давлением (для подачи в цилиндр большего объема топливно-воздушной смечи) для увеличения мощности двигателя. Уровень сжатия воздуха называется наддув. При турбонаддуве используется небольшая турбина, установленная на выхлопную трубу для вращения нагнетающей турбины входящим потоком воздуха. Турбокомпрессор устанавливается непосредственно на двигатель для вращения компрессора.

Система запускасоленоида стартера

  • Любое собственное трение, вызванное поршневыми кольцами
  • Давление сжатия любого из цилиндров во время такта сжатия
  • Энергию, необходимую для открытия и закрытия клапанов распредвалом
  • А также действие всех остальных деталей, установленных непосредственно на двигателе, например водяного насоса, масляного насоса, генератора и т.д.

В связи с тем, что требуется большое количество энергии и в автомобилях используется 12-вольтная электросистема, на стартер должен поступать ток в несколько сотен ампер. Соленоид стартера — это большой электронный переключатель, который может выдержать ток такой силы. При повороте ключа зажигания, он запускает соленоид для подачи питания на стартер.
 
В следующем разделе мы расскажем о подсистемах двигателя, которые отвечают за то, что в него поступает (масло и топливо) и что выходит (выхлоп и выбросы).

Системы смазки, подачи топлива, выхлопа и электросистема двигателя 
Когда дело касается повседневного обслуживания, скорее всего Вас, прежде всего, заинтересует количество бензина в бензобаке Вашего автомобиля. Каким же образом бензин, которым Вы заправляетесь, заставляет работать цилиндры? Топливная система при помощи насоса подает топливо из бензобака и смешивает его с воздухом в определенных пропорциях для того, чтобы топливно-воздушная смесь затем поступала в цилиндры. Существует три способа подачи топлива: карбюрация, впрыск во впускные каналы и непосредственный впрыск.

  • При карбюрации устройство, которое называется карбюратор, смешивает бензин с воздухом при подаче воздуха в двигатель.
  • В двигателях с впрыском топлива необходимое количество топлива впрыскивается в каждый цилиндр отдельно либо над впускным клапаном (впрыск во впускные каналы), либо в сам цилиндр (непосредственный впрыск).

Для получения более подробной информации читайте статью «Как работает система впрыска топлива».
 
Масло также играет очень важную роль. Система смазки обеспечивает подачу масла для каждой движущейся детали для того, чтобы они свободно двигались. Прежде всего, смазка требуется поршням (для их плавного движения в цилиндрах) и подшипникам, которые обеспечивают вращение таких деталей, как коленвал и распредвал. В большинстве автомобилей масла из поддона картера подается при помощи масляного насоса, проходит через масляный фильтр для удаления абразивных частиц, после чего под давлением поступает на подшипники и стенки цилиндра. Затем масло стекает обратно в картер, где оно собирается, после чего цикл повторяется.

Изоляция

Одно из главных преимуществ датчиков Холла заключается в электрической изоляции, которую в контексте проектирования схем и систем называют гальванической развязкой. Принцип гальванической развязки используется всякий раз, когда проект требует, чтобы две схемы связывались таким способом, который предотвращает любую возможность протекания между ними электрического тока. Простой пример, когда цифровой сигнал передается через оптоизолятор, который преобразует импульсы напряжения в импульсы света и таким образом передает данные оптическим способом, а не электрическим. Одной из основных причин для реализации гальванической развязки является предотвращение проблем, связанных с земляными контурами:

Основные принципы проектирования схем предполагают, что взаимосвязанные компоненты совместно используют общую точку земли, на которой предполагается 0 В. В реальной жизни, однако, «земля» состоит из проводников, имеющих ненулевое сопротивление, и эти проводники служат в качестве обратного пути протекания тока от схемы назад к источнику питания. Закон Ома напоминает нам, что ток и сопротивление дадут напряжение, и это падение напряжения в обратном пути означает, что «земля» в одной части схемы не точно такая же по потенциалу, как «земля» в другой части схемы. Эта разница в потенциалах земли может привести к проблемам, начиная от незначительных до катастрофических.

Для предотвращения протекания постоянного тока между двумя схемами используется гальваническая развязка, позволяющая успешно общаться схемам с различными потенциалами земли. Это особенно актуально для измерения токов: низковольтный датчик и обрабатывающая цепь могут понадобиться для контроля больших, изменяющихся в больших пределах токов, например, в цепи привода двигателя. Эти большие, быстро изменяющиеся токи приведут к значительным колебаниям напряжения в цепи обратного пути протекания тока. Датчик Холла позволяет системе контролировать ток привода и защитить схему высокоточного датчика от этих вредных колебаний земли.

Цилиндрические двигатели Холла

Хотя обычные (кольцевые) двигатели Холла эффективны в режиме киловаттной мощности, они становятся неэффективными при масштабировании до небольших размеров. Это связано с трудностями, связанными с поддержанием постоянных параметров масштабирования производительности при уменьшении размера канала и увеличении приложенной напряженности магнитного поля . Это привело к созданию цилиндрического двигателя Холла. Цилиндрический двигатель Холла легче масштабировать до меньших размеров благодаря нетрадиционной геометрии разрядной камеры и соответствующему профилю магнитного поля . Цилиндрический двигатель Холла легче поддается миниатюризации и маломощной работе, чем обычный (кольцевой) двигатель Холла. Основная причина использования цилиндрических двигателей Холла заключается в том, что трудно получить обычный двигатель Холла, который работает в широком диапазоне от ~ 1 кВт до ~ 100 Вт, сохраняя при этом КПД 45-55%.

Недостатки

Естественно, что любое изобретение не лишено недостатков. Если говорить о минусах таких двигателей, то они заключаются в следующем:

  1. Из-за того что сгорание осуществляется вне двигателя, отвод получаемого тепла происходит через стенки радиатора. Это вынуждает увеличивать габариты устройства.
  2. Материалоемкость. Для того чтобы создать компактную и эффективную модель двигателя Стирлинг, необходимо иметь качественную жаропрочную сталь, которая сможет выдержать большое давление и высокую температуру. Кроме того, должна быть низкая теплопроводность.
  3. В качестве смазки придется покупать специальное средство, так как обычное коксуется при высоких температурах, которые достигаются в двигателе.
  4. Для получения достаточно высокой удельной мощности придется использовать либо водород, либо гелий в качестве рабочего вещества.

Драйвер шагового двигателя

Краткое введение в теорию и типы драйверов, советы по подбору оптимального драйвера для шагового двигателя.

Некоторые сведения, которые могут помочь вам выбрать драйвер шагового двигателя.

Шаговый двигатель – двигатель со сложной схемой управления, которому требуется специальное электронное устройство – драйвер шагового двигателя.
Драйвер шагового двигателя получает на входе логические сигналы STEP/DIR, которые, как правило, представлены высоким и низким уровнем опорного напряжения 5 В, и в соответствии с полученными сигналами изменяет ток в обмотках двигателя, заставляя вал поворачиваться в соответствующем направлении на заданный угол. >Сигналы STEP/DIR генерируются ЧПУ-контроллером или персональным компьютером, на котором работает программа управления типа Mach3 или LinuxCNC.

Задача драйвера – изменять ток в обмотках как можно более эффективно, а поскольку индуктивность обмоток и ротор гибридного шагового двигателя постоянно вмешиваются в этот процесс, то драйверы весьма отличаются друг от друга своими характеристиками и качеством получаемого движения. Ток, протекающий в обмотках, определяет движение ротора: величина тока задает крутящий момент, его динамика влияет на равномерность и т.п.

Типы (виды) драйверов ШД

Драйверы делятся по способу закачки тока в обмотки на несколько видов:1) Драйверы постоянного напряжения

Эти драйверы подают постоянный уровень напряжения поочередно на обмотки, результирующий ток зависит от сопротивления обмотки, а на высоких скоростях – и от индуктивности. Эти драйверы крайне неэффективны, и могут быть использованы только на очень малых скоростях.

2) Двухуровневые драйверы

В драйверах этого типа ток в обмотке сперва поднимается до нужного уровня с помощью высокого напряжения, затем источник высокого напряжения отключается, и нужная сила тока поддерживается источником малого напряжения. Такие драйверы достаточно эффективны, помимо прочего они снижают нагрев двигателей, и их все еще можно иногда встретить в высококлассном оборудовании. Однако, такие драйверы поддерживают только режим шага и полушага.

3) Драйверы с ШИМ.

На текущий момент ШИМ-драйверы шаговых двигателей наиболее популярны, практически все драйверы на рынке – этого типа. Эти драйверы подают на обмотку шагового мотора ШИМ-сигнал очень высокого напряжения, которое отсекается по достижению током необходимого уровня. Величина силы тока, по которой происходит отсечка, задается либо потенциометром, либо DIP-переключателем, иногда эта величина программируется с помощью специального ПО. Эти драйверы достаточно интеллектуальны, и снабжены множеством дополнительных функций, поддерживают разные деления шага, что позволяет увеличить дискретность позиционирования и плавность хода. Однако, ШИМ-драйверы также весьма сильно отличаются друг от друга. Помимо таких характеристик, как питающее напряжение и максимальный ток обмотки, у них отличается частота ШИМ. Лучше, если частота драйвера будет более 20 кГц, и вообще, чем она больше – тем лучше. Частота ниже 20 кГц ухудшает ходовые характеристики двигателей и попадает в слышимый диапазон, шаговые моторы начинают издавать неприятный писк. Драйверы шаговых двигателей вслед за самими двигателями делятся на униполярные и биполярные. Начинающим станкостроителям настоятельно рекомендуем не экспериментировать с приводами, а выбрать те, по которым можно получить максимальный объем технической поддержки, информации и для которых продукты на рынке представлены наиболее широко. Такими являются драйверы биполярных гибридных шаговых двигателей.

Ниже будут описаны только практические рекомендации по выбору ШИМ-драйвера биполярного шагового двигателя. При этом предполагается, что Вы уже определились с моделью двигателя, его характеристиками и т.п.

Принцип работы ДВС: основные моменты

Принцип работы двухтактного двигателя

Принцип работы такого двигателя объясняется в циклах (тактах) и их всего два:

1. Такт сжатия. Все начинается с того, что поршень от нижней мертвой точки перемещается к верхней мертвой точке, перекрывая продувочное и выпускное окно. После того как произошло закрытие выпускного окна, в цилиндре происходит сжатие горючей смеси.

Одновременно со сжатием горючей смеси в кривошипной камере создается разряжение, под действием которого из выпускного коллектора через впускное окно и приоткрытый клапан поступает уже готовая горючая смесь непосредственно в кривошипную камеру.

2. Такт рабочего хода. Сжатая рабочая смесь при положении поршня около верхней мертвой точки воспламеняется искрой от свечи. В результате воспламенения резко возрастает температура и давление. Вследствие этого газы расширяются, и поршень перемещается к нижней мертвой точке (происходит полезная работа).

Поршень, опускаясь вниз, создает в кривошипной камере избыточное давление. Под действием этого давления клапан закрывается, не давая горючей смеси вернуться во впускной коллектор. Когда поршень доходит до выпускного окна, оно открывается, и происходит выпуск отработанных газов. Давление в цилиндре понижается.

Далее поршень открывает продувочное окно, осуществляя продувку цилиндра от остатков отработанных газов и заполняя его горючей смесью.

Принцип работы четырехтактного двигателя

Принцип работы четырехтактного двигателя состоит из четырех тактов:

  1. Впуск. При перемещении поршня от верхней мертвой точки к нижней мертвой точке создается разряжение рабочей камеры и происходит открытие впускных клапанов. В цилиндр засасывается горючая смесь. Когда поршень доходит до нижней мертвой точки, впускные клапаны закрываются.
  2. Сжатие. При перемещении поршня от нижней мертвой точки к верхней мертвой точке происходит сжатие горючей смеси, вследствие этого увеличивается давление в камере и повышается температура горючей жидкости. Когда поршень доходит до верхней мертвой точки, срабатывает свеча зажигания, которая воспламеняет горючую смесь.
  3. Рабочий ход или расширение. Происходит пик сгорания горючей смеси. Выделяется много тепла, повышается температура газов продуктов сгорания и давление в цилиндре. Под давлением поршень движется вниз к нижней мертвой точке и через шатун раскручивает коленчатый вал.
  4. Выпуск. При перемещении поршня от нижней мертвой точки к верхней мертвой точке распределительный вал открывает выпускной клапан и поршень выдавливает отработанные газы. После выпуска отработанных газов выпускной клапан закрывается.

В цилиндрах такты чередуются с определенной последовательностью (1-3-4-2). Это главное правило для стабильной работы четырехтактного двигателя.

Цилиндрическое подруливающее устройство

Несмотря на то, что кольцевые подруливающие устройства имеют эффективный режим мощности, они становятся неэффективными при уменьшении до небольших размеров. Частично проблема заключается в повышенной напряженности магнитного поля, которое необходимо приложить к суженному каналу, чтобы производительность устройства оставалась постоянной. Идея заключалась в том, чтобы создать реактор на эффекте Холла, который мог бы работать при мощности от 100  Вт до 1  кВт при сохранении эффективности 45-55%.

Оттуда появился цилиндрический двигатель малой тяги, который благодаря нестандартной форме разрядной камеры и профилю создаваемого магнитного поля может быть адаптирован в небольших масштабах.

Применение датчиков Холла

Разберем более подробно области применения датчиков Холла.

В смартфонах датчик Холла используется в комплекте с магнитным чехлом. Он позволяет определить чехол открыт или закрыт. Если чехол открыт, то смартфон включается, если открыт, то выключается. Также преобразователь Холла ориентирует телефон по горизонту земли и помогает работе компаса. На мобильных телефонах-раскладушках также применяется датчик Холла для определения телефон находится в открытом или закрытом положении.


умный чехол для смартфона

  • В ноутбуках также датчик используется для определения открыта крышка или нет. Сам датчик Холла установлен на материнской плате. На крышке ноутбука установлен магнит. Закрываем крышку – экран гаснет.
  • В стиральных машинах стоит таходачик для подсчета количества оборотов мотора. Электронная система стиральной машинки на основе показаний датчика принимает решение нарастить или уменьшить скорость оборотов и какое количество оборотов нужно для выбранного режима.
  • В автомобилях часто используется эффект Холла в системах зажигания. Находится датчик в трамблере и заменяет собой контактор. Он определяет в какой момент появляется искра и передает данные в блок электроники. Могут применяться униполярные или биполярные данные. Момент создания искры и количество импульсов определяется бесконтактно и теоретически датчики могут работать неограниченное время.
  • В системах сигнализации в бесконтактных выключателях.
  • В системах контроля и управления доступом (СКУД) для чтения магнитных кодов
  • В системах определения уровня жидкости.
  • Для проверки наличия скрытой проводки.
  • Для измерения силы тока.


Arduino с датчиком Холла

В робототехнических наборах для изучения эффекта Холла. Это позволяет наглядно показать, как используются магнитные поля в датчиках.

То есть датчики Холла применяются в технических областях там, где требуется бесконтактный способ считывания информации. Недостатком датчиков Холла является их зависимость от электрических помех в электроцепях и как следствие снижение надежности. Но при создании электронных устройств такие факторы учитываются и позволяют снизить эти негативные воздействия.

Принцип работы

Для понимания принципов работы ГРМ важно знать его структуру, конструктивные особенности и назначение разных элементов. В составе системы клапаны и распредвал с приводами

Каждый из элементов выполняет определенную функцию.

Клапаны

На новых моторах находятся на ГБЦ, а место контакта является «седлом». Рассматриваемый элемент может предназначаться для впуска и выпуска. Диаметр клапана впуска немного больше.

При изготовлении применяется металлический сплав, обеспечивающий устойчивость к высокой температуре и давлению. Стержневая часть клапана впуска цельная, а выпуска — пустая внутри. В последнем случае внутри используется натриевый состав для более качественного отвода тепла.

Современные моторы, как правило, комплектуются парами клапанов впуска / выпуска. Иными словами, на каждом цилиндре установлено по 4-ре штуки, а всего 16 клапанов. Но бывают и другие варианты — с 2-мя, 3-мя и 5-ю клапанами (об этом ниже). Движение клапанов обеспечивает привод, построенный на гидротолкателях или рычаге роликового типа.

Пружина

Элемент, обеспечивающий фиксацию клапана в закрытом виде. Пружинка установлена на стержне с применением сухарей и тарелки. Жесткости изделия достаточно для плотного закрытия и колебаний в процессе работы.

Роликовый рычаг

Такой узел применяется в большинстве случаев, и именно он играет роль приводного механизма для клапанной системы. Конструктивно рычаг одной частью «стоит» на стержне клапана, а второй — на гидравлических компенсаторах или шаровой. Для уменьшения потерь место контакта кулачка и рычага распредвала делается в роликовой форме.

Гидрокомпенсатор

Применение этого элемента обеспечивает 0-й зазор в любой позиции, что уменьшает шумность и делает работу мотора более мягкой. Гидравлический компенсатор — это специальный цилиндр с подпружиненным поршнем. Устройство ставится прямо на клапанном толкателе.

Распредвал

В функции распредвала двигателя входит обеспечение работы ГРМ с учетом требуемого порядка функционирования цилиндров и фаз. Конструктивно устройство представляет собой вал, где есть кулачки. Именно они воздействуют на клапана и способствуют их открытию-закрытию. При этом форма кулачков обеспечивает необходимое время в открытой или закрытой позиции. 

Дополнительные узлы

В современных моторах часто устанавливаются вспомогательные устройства, обеспечивающие корректное функционирование газораспределительного механизма. В эту группу входит датчик положения распредвала (Холла), определяющий угол расположения и отправляющий сигналы в ЭБУ двигателя. В некоторых авто монтируются системы, регулирующие клапанные зазоры (гидрокомпенсаторы, о которых упоминалось выше).
С учетом сказанного можно рассмотреть алгоритм работы ГРМ в общем виде:

  • Стартер вращает коленвал.
  • Механическое вращение с помощью ремня, цепочки или звездочек передается на распредвал (может быть два и более).
  • Кулачки на валу распределения бьют по клапанам впуска / выпуска, заставляя их открываться и закрываться в нужный момент.
  • В поршневой системе реализуется четыре фазы, о которых упоминалось в разделе выше.

На практике существуют образцы моторов без привода ГРМ и распредвала. Минус в том, что такие конструкции имеют низкую степень надежности. 

Применение устройств в настоящее время

Казалось бы, что такое старое изобретение не может использоваться в наши дни, однако это не так. NASA заказало двигатель внешнего сгорания типа Стирлинга, однако в качестве рабочего вещества должны использоваться ядерные и радиоизотопные источники тепла. Кроме этого, он также успешно может быть использован в следующих целях:

Использовать такую модель двигателя для перекачки жидкости гораздо проще, чем обычный насос. Во многом это благодаря тому, что в качестве поршня можно применять саму перекачиваемую жидкость. Кроме того, она же и будет охлаждать рабочее тело. К примеру, такой вид «насоса» можно использовать, чтобы накачивать воду в ирригационные каналы, используя для этого солнечное тепло. Некоторые изготовители холодильников склоняются к установке таких устройств. Стоимость продукции удастся снизить, а в качестве хладагента можно применять обычный воздух. Если совместить двигатель внешнего сгорания этого типа с тепловым насосом, то можно оптимизировать работу тепловой сети в доме. Довольно успешно Стирлинги используются на подводных лодках ВМС Швеции. Дело в том, что двигатель работает на жидком кислороде, который впоследствии используется для дыхания

Для подводной лодки это очень важно. К тому же такое оборудование обладает достаточно низким уровнем шума

Конечно, агрегат достаточно большой и требует охлаждения, но именно эти два фактора несущественны, если речь идет о подводной лодке.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: