Кварцевый резонатор как проверить: проверка кварцевых резонаторов

КВАРЦЕВЫЕ ГЕНЕРАТОРЫ GEYER ELECTRONIC

Geyer Electronic выпускает кварцевые генераторы для тактирования цифровых схем. Кварцевый генератор — это кварцевый резонатор и схема автогенератора в одном корпусе. В последние годы все большую популярность приобретают кварцевые генераторы в миниатюрных корпусах для поверхностного монтажа. Их основные параметры сведены в таблицу 3.

Таблица 3. Кварцевые генераторы Geyer Electronic для поверхностного монтажа

Серия Диапазон доступ- ных частот,1 (MГц) Диапа- зоны рабочих темпера- тур2, (°С) Неста- биль- ность частоты, (ppm) Напря- жение питания (В) Емкость нагр., макс. (пФ) Пере- клю- чение выхода в третье состо- яние Размеры корпуса, (мм)
KXO-97 1,0…50,0 -20…70 -40…85 ±50 (±100)4 5±10% 50 + 7,0/5,08/ 1,8
50,1…80,0 15…25
80,1…100,0 30
KXO-V97 1,0…50,0 3,3±10%5 20
50,1…80,0 15
80,1…160,0
KXO-V99 1,0…181,0 3,3 15 5,0/3,2/ 1,0
KXO-V96 1,0…80 2,5/3,0/ 3,3 3,2/2,5/ 1,2
KXO-V95 1,0…70,0 2,5/2,8/ 3,0/3,3 2,5/2,0/ 082

1, 2 — см. сноски для таблицы 1 4 ±50 (±100) в скобках указано значение нестабильности для диапазона температур от -40 до 85°С 5 доступны с напряжениями питания 1,8/2,5/3,0 B (с допуском ±10%)

Большинство современных микроконтроллеров и цифровых процессоров уже содержат встроенную схему автогенератора. Остается только подключить внешний кварцевый резонатор. Однако для многих приложений удобнее именно кварцевый генератор. В этом случае устройство получается компактнее и надежнее, а разработчику остается только правильно выбрать подходящий генератор. Расчет, изготовление и настройка собственной схемы кварцевого генератора для частот более 30…40 МГц требует определенных профессиональных знаний, опыта и специального оборудования. Даже на частотах до 30 МГц генератор, собранный на дискретных компонентах, часто запускается не на той частоте. Применение готового кварцевого генератора всегда гарантирует стабильный результат при меньшей занимаемой площади на печатной плате. Большинство серий кварцевых генераторов Geyer Electronic имеют вход для отключения выхода (перевода в третье состояние с большим выходным сопротивлением). Кварцевые генераторы широко применяют в портативных радиостанциях, в качестве опорных генераторов в GPS- или ГЛОНАСС-навигаторах, в системах точного измерения времени.

Компания также выпускает следующие типы кварцевых генераторов:

  • кварцевые генераторы, управляемые напряжением (VCXO- Voltage Controlled Crystal Oscillator). Частоту такого генератора в определенных пределах можно изменить, подавая управляющее напряжение на соответствующий вход;
  • термокомпенсированные кварцевые генераторы (TCXO- Temperature Compensated Crystal Oscillator). Эти генераторы имеют высокую температурную стабильность благодаря аналоговому или цифровому методу компенсации зависимости частоты от температуры. Термокомпенсированные кварцевые генераторы применяются в устройствах, где требуется быстрый выход на рабочий режим и повышенная стабильность частоты (радиолокационные станции, опорные генераторы мобильных и переносных радиопередающих устройств и т.п.);
  • термокомпенсированные кварцевые генераторы, управляемые напряжением (VCTCXO- Voltage Controlled Temperature Compensated Crystal Oscillator). Возможность корректировки частоты внешним управляющим напряжением позволяет при необходимости еще больше повысить стабильность генерируемой частоты. Генераторы, управляемые напряжением применяются в системах фазовой автоматической подстройки частоты (ФАПЧ), частотной модуляции (ЧМ), импульсно-кодовой модуляции (ИКМ).

Для многих разработчиков могут представлять интерес керамические резонаторы Geyer Electronic серий KX-ZTT, KX-ZTA, KX-XTB.

С помощью рисунка 3 можно легко сравнить габаритные размеры разных серий кварцевых резонаторов, генераторов и керамических резонаторов Geyer Electronic.

Электрические параметры

Эквивалентная схема кварцевого резонатора – представляет собой электрическое описание кварцевого резонатора, работающего на резонансной частоте. Эквивалентная схема кварцевого резонатора представлена на рисунке 1. С0 – шунтирующая емкость. R1, L1 и С1 – соответственно динамическое сопротивление, динамическая индуктивность и динамическая емкость. Динамические параметры представляют собой соответствующие эквиваленты резонатора как электромеханической системы и определяются, в основном, характеристиками среза кварцевого элемента.

Шунтирующая емкость C0 – Емкость между выводами кристалла. Измеряется в пикофарадах. Шунтирующая емкость складывается из паразитной емкости кварца, емкости области электродов кристалла и емкости, вносимой кристаллодержателем. Шунтирующая емкость имеет значение порядка единиц пФ.

Динамическое сопротивление R1 – Параметр, характеризующий энергетические потери в колебательном контуре. Динамическое сопротивление R1 кварцевых резонаторов изменяется в интервале от нескольких Ом до сотен кОм в зависимости от частоты резонанса, номера гармоники и ряда конструктивных факторов. Часто обозначается как эквивалентное последовательное сопротивление ESR.

Динамическая индуктивность L1 – Параметр, характеризующий эквивалент массы в колебательном контуре. Динамическая индуктивность L1 кварцевых резонаторов изменяется в интервале от тысяч Гн для резонаторов низких частот до нескольких мГн для высокочастотных резонаторов.

Частота резонанса F – частота, определяемая в соответствии с формулой (5)

Емкость нагрузки СL

Рис. 2. Согласование емкости нагрузки

Измеренное или вычисленное значение емкости, включенной параллельно с кварцевым резонатором. Резонансная частота кварца, включенного в реальную электрическую цепь, будет изменяться в некоторых пределах при разных значениях емкости нагрузки. Для упрощения взаимодействия заказчиков и производителей резонаторов практикуется настройка резонаторов при определенном значении нагрузочной емкости. В этом случае измеренная частота должна соответствовать номинальной с учетом указанной точности настройки.

Как правило, для согласования емкости нагрузки используют конденсаторы Cg , подключаемые между выводами кварцевого резонатора и общим проводом (рисунок 2). Расчет номинала емкости конденсаторов Cg осуществляется по формуле (6), где CL – емкость нагрузки, указанная в технической документации, а CS – значение паразитной емкости (примерно 5 пФ).

Например, для емкости нагрузки равной 16 пФ имеем

Cg = 2·(16-5) = 22 пФ

Уровень управления (drive level)

Обычно определяется как мощность, рассеиваемая кварцевым резонатором. Минимальное значение этого параметра определяется количеством энергии, необходимой для нормального запуска резонатора и обеспечения устойчивых колебаний. Однако повышенное значение этого параметра может вызвать ухудшение параметров старения и механические повреждения кристалла.

Главная —
Микросхемы —
DOC —
ЖКИ —
Источники питания —
Электромеханика —
Интерфейсы —
Программы —
Применения —
Статьи

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды

а) общее обозначение

б) мощностью рассеяния 0,125 Вт

в) мощностью рассеяния 0,25 Вт

г) мощностью рассеяния 0,5 Вт

д) мощностью рассеяния 1 Вт

е) мощностью рассеяния 2 Вт

ж) мощностью рассеяния 5 Вт

з) мощностью рассеяния 10 Вт

и) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

Тензорезисторы

Варисторы

Шунт

Конденсаторы

a) общее обозначение конденсатора

б) вариконд

в) полярный конденсатор

г) подстроечный конденсатор

д) переменный конденсатор

a) головной телефон

б) громкоговоритель (динамик)

в) общее обозначение микрофона

г) электретный микрофон

Диоды

а) диодный мост

б) общее обозначение диода

в) стабилитрон

г) двусторонний стабилитрон

д) двунаправленный диод

е) диод Шоттки

ж) туннельный диод

з) обращенный диод

и) варикап

к) светодиод

л) фотодиод

м) излучающий диод в оптроне

н) принимающий излучение диод в оптроне

а) амперметр

б) вольтметр

в) вольтамперметр

г) омметр

д) частотомер

е) ваттметр

ж) фарадометр

з) осциллограф

Катушки индуктивности

а) катушка индуктивности без сердечника

б) катушка индуктивности с сердечником

в) подстроечная катушка индуктивности

Трансформаторы

а) общее обозначение трансформатора

б) трансформатор с выводом из обмотки

в) трансформатор тока

г) трансформатор с двумя вторичными обмотками (может быть и больше)

д) трехфазный трансформатор

Устройства коммутации

а) замыкающий

б) размыкающий

в) размыкающий с возвратом (кнопка)

г) замыкающий с возвратом (кнопка)

д) переключающий

е) геркон

Предохранители

а) общее обозначение

б) выделена сторона, которая остается под напряжением при перегорании предохранителя

в) инерционный

г) быстродействующий

д) термическая катушка

е) выключатель-разъединитель с плавким предохранителем

Фоторезистор

Фотодиод

Фотоэлемент (солнечная панель)

Фототиристор

Фототранзистор

Диодная оптопара

Резисторная оптопара

Транзисторная оптопара

Тиристорная оптопара

Симисторная оптопара

Что это такое, и зачем он нужен

Прибор является источником, обеспечивающим гармонические колебания высокой точности. Имеет, при сравнении с аналогами, большую эффективность работы, стабильные параметры.

Первые образцы современных устройств появились на радиостанциях в 1920-1930 гг. как элементы, имеющие стабильную работу, способные задавать несущую частоту. Они:

  • пришли на смену кристальным резонаторам, работавшим на сегнетовой соли, появившимся в 1917 в результате изобретения Александра М. Николсона и отличавшимся нестабильностью;
  • заменили использовавшуюся ранее схему с катушкой и конденсатором, которая не отличалась большой добротностью (до 300) и зависела от температурных изменений.

Чуть позже кварцевые резонаторы стали составной частью таймеров, часов. Электронные компоненты с собственной резонансной частотой 32768 Гц, которая в двоичном 15-разрядном счетчике задает временной промежуток равный 1 секунде.

Приборы используются сегодня в:

  • кварцевых часах, обеспечивая им точность работы независимо от температуры окружающей среды;
  • измерительных приборах, гарантируя им высокую точность показателей;
  • морских эхолотах, которые применяются при исследованиях и создании карт дна, фиксации рифов, отмелей, поиска объектов, находящихся в воде;
  • схемах, соответствующих опорным генераторам, синтезирующим частоты;
  • схемах, применяемых при волновом указании SSB или сигнала телеграфа;
  • радиостанциях с DSB-сигналом с промежуточной частотой;
  • полосовых фильтрах приемников супергетеродинного типа, которые более стабильны и добротны, чем LC-фильтры.

Устройства изготавливаются с разными корпусами. Делятся на выводные, применяемые в объемном монтаже, и SMD, используемые в поверхностном монтаже.

Их работа зависит от надежности схемы включения, влияющей на:

  • отклонение частоты от необходимого значения, стабильность параметра;
  • темп старения прибора;
  • нагрузочную емкость.

Возможные причины выхода из строя

Существует достаточно много методов вывести собственный кварцевый резонатор

из строя. С некими самыми пользующимися популярностью стоит ознакомиться, чтоб в дальнейшем избежать каких-либо заморочек:

  1. Падения с высоты. Самая пользующаяся популярностью причина. Помните: всегда нужно содержать рабочее место в полном порядке и смотреть за своими действиями.
  2. Присутствие неизменного напряжения. В целом кварцевые резонаторы не страшатся его. Но прецеденты были. Для проверки работоспособности включите поочередно конденсатор на 1000 мФ — этот шаг вернет его в строй либо дозволит избежать негативных последствий.
  3. Очень большая амплитуда сигнала. Решить данную делему можно различными методами:
  • Увести частоту генерации мало в сторону, чтоб она отличалась от основного показателя механического резонанса кварца. Это более непростой вариант.
  • Снизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор вправду из строя. Так, предпосылкой падения активности может быть флюс либо посторонние частички (нужно в таком случае его отменно очистить). Также может быть, что очень интенсивно эксплуатировалась изоляция, и она растеряла свои характеристики. Для контрольной проверки по этому пт можно на КТ315 спаять «трехточку» и проверить осцом (сразу можно сопоставить активность).

Кварцевый резонатор это кристаллический электронный прибор, поддерживающий резонансные колебания на заданной частоте. Кварцевый резонатор обладает высокой стабильностью и точность. Чтобы проверить работоспособность кварцевого резонатора, нужно собрать одну из предложенных ниже схем для проверки.

Здесь транзистор VT1 используется в роли генератора, а его частоту определяет проверяемый кварцевый резонатор. При поступлении питания на схему, генератор начинает генерировать импульсы с частотой его основного резонанса. Импульсная последовательность проходит через конденсатор С3, который отфильтровывает постоянную составляющую и поступает на аналоговый частотомер построенный на детекторных диодах VD1, VD2 и пассивных элементах С4, R3 и микроамперметре. В зависимости от частоты прямо пропорционально меняется напряжение на конденсаторе С4, то есть чем выше частота резонанса кварца, тем выше напряжение. Данным пробником можно не только проверить работу кварцевого резонатора, но и косвенно определить частоту его резонанса. С помощью этой схемы можно проверить кварцевые резонаторы с частотой от 3 до 10 мГц.

Если мы захотим более точно определить резонансную частоту кварцевого резонатора, необходимо подключить к выходу генератора частотомер или осциллограф. Он позволяет рассчитать частоту с помощью фигур Лиссажу. Однако не следует забывать, что кварц может возбудится как на основной частоте, так и на гармониках.

Проверка сразу двух кварцевых резонаторов

Применение

Одним из самых популярных видов резонаторов являются резонаторы, применяемые в часовых схемах и таймерах. Резонансная частота часовых резонаторов составляет 32 768 Гц; будучи поделённой на 15-разрядном двоичном счётчике, она даёт интервал времени в 1 секунду.

Применяются в генераторах с фиксированной частотой, где необходима высокая стабильность частоты. В частности, в опорных генераторах синтезаторов частот и в трансиверных радиостанциях для формирования DSB-сигнала на промежуточной частоте и детектирования SSB или телеграфного сигнала.

Также применяются в кварцевых полосовых фильтрах промежуточной частоты супергетеродинных приёмников. Такие фильтры могут выполняться по лестничной или дифференциальной схеме и отличаются очень высокой добротностью и стабильностью по сравнению с LC-фильтрами.

По типу корпуса кварцевые резонаторы могут быть выводные для объёмного монтажа (стандартные и цилиндрические) и для поверхностного монтажа (SMD).

Качество схемы, в которую входят кварцевые резонаторы, определяют такие параметры, как допуск по частоте (отклонение частоты), стабильность частоты, нагрузочная ёмкость, старение.

Преимущества

  • Достижение намного бо́льших значений добротности (104—106) эквивалентного колебательного контура, нежели любым другим способом.
  • Малые размеры устройства (вплоть до долей миллиметра).
  • Высокая температурная стабильность.
  • Большая долговечность.
  • Лучшая технологичность.
  • Построение качественных каскадных фильтров без необходимости их ручной настройки.

Недостатки

Чрезвычайно узкий диапазон подстройки частоты внешними элементами. На практике для многодиапазонных систем эта проблема решается построением синтезаторов частот различной степени сложности.

Обозначение радиодеталей на электросхемах

Обозначение на схемах радиоэлементов выглядит в виде графических фигур. Так, например, резистор изображают вытянутым прямоугольником с рядом расположенной буквой «R» и порядковым номером. «R15» означает, что резистор по схеме является 15-м по счёту. Тут же прописывают величину рассеваемой мощности сопротивления.

Особое внимание нужно уделить обозначению на микросхемах. К примеру, можно рассмотреть микросхему КР155ЛАЗ. Первая буква «К» означает широкую область применения

Если будет стоять «Э», то это экспортное исполнение. Вторая литера «Р» определяет материал и тип корпуса. В данном случае это пластмасса. Единица – это тип детали, в примере это полупроводниковая микросхема. 55 – порядковый номер серии. Последующие буквы выражают логику И-НЕ

Первая буква «К» означает широкую область применения. Если будет стоять «Э», то это экспортное исполнение. Вторая литера «Р» определяет материал и тип корпуса. В данном случае это пластмасса. Единица – это тип детали, в примере это полупроводниковая микросхема. 55 – порядковый номер серии. Последующие буквы выражают логику И-НЕ.

С чего начать чтение схем

Начинать надо с чтения принципиальных схем. Для более эффективного обучения нужно изучение теории совмещать с практикой. Необходимо понимать все обозначения на плате. Для этого существует масса информации в интернете. Будет неплохо иметь под рукой справочный материал в книжном формате. Параллельно с усвоением теории нужно научиться паять простые схемы.

Как соединяются радиоэлементы в схеме

Для соединения радиокомпонентов используют платы. Чтобы сделать контактные дорожки, применяют специальный раствор для травления медной фольги на диэлектрическом слое печатной платы. Лишняя фольга удаляется, остаются только нужные дорожки. К их краям припаивают выводы деталей.

Дополнительная информация. Литиевые аккумуляторы, нагреваясь от паяльника, могут вздуться и разрушиться. Чтобы этого не происходило, применяют точечную сварку.

Буквенное обозначение радиоэлементов в схеме

Чтобы расшифровать буквенные обозначения деталей в схеме, нужно воспользоваться специальными таблицами, утверждённые ГОСТом. Первая буква означает устройство, вторая и третья литера уточняют конкретный вид радиокомпонента. Например, F означает разрядник или предохранитель. Полностью буквы FV дают знать, что это предохранитель.

Графическое обозначение радиоэлементов в схеме

Графика схем включает в себя условное двухмерное обозначение радиоэлементов, принятых во всём мире. Например, резистор – прямоугольник, транзистор – круг, в котором линиями показано направление тока, дроссель – растянутая пружинка и т.д.

Начинающий радиолюбитель должен иметь под рукой таблицу изображений радиодеталей. Ниже приведены примеры таблиц графических обозначений радиодеталей.

Таблица графических обозначений радиоэлементов на схеме

Таблица 2

Таблица 3

Таблица 4

Для начинающих радиолюбителей важно запастись справочной литературой, где можно найти информацию о предназначении определённого радиокомпонента и его характеристиках. Как изготовить самостоятельно печатные платы и как правильно паять схемы, можно научиться по видео урокам в сети

Виды кварцевых резонаторов

По типу корпуса кварцевые резонаторы могут быть выводные для объемного монтажа (стандартные и цилиндрические) и для поверхностного монтажа (SMD). Кварцевые резонаторы могут изготавливаться различной конструкции, иметь разнообразную «упаковку» (корпуса могут быть пластмассовые, стеклянные, металлические, самых разных форм и размеров), но все они предназначены для стабилизации частоты в радиоэлектронных устройствах.

Пьезоэлектрические кварцевые резонаторы различают:

  • по назначению (генераторный, фильтровый и т.д.);
  • по заполнению внутреннего объема корпуса (негерметизированный, герметизированный, вакуумный и др.);
  • по порядку колебаний пьезоэлемента;
  • по числу электромеханических резонансных систем (одинарный, сдвоенный и т.д.).

Активность кварцевых резонаторов является важнейшим параметром для успешной эксплуатации этих приборов. Активность пьезоэлектрического резонатора — качественная характеристика оценки способности кварцевого резонатора возбуждаться в определенных условиях. Активность резонатора не определяется полностью его собственными параметрами. Емкость схемы, в которой работает кварцевый резонатор, оказывает огромное влияние на его активность.

Практически определены оптимальные значения нагрузочной емкости для резонаторов, работающих в схеме на основной частоте колебаний и на механических гармониках. В первом случае нагрузочная емкость должна быть в пределах от 20 до 100 пФ (стандартизованные значения 20, 30, 50 и 100 пФ) и дпя резонаторов, работающих на механических гармониках (на частотах выше 15 МГц) в схемах последовательного резонанса 12, 15,120 и 30 пФ. Такие нагрузочные емкости обеспечивают сочетание высокой активности и хорошей стабильности частоты.

Режим работы кварцевого резонатора значительно ухудшается, если эксплуатировать его без учета влияния параметров схемы генератора на параметры резонатора. Условия работы кварцевого резонатора и его активность в большой мере зависят от параметров колебательного контура и режима работы кварцевого генератора.

В кварцевых резонаторах, применяемых в фильтрах, используются в основном те же виды колебаний, что и в генераторных кварцевых резонаторах. В фильтрах применяются двух- и четырехэлектродные вакуумные кварцевые резонаторы. В специальных схемах многозвенных кварцевых фильтров наиболее часто используются четырехэлектродные резонаторы как более экономичные. Наличие в любом пьезоэлементе нежелательных резонансных частот наряду с основной частотой колебаний заставляет особенно тщательно выбирать тип среза пьезоэлемента при использовании его в фильтровой схеме. Необходимо, чтобы его нежелательные резонансы были сдвинуты относительно основной частоты, а также не участвовали в основных колебаниях и не влияли на характеристику фильтра. Величина нежелательных резонансов и их сдвиг относительно основной частоты являются определяющими при выборе кварцевых резонаторов для электрических фильтров.

Для уменьшения ухода частоты резонаторов в широких пределах изменения температур используют термостатирование. Кварцевый резонатор помещают в термостат, в котором автоматически поддерживается постоянная температура.

На эквивалентные параметры кварцевых резонаторов влияет ряд причин. Следует отметить, что для практического использования существенно не само значение какого-либо эквивалентного параметра, а его изменение, вызванное переменами влияющего фактора. Динамические параметры кварцевого резонатора определяются физическими константами кварца и размерами. Эти параметры сильно зависят от внешних факторов (например, изменения механического контакта крепления пьезоэлементов в держателе).

Параметры кварцевых резонаторов

Номинальная частота – частота Fн, указанная на маркировке или в документации на кварцевый резонатор (измеряется в МГц или кГц). Базовая частота – реальная частота резонатора Fо, измеренная в заданных условиях эксплуатации. Как правило, определяются только климатические условия, а именно базовая температура окружающей среды То, (равная 25± 2°С для резонаторов со срезом типа АТ). Рабочая частота – реальная частота резонатора F, измеренная в реальных условиях эксплуатации (климатических, механических и электрических). Обычно определен только допустимый диапазон изменения рабочей температуры.

Будет интересно   Что такое подстроечный резистор: описание устройства и область его применения

Точность настройки частоты – максимально допустимое относительное отклонение базовой частоты резонатора от номинальной частоты. Измеряется в миллионных долях от номинальной частоты, обозначаемых как ppm (part per m illion) или 1•10 -6. В отдельных редких случаях значение этого параметра приводится в процентах. Как правило, значение точности настройки частоты кварцевого резонатора выбираются из стандартного ряда.

Параметры кварцевых резонаторов.

Температурная нестабильность частоты

Относительное отклонение рабочей частоты резонатора от базовой частоты.  Может быть представлено в виде зависимости от рабочей температуры T, в соответствии с формулой для кварцевых пластин с типом среза АТ и формулой (4) для кварцевых пластин остальных типов.  Долговременная нестабильность частоты (старение) – систематическое изменение базовой частоты с течением времени из-за внутренних изменений в кварцевом резонаторе. Параметр старения задается как относительное изменение базовой частоты за заданный промежуток времени. Это значение выражается в частях миллиона за год (например, 3 ppm / year ). Уход частоты под влиянием старения в максимальной степени сказывается в течение первых 30 – 60 дней эксплуатации, после чего влияние этого фактора уменьшается. Стандартный ряд относительных отклонений частоты для резонаторов общего назначения включает следующие классы точности: ±5, ±10, ±15, ±20, ±30, ±50, ±75 и ±100 ppm.

Материал в тему: устройство подстроечного резистора.

Режим работы резонатора (номер гармоники)

Режим работы резонатора – неизменяемый параметр, определяющий частоту колебания. Для кристаллов кварца может использоваться не только основная частота, но и ее нечетные гармоники – обертоны. Например, кристалл может работать на основной частоте 10 МГц, или в нечетных гармониках приблизительно 30 МГц (третий обертон), 50 МГц (пятый обертон) и 70 МГц (седьмой обертон).

Достоинства и недостатки

Кварцевый резонатор обладает высокой добротностью. Простыми словами, это затраты энергии на поддержание колебаний. Они очень малы. Точность и стабильность поддержания частоты составляют до 10-6Гц. Это максимально возможное значение среди аналогичных устройств. Еще большую точность можно получить, применив термостабилизацию задающих генераторов. Среди достоинств также высокая механическая прочность, долговечность и надежность.

Основной недостаток – невозможность перестройки. Кварцевый резонатор может работать только на частоте механического резонанса и, в крайнем случае, на гармониках – кратных частотах, превышающих основную в два и более раз. Работа на гармониках используется для генерации в диапазоне выше 50МГц, поскольку толщина пластинки кварца в таком случае очень мала, и ее изготовление и эксплуатация вызывает серьезные затруднения. Использование гармоник усложняет электрическую схему, поэтому чаще применяют генерацию на основной частоте с последующим умножением.

Использование фильтров на кварцах вместо традиционных LC цепей позволяет избавиться от габаритных катушек индуктивности и упростить настройку сложных многозвеньевых фильтров, поскольку частота резонаторов регламентирована и выдерживается в строгих параметрах.

Кварцевые резонаторы

Кварцевый резонатор применяется в гетеродинах радиоприемников в качестве частотозадающего колебательного резонансного
LC контура. Благодаря малым потерям энергии в данном резонаторе удается достигнуть добротности порядка нескольких тысяч.

Рассмотрим, как устроены кварцевые резонаторы, и на каких принципах они работают. Они изготавливаются из кристаллов
кварца. Кварцевые кристаллы известны в природе как горный хрусталь, аметист или раухтопаз. В качестве примера на рисунке 1
приведена фотография друзы кристаллов раухтопаза.

Добываются природные кристаллы кварца в основном на рудниках Бразилии. Красивое видео, снятое на руднике в Калифорнии
приведено ниже.

Природные кристаллы кварца содержат в себе большое число неоднородностей. Кроме того, они дороги, поэтому в настоящее
время в основном применяются искусственно выращенные кристаллы кварца. Кварцевые кристаллы выращиваются из щелочных растворов
в автоклавах при температуре 400 C° и давлении около 2000 атм. Процесс выращивания кварцевого кристалла длится
от 30 до 45 дней.

Особенностью кристалла кварца является то, что он обладает пьезоэффектом. Пьезоэффект обуславливается особым строением
кристалла кварца. Он представляет собой правильную шестиугольную призму. Схематически расположение ионов кислорода и кремния
в кристалле кварца изображено на рисунке 2.

В кристалле явным образом наблюдается электрическая ось x и механическая ось y. При сжатии кристалла вдоль
механической оси y ионы отрицательные кислорода вытесняются с одной стороны, а положительные ионы кремния с
другой. В результате возникает разность потенциалов. Сжатие или растяжение по оси Z не вызывает появления
зарядов на гранях. Поэтому ось Z называется оптической.

Благодаря симметричности кристалла кварца механическую и электрическую оси можно провести тремя разными
способами. Эффект при этом не изменится. На рисунке 3 показано, как нужно вырезать пластинку из кристалла
кварца для того, чтобы на ее краях возникала разность потенциалов.

Срез, показанный на рисунке 3, получил название XT-срез. Изменение размеров XT среза кварцевой пластинки при
прикладывании разности потенциалов к ее поверхности приведен на рисунке 4.

XT-срез применяется для изготовления низкочастотных кварцевых резонаторов. Например, часовых резонаторов на частоту
32768 кГц. Чертеж часового кварцевого резонатора приведен на рисунке 5. Он выполнен в виде вилки камертона.
Эта форма, как и в музыкальной технике, позволяет получить очень высокую добротность резонатора

Точность прибора

Кроме точности частоты, не меньшее значение имеет её термостабильность. Если температура в помещении в течение года может изменятсья в диапазоне около 15°С, то и частота резонатора может значительно «уплывать».

Для достижения максимально высокой точности измерения потребуется либо точный кварц на 16 МГц, либо другой поверенный частотомер, которым можно будет измерить реальную частоту используемого кварца и сделать на это поправку (в коде прошивки, либо вручную пересчитывать результат измерений).

Но как быть, если нет ни первого, ни второго? Тут мне видится такое решение: вместо эталонного источника частоты можно использовать системные часы компьютера. Если часы синхронизируются по протоколу NTP, а в версии 4 этот протокол способен обеспечить точность до 10 мс (1/100 с) при работе через Интернет (и до 0.2 мс и лучше внутри локальных сетей). Имея такой точный источник времени, можно написать прошивку, реализующие часы для частотомера. Если запустить такие часы на длительное время, то погрешность их хода будет накапливаться, и рано или поздно достигнет легко измеряемой величины. Тогда не составит труда вычислить погрешность кварца по погрешности хода часов, что позволит либо попробовать отобрать кварц с частотой, максимальной близкой к 16МГц, либо скомпилировать прошивку для измеренной частоты кварца. Подробнее об этом тут

Излишки печатных плат есть в магазине сайта.

Источник

Рассмотрим эти параметры более подробно:

  • Изменение частоты генерации (Frequency Deviation, FD). Схема стенда для измерения частоты кварцевых генераторов приведена на рис. 13, измерения также производятся без контакта с элементами схемы и при изменении напряжения питания в заданных заказчиком пределах. Величину отклонения частоты генерации от номинальной частоты кварцевого резонатора представляют в относительных единицах – + или – ∆f/fном.х10-6.
  • Мощность возбуждения (Drive Level DL). При мощности возбуждения (рассеяния), превышающей максимально допустимую, в выходном сигнале кварцевого генератора могут появляться побочные излучения, возможны перескоки частоты генерации, а также может ухудшаться стабильность частоты генерации. Чтобы определить мощность рассеяния, необходимо измерить величину тока в цепи кварцевого резонатора. Схема стенда, используемая NDK для измерения тока, приведена на рис. 14, по осциллографу определяют размах тока в цепи кварцевого резонатора, затем по формуле Irms=Ip-p/2√2 вычисляют действующее значение тока, мощность определяется формулой P=Irms2 Rload (мкВт), где Rload– сопротивление на переменном токе в цепи резонатора. Сопротивление Rload зависит от параметров резонатора, величин емкостей схемы и сопротивления Rd (см. рис. 10), типовая зависимость мощности рассеяния от емкостей схемы приведена на рис. 15.

Как уже было сказано, в лабораториях NDK постоянно проводится ряд тестов по определению типов кварцевых резонаторов, в наибольшей степени подходящих для использования совместно с микропроцессорами и БИС основных серий таких компаний, как STM, TI, Microchip, NXP, Renesas и др.

В результате NDK имеет и готовы предоставлять своим клиентам данные по одобренным и рекомендованным компонентам NDK для работы с теми или иными чипсетами и модулями.

Также NDK предлагает своим клиентам провести тесты плат заказчика в своих лабораториях, на основе которых NDK даст свои рекомендации по работе чипсета и частотозадающих элементов в конкретной схеме заказчи

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: