Правило буравчика

Общее (главное) правило

Рассматриваемая методика применима не только для решения электротехнических задач. Общие принципы справедливы для многих процессов, которые описывают с применением векторных обозначений. Эта форма позволяет, кроме амплитуды, оперировать с направлением силы. В определенной ситуации результирующее воздействие определяется умножением соответствующих векторов.


Декартова система координат

На практике чаще используют первый пример на картинке – правый (положительный) базис. В соответствии с базовым определением подразумевается совмещенное положение векторов. В этом варианте кратчайший поворот от первого (i) ко второму (j) выполняется против направления движения стрелок на циферблате чатов.

Для произведения двух векторов

Удобный для практического применения закон буравчика создан с учетом типовых технических решений. Шурупы и другие крепежные изделия, как правило, изготавливают с аналогичной резьбой (правой). Это соответствует физиологии человека, позволяет развивать большие усилия естественным движением кисти руки.


«Оружейное» мнемоническое правило

Запомнить метод буравчика можно с помощью показанной на рисунке конфигурации пальцев, которой изображают «пистолет». Для устойчивой ассоциации с определенными физическими величинами нужно вспомнить англоязычную аббревиатуру американских спецслужб (ФБР – FBI). При таком расположении пальцы будут показывать следующие вектора:

  • большой – ток в проводнике (I);
  • указательный – магнитную индукцию (B);
  • средний – силовое воздействие (F).

Для базисов

Аналогичным образом запоминают ориентацию векторных составляющих при рассмотрении базисов. Также применяют мнемоническое правило на основе часов. В таком варианте два вектора ассоциируются со стрелками часов. Результат умножения направлен в глубину механизма либо к наблюдателю, соответственно.

Общее главное правило

У правила есть несколько вариаций, используемых для частных случаев. Однако главный вариант может применяться для многих случаев. Удобнее всего использовать в векторном произведении положительный вектор и в базисе правую упорядоченную тройку. При таком подходе у сомножителей будет положительный знак и не придется учитывать, где ставить минус, а где нет. Правым базисом называется упорядоченная тройка векторов, расположенных так, что кратчайший путь по порядку осуществляется против часовой стрелки. Если три пальца (кроме мизинца и безымянного) расставить перпендикулярно друг другу и принять их за оси Ox, Oy, Oz для среднего, указательного и большого пальцев соответственно, то получится правый базис. Предпочтителен выбор положительного вектора или базиса в силу удобства подсчетов. Но возможно использование и левого базиса. К примеру, его выбирают для задач, в которых применение положительного значения невозможно.

Для векторного произведения

Для него это правило:

  1. Если вы изобразите векторы так, чтобы их начальные координаты совпали;
  2. А также приступите к кручению нашего первого ВС (вектор-сомножитель) ко второму ВС самым быстрым способом;
  3. Тогда наш бур будет завинчиваться в сторону ВП (вектора-произведения).

Нетрудно заметить, как сильно изменилась формулировка: она заметно усложнилась и её намного тяжелее воспринимать без картинки, чем все остальные. Однако можно несколько упростить себе задачу и переформулировать с использованием часовой стрелки:

  1. Если вы изобразите векторы таким образом, чтобы их начальные координаты совпали;
  2. А также приступите к кручению нашего первого ВС ко второму самым быстрым способом и станете наблюдать с того ракурса, чтобы это кручение располагалось для вас по часовой стрелке;
  3. Тогда ВП будет направлен от вас.

Использование стрелок делает всё намного проще, не правда ли?

Этого материала хватит для полного понимания темы. В следующем абзаце предлагаю рассмотреть, как это же правило будет выглядеть для базисов, в частности, для правого.

Для базисов

Это правило будет работать и для базисов почти аналогично. В правом базисе при вращении штопора, направленного по одному из векторов, по наиболее короткому пути ко второму вектору закручивание инструмента укажет направление третьего вектора. Для простоты запоминания представляют настенные часы: две вектора — это стрелки, а третий направлен к или от наблюдателя (выбор будет определять ориентацию всего базиса, то есть будет он правым или левым).


Правило буравчика универсально и подходит для определения многих векторов, так как зачастую в таких законах используются базисы и векторное произведение, которые подчиняются одним определенным законам. Также используют для уравнения Максвелла, которые описывают поле индукции в сплошной среде и его влияние на точечные заряженные частицы.

Примечания

Математические детали общего понятия ориентации базиса, о котором здесь идёт речь — см. в статье Ориентация.

Под определением направления здесь везде имеется в виду выбор одного из двух противоположных направлений (выбор между всего двумя противоположными векторами), то есть сводится к выбору положительного направления.

Это означает, что другие правила могут быть также удобны в любом количестве, но их использование не является необходимым.

Это означает, что при желании можно пользоваться и противоположным правилом, и иногда это может быть даже удобно.

Понятие правого и левого базиса распространяются не только на ортонормированные, но на любые трехмерные базисы (то есть и на косоугольные декартовы координаты тоже), однако мы для простоты ограничимся здесь случаем ортонормированных базисов (прямоугольных декартовых координат с равным масштабом по осям).

Можно проверить, что в целом это действительно так, исходя из элементарного определения векторного произведения: Векторное произведение есть вектор, перпендикулярный обоим векторам-сомножителям, а по величине (длине) равный площади параллелограмма. То же, какой из двух возможных векторов, перпендикулярных двум заданным, выбрать — и есть предмет основного текста, правило, позволяющее это сделать и дополняющее приведённое здесь определение, указано там.

Левая резьба применяется в современной технике только тогда, когда применение правой резьбы привело бы к опасности самопроизвольного развинчивания под влиянием постоянного вращения данной детали в одном направлении — например, левая резьба применяется на левом конце оси велосипедного колеса

Помимо этого, левая резьба применяется в редукторах и баллонах для горючих газов, чтобы исключить подсоединение к кислородному баллону редуктора для горючего газа.

В том числе они могут быть в своих случаях и более удобными, чем общее правило, и даже иногда сформулированы достаточно органично, чтобы особенно легко запоминаться; что, правда, по-видимому, всё же не делает запоминание их всех более лёгким, чем запоминание всего одного общего правила.

Даже если мы имеем дело с достаточно асимметричным (и асимметрично расположенным относительно оси вращения) телом, так что коэффициентом пропорциональности между угловой скоростью и моментом импульса служит тензор инерции, несводимый к численному коэффициенту, и вектор момента импульса тогда вообще говоря не параллелен вектору угловой скорости, тем не менее правило работает в том смысле, что направление указывается приблизительно, но этого достаточно, чтобы сделать выбор между двумя противоположными направлениями.

Строго говоря, при этом сопоставлении есть ещё постоянный коэффициент 2, но в данной теме это не важно, так как речь идет сейчас только о направлении вектора, а не о его величине. Не обязательное требование.. Не обязательное требование.

Не обязательное требование.

Опыт Ленца

Для ответа на заданные вопросы проводится следующий опыт. На концах легко вращающегося коромысла закрепляются два проводящих кольца – одно сплошное, а другое с разрезом.


Рис. 1. Опыт демонстрирующий правило Ленца.

Теперь, если взять постоянный магнит и внести его в кольцо с разрезом – ничего не произойдет. Однако, если попытаться внести постоянный магнит в сплошное кольцо – коромысло начнет вращаться, уводя кольцо от магнита.

Данное явление можно объяснить только возникновением тока в сплошном кольце. Этот ток, в свою очередь, порождает новое магнитное поле, которое и начинает взаимодействовать с полем постоянного магнита. В кольце с разрезом ток не возникает, и взаимодействующего поля нет.

Вспоминаем ПДД

Многие автомобилисты часто придерживаются не совсем верной формулировки: кто справа, тот и прав. Это неправильное утверждение. Правило «правой руки» применяется на нерегулируемых перекрестках из равнозначных дорог.

Что такое нерегулируемый перекресток:

  • здесь нет регулировщика;
  • отсутствуют светофоры;
  • светофоры есть, но они неисправны.

Равнозначными дорогами являются дороги, имеющие одинаковое покрытие.

Это можно определить визуально или с помощью следующих предупреждающих знаков:

  • «конец главной дороги»;
  • «пересечение равнозначных дорог».

Именно на таких участках необходимо соблюдать ПДД в части правила помехи справа. Здесь преимущества остаются за транспортными средствами, движущимися по правую сторону. Водители автомобилей, находящихся слева, всегда уступают дорогу.

Прочие ситуации, где применяется правило помехи справа

На прилегающих территориях

Территории возле жилых домов, торговых центров, рынков, на парковках и автостоянках являются прилегающими к определенному объекту. Здесь также действует правило помехи справа, но оно, к сожалению, в большинстве случаев не соблюдается безответственными автолюбителями.

В спальных районах населенных пунктов, как правило, есть много примыкающих к главной дороге, выходящих со дворов путей.

Как понять, что есть помеха справа в данной ситуации, если отсутствуют соответствующие знаки или таблички? Чтобы не было проблем, старайтесь не превышать скорость и будьте готовы уступать всем.

При перестроении

Перестроение может быть:

  • одновременным, когда два автомобиля пытаются перестроиться: один – с правой полосы на левую, второй – с левой на правую;
  • односторонним, когда один автомобиль движется прямо, второй пытается перестроиться на его полосу.

Помеха справа при перестроении действует лишь в первой ситуации. В этом случае водитель с левой полосы может перестроиться в правую только после того, как пропустит транспортное средство справа.

Но, если автомобили движутся по левой полосе прямо и никуда не собираются перестраиваться, то водитель, желающий перестроиться влево, должен пропустить прямо идущие ТС.

Нестандартные ситуации

На нерегулируемом инспекторами ГИБДД или светофорами перекрестке с равнозначными дорогами вполне может произойти ситуация, когда действия водителей не попадают ни под правила помехи справа, ни под какие-либо другие ПДД.

К перекрестку могут одновременно подъехать четыре автомобиля, которым необходимо, не меняя направления движения, пересечь данный участок. В этом случае приоритет отсутствуют у каждого транспортного средства. Недоразумение должно решиться водителями.

Опытные автомобилисты всегда пропустят своих коллег и только после этого начнут движение. Благо, что такая обстановка на перекрестках создается крайне редко.

Выезжая с придомовой территории, невнимательный или неопытный водитель может решить, что его автомобиль для всех является помехой справа, и ему обязательно должны уступить дорогу. Так машина может получить удар в бок.

Выезд со двора всегда является второстепенной дорогой. Поэтому в данном случае лучше пропустить все ТС, которые передвигаются по главной дороге.

Хорошо, что среди водителей в большинстве случаев соблюдается правило помехи справа. Но на дорогах всегда надо внимательно следить за обстановкой, предупреждающими знаками и сигналами, подающимися другими водителями. Здесь всегда может возникнуть нестандартная ситуация. Поэтому убедитесь, что вам действительно уступили дорогу, и только потом спокойно продолжайте движение.

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила

Правило часовой стрелки

.Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки .

Правило винта

.Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока .

Как видите, ток и поле меняются ролями — по сравнению с формулировками этих правил для случая прямого тока.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки

.Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас .

Правило винта

(илиправило буравчика , илиправило штопора — это уж кому что ближе ;-)).Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока .

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля

, илимагнитной индукцией . Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служитсиловой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах

(Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции

. Он заключается в том, чтоиндукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий —так называемых линий магнитного поля

. Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс — красным цветом и буквой

Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса

Правило Буравчика

Расположим рядом с проводником несколько магнитных стрелок и пустим в проводнике ток — стрелки сориентируются в магнитном поле проводника (рис. 3.1, а). Северный полюс каждой стрелки укажет направление вектора индукции магнитного поля в данной точке, а значит, и направление магнитных линий этого поля.

С изменением направления тока в проводнике изменится и ориентация магнитных стрелок (рис. 3.1, б). Это означает, что направление магнитных линий зависит от направления тока в проводнике.

Рис. 3.1. Определение направления линий магнитной индукции магнитного поля проводника с током с помощью магнитных стрелок

Определять направление линий магнитной индукции с помощью магнитной стрелки не всегда удобно, поэтому используют правило буравчика:

Если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление магнитных линий магнитного поля тока (рис. 3.2, а);

или иначе:

Если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление магнитных линий магнитного поля тока (рис. 3.2, б).

Рис. 3.2. Определение направления линий магнитного поля проводника с током с помощью правила буравчика

От чего зависит модуль индукции магнитного поля проводника с током

Вспомните: магнитное действие проводника с током первым обнаружил X. Эрстед в 1820 г. А вот почему это открытие не было сделано раньше? Дело в том, что с увеличением расстояния от проводника магнитная индукция созданного им поля быстро уменьшается. Поэтому, если магнитная стрелка расположена не вблизи проводника с током, магнитное действие тока почти незаметно.

Рис. 3.3. Линии магнитной индукции магнитного поля прямого проводника с током. Проводник расположен перпендикулярно плоскости рисунка; крестик означает, что сила тока в проводнике направлена от нас

Магнитная индукция зависит также от силы тока: с увеличением силы тока в проводнике магнитная индукция созданного им магнитного поля увеличивается.

Магнитное поле катушки с током

Свернем изолированный провод в катушку и пустим по проводу ток. Если теперь вокруг катушки разместить магнитные стрелки, то к одному торцу катушки стрелки повернутся северным полюсом, а к другому — южным (рис. 3.4). Это означает, что около катушки с током существует магнитное поле.

Рис. 3.4. Исследование магнитного поля катушки с током с помощью магнитных стрелок

Как и полосовой магнит, катушка с током имеет два полюса — южный и северный. Полюсы катушки расположены на ее торцах, и их легко определить с помощью правой руки:

Если четыре согнутых пальца правой руки направить по направлению тока в катушке, то отогнутый на 90° большой палец укажет направление на северный полюс катушки, то есть направление вектора магнитной индукции внутри катушки (рис. 3.5).

Рис. 3.5. Определение полюсов катушки с током с помощью правой руки

Сравнив магнитные линии постоянного полосового магнита и катушки с током, увидим, что они очень похожи (рис. 3.6). Заметим: магнитная стрелка, подвешенная катушка с током и подвешенный полосовой магнит ориентируются в магнитном поле Земли одинаково.

Подводим итоги:

Около проводника с током существует магнитное поле. Магнитная индукция поля, созданного током, уменьшается с увеличением расстояния от проводника и увеличивается с увеличением силы тока в проводнике.

Направление линий магнитной индукции магнитного поля проводника с током можно определить с помощью магнитных стрелок или правила буравчика.

Катушка с током, как и постоянный магнит, имеет два полюса. Их можно определить с помощью правой руки: если четыре согнутых пальца правой руки направить по направлению тока в катушке, то отогнутый на 90° большой палец укажет направление на ее северный полюс.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Шунт и добавочное сопротивление
  • Электродвижущая сила
  • Электрические измерительные приборы
  • Электрическое поле Земли
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Закон взаимодействия прямолинейных параллельных проводников с током
  • Сила Лоренца

Электродинамика и магнитостатика

Магнитная индукция представляет собой векторный фактор, который характеризует силовое поле. Величина показывает влияние магнитного фона на отрицательно и положительно заряженные частицы в исследуемом пространстве. Индукция определяет силу влияния поля на заряд, перемещающийся с заданной скоростью. Для этого случая законы применения описываются так:

  • Правило винта. Если поступательное круговое движение буравчика совпадает с направлением заряженных электронов в катушке, то путь поворота ручки инструмента будет совпадать с курсом магнитного вектора полярной индукции, направление при этом зависит от тока.
  • Принцип правой кисти. Если взять стержень в правую кисть так, что отставленный под прямым углом палец демонстрирует курс тока, то другие пальцы будут соответствовать направлению луча магнитной индукции, продуцируемого током. Путь магнитного вектора индукции прокладывается касательно линии отрезков.

Для подвижного проводника

В стержне из металла находится большое число свободных электронов, движение которых характеризуется как хаотичное. Если катушка движется в силовом электромагнитном поле вдоль линий, то фон отклоняет электроны, перемещающиеся одновременно с проводником. Их движение создает ЭДС (электродвижущую силу) и называется электромагнитной наведенной индукцией.

Ток будет протекать под действием разности потенциалов при подсоединении такой катушки к внешней цепи по замкнутому контуру. При передвижении стержня по направлению силовых линий снижается до нуля воздействие поля на заряды. Не возникает электродвижущая сила, нет напряжения, отсутствует ток электронов.

Вам это будет интересно  Описание и разновидности вводно-распределительных устройств (ВРУ)

ЭДС индукции равняется произведению рабочего размера проводника, скорости движения стержня и значения магнитной индукции. Ее направление устанавливается по закону правой руки. Ладонь располагается так, чтобы в нее были направлены линии силового поля, а отогнутый под 90° большой палец ставится вдоль движения стержня. В этом положении четыре распрямленных пальца покажут курс тока индукции.

Нахождение ЭДС по Максвеллу

Электродвижущее давление будет возникать при каждом пересечении стержня и силового поля. Результативным будет перемещение проводника, самого поля или изменение электромагнитных характеристик силового пространства.

ЭДС, полученная в контуре при состыковке его с изменяющимся силовым полем, измеряется скоростью трансформации магнитного потока. Направление индуцированной движущей силы идет так, что продуцируемый ею электрический ток противодействует реконструкции потоков магнитного излучения.

Изменение тока ведет к реформированию создаваемого им магнитного потока. Проходя через пространство, магнитное излучение стыкуется с соседними проводниками и со своим. В стержне наводится электродвижущая сила, которая носит название самоиндукции. Явление означает поддержку тока при его уменьшении и ослабление движения электронов при увеличении силы тока.

Если вращать буравчик по путям завихрения пространства, где возникают векторы, то его движение покажет направление кручения ротора. Это можно проследить, если четыре сжатых пальца правой кисти поставить по курсу завихрения. В этом случае отогнутый палец укажет путь движения ротора.

Для магнитного вектора индукции правила буравчика совпадают с законом Ампера — Максвелла. Но к электротоку через контур добавляется скорость трансформации силового поля через эту конфигурацию, а магнитное поле воспринимается только в случае его перемещения в пределах очертания.

Применение правил левой кисти:

  • Ладонь ставится так, чтобы индукционные линии входили в центр внутренней стороны, а пальцы соответствовали токовому направлению. Отставленный большой палец определит путь силы, оказывающий давление на стержень со стороны силового поля. Мощь носит наименование силы Ампера.
  • При втором варианте ладонь располагается так, чтобы линии силового поля входили под прямым углом в плоскость руки, а пальцы располагались по направлению перемещения положительных электронов или в противоположную сторону от отрицательных частиц. Тогда палец под углом 90° укажет путь приложения силы Лоренца.

Правило правой кисти для соленоида: нужно взять катушку индуктивности в правую руку так, чтобы пальцы показывали путь тока в оборотах, отставленный под 90° большой палец определит курс магнитных линий во внутренней части устройства. Зная полярность, легко вычислить путь прохождения электрического тока.

Действие магнитного поля на ток. Правило левой руки.

Поместим между полюсами магнита проводник, по кото­рому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.

Объяснить это можно следующим образом. Вокруг провод­ника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направ­лены так же, как и силовые линии магнита, а по другую сто­рону проводника — в противопо­ложную сторону. Вследствие это­го с одной стороны проводника (на рисунке 1 сверху) маг­нитное поле оказывается сгущен­ным, а с другой его стороны (на рисунке 1 снизу) — разрежен­ным. Поэтому проводник испыты­вает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.

Рисунок 1. Действие магнитного поля на ток.

Правило левой руки

Для быстрого определения направления движения провод­ника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).

Рисунок 2. Правило левой руки.

Правило левой руки состоит в следую­щем: если поместить левую руку между полюсами маг­нита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца ру­ки совпадали с направлением тока в проводнике, то боль­шой палец покажет направ­ление движения проводника.

Итак, на проводник, по которому протекает электри­ческий ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказы­вается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая нахо­дится в магнитном поле (рисунок 3 слева).

Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.

Рисунок 3. Сила взаимодействия магнитного поля и тока.

Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изобра­жено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плос­кость, перпендикулярную магнитным силовым ли­ниям. Отсюда следует, что если проводник паралле­лен магнитным силовым линиям, то сила, дейст­вующая на него, равна нулю. Если же проводник перпендикулярен направ­лению магнитных силовых линий, то сила, действую­щая на него, достигает наибольшей величины.

Сила, действующая на проводник с током, зави­сит еще и от магнитной индукции. Чем гуще рас­положены магнитные си­ловые линии, тем больше сила, действующая на проводник с током.

Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:

Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную маг­нитному потоку.

Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Дей­ствие магнитного поля на ток можно наблюдать даже при от­сутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.

Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электроди­намических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп — магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.

Похожие материалы:

  • Магнитное поле тока. Магнитные силовые линии
  • Напряженность магнитного поля
  • Магнитная индукция
  • Электромагнитная индукция
  • Правило правой руки
  • Взаимоиндукция
  • Самоиндукция
  • ЭДС самоиндукции: основные послулаты
  • Постоянные магниты

Комментарии

Громова Ева 27.02.2018 18:58 Спасибо большое за статью!

Цитировать

асаев антон 04.09.2014 04:56 спасибо создателю сайта

Цитировать

Обновить список комментариев

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: