Закон ома для электрической цепи

Для переменного тока

Нужно понимать, что закон не применим напрямую к переменным цепям, например, с катушками индуктивности, конденсаторами или линиям передач. Закон может использоваться только для чисто резистивных цепей переменного тока без каких-либо изменений. В цепи RLC противодействие току является импедансом Z, который образует комбинацию двух ортогональных частей сопротивления.


Переменный ток

Im=Vm/Z

В этом случае Vm связано с Im с помощью константы пропорциональности Z (импеданса) и константы пропорциональности R. Для чисто резистивных линий, где (Z = R).

Vm = ImZ и Vm = ImR

Z — это общее сопротивление участка к переменному току, состоящее из реальной части — сопротивления и мнимой — реактивности.

Формула ее определяется теоремой Пифагора, поскольку угол Ф зависит от реактивной составляющей.


Интегральная форма

Закон полного тока

Пусть произвольная замкнутая линия l пронизывает проводник с током (рисунок 1), то есть они сцепляются друг с другом как два звена цепи. Вокруг проводника возникает магнитное поле.

Рисунок 1. Закон полного тока

Построим вектор напряженности H, создаваемой током в точке А, расположенной на линии l. Если линия охватывает несколько проводников с током, то для каждого тока строятся векторы напряженности в данной точке линии. Складывая геометрически отдельные векторы напряженности, находим вектор результирующей напряженности магнитного поля.

Вектор результирующей напряженности H в общем случае образует с элементом длины Δl угол α. Поэтому продольная или тангенциальная составляющая Hl результирующей напряженности H будет:

Hl = H × cos α.

Если разбить замкнутую линию на n элементов длины и сложить произведения длин всех элементов на тангенциальные составляющие результирующей напряженности в этих элементах, получим следующую сумму:

Эту сумму можно представить так:

где знак означает сумму от k = 1 до k = n.

В теоретической электротехнике доказывается, что указанная сумма равна алгебраической сумме токов, сцепляющихся с контуром суммирования подобно тому, как сцепляются между собой два смежных звена цепи.

Следовательно, можно записать так:

Эта формулировка называется законом полного тока. Для случая, когда контур многократно пронизывает один и тот же виток, как, например, при наличии обмотки с числом витков w, полный ток будет:

Если замкнутый контур суммирования совпадает с магнитной линией, то вектор напряженности в любой точке контура будет направлен по касательной к элементу длины Δl.

В этом случае

и закон полного тока принимает вид:

Если значение напряженности для всех точек контура при этом одинаково, а сумма Δl по контуру равна l, то формула закона полного тока запишется так:

Закон полного тока является основным законом при расчете магнитных цепей и дает возможность в некоторых случаях легко определять напряженность поля.

Например, применяя закон полного тока для определения напряженности на расстоянии a от прямолинейного проводника с током, имеем:

l = 2 × π × a .

Поэтому

H × 2 × π × a = I ,

откуда

Рисунок 2. К определению напряженности поля катушки, намотанной на кольцо

Чтобы определить напряженность поля внутри катушки, намотанной на кольцо (рисунок 2), воспользуемся опять законом полного тока. Контуром здесь является окружность радиуса r. Контур пронизывает w витков с токами одного направления:

H × 2 × π × r = I × w .

Обозначая длину средней линии кольца через l = 2 × π × r , получаем:

H × l = I × w ,

откуда

Таким образом, напряженность поля катушки пропорциональна произведению числа ампер на число витков или числу ампер-витков. I × w называется намагничивающей силой и обозначается буквой F. Так как w – число отвлеченное, то намагничивающая сила измеряется в амперах.

Магнитная индукция внутри катушки будет:

Если площадь поперечного сечения кольца по всей длине одинакова и равна S, то, зная магнитную индукцию B, можно определить магнитный поток Ф:

Эту же формулу можно представить в ином виде:

По своему строению эта формула напоминает формулу Ома. Выше было указано, что произведение I × w называется намагничивающей силой. Выражение

стоящее в знаменателе, называетсямагнитным сопротивлением и обозначается буквой Rм: Из этой формулы видно, что магнитное сопротивление пропорционально длине пути и обратно пропорционально сечению материала, по которому проходит магнитный поток.

Таким образом, магнитный поток Ф пропорционален намагничивающей силе F и обратно пропорционален магнитному сопротивлению Rм:

Рисунок 3. Закон полного тока для вакуума

Единицы измерения

При выполнении расчетов по закону Ома используют совместимые единицы в СИ. Если отличны от «Ом»- для сопротивления, «Ампер» — для тока и «Вольт» — для напряжения, то перед выполнением расчетов выполняют преобразование единиц измерения. Например, килоомы должны быть переведены в омы, а микроамперы — в амперы.

Сопротивление — это свойство любого объекта или материала сопротивляться, или противостоять потоку электротока. Единицей его принят «Ом». Аббревиатура для электросопротивления — R, а символ — греческая буква омега. Для некоторых электрорасчетов используется его обратная величина проводимость — 1/R, символ, которой имеет обратное значение омеги.

Вам это будет интересно Особенности работы тока

Вольт — это энергия в 1 Дж, потребляемая, когда в цепи протекает электрозаряд в 1 кулон: 1 В = 1 Дж / 1С. Ампер измеряет количество электрического заряда, который течет в электроцепи за 1 секунду: 1А = 1С / 1сек.


Треугольник Ома

Взаимосвязь между величинами легко получить по треугольнику Ома. Это простой способ запомнить отношения напряжения, тока и сопротивления. Он служит уловкой, чтобы найти любую из трех величин, учитывая, что две другие известны.

При этом величины U, I и R расположены в виде треугольника, как показано на рисунке выше. Напряжение (U) находится наверху, а две другие величины, то есть ток (I) и сопротивление , расположены ниже рядом друг с другом горизонтально. Разделение между верхней и нижней частями указывает на деление, а линия, разделяющая левую и правую части на умножение.

Закон Ома — формула

Формула закона Ома может быть использована, когда известно две из трех переменных. Соотношение между сопротивлением, током и напряжением может быть записано по-разному. Для усвоения и запоминания может быть полезен «треугольник Ома».

или

или

  Ниже приведены два примера использования такого треугольного калькулятора.

Имеем резистор сопротивлением в 1 Ом в цепи с падением напряжения от 100В до 10В на своих выводах.Какой ток протекает через этот резистор?Треугольник напоминает нам, что:  
Имеем резистор сопротивлением в 10 Ом через который протекает ток в 2 Ампера при напряжении 120В.Какое будет падение напряжения на этом резисторе?Использование треугольника показывает нам, что:Таким образом, напряжение на выводе будет 120-20 = 100 В.  

Закон Ома для замкнутой цепи

Если к источнику питания подключить внешнюю цепь сопротивлением R, в цепи пойдёт ток с учётом внутреннего сопротивления источника:

I – Сила тока в цепи. Электродвижущая сила (ЭДС) – величина напряжения источника питания не зависящая от внешней цепи (без нагрузки). Характеризуется потенциальной энергией источника.

r – Внутреннее сопротивление источника питания. Для электродвижущей силы внешнее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I =/(R+r) .

Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR.

Напряжение U, при подключении нагрузки R, всегда будет меньше чем ЭДС на величину произведения I*r, которую называют падением напряжения на внутреннем сопротивлении источника питания. С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы. По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника, значит уменьшается внешнее напряжение U = – I*r. Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U.

Если ток в цепи равен нулю, следовательно, = U. Цепь разомкнута, ЭДС источника равна напряжению на его выводах. В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС (≈ U ) независимо от сопротивления внешней цепи R. Такой источник питания называют источником напряжения.

Вектор магнитной индукции. Сила Ампера и сила Лоренца

При прохождении тока по проводнику вокруг него образуется магнитное поле. Векторную характеристику магнитного поля называют вектором магнитной индукции . Это поле оказывает на рамку с током, помещенную в поле, ориентирующее действие. Такое действием магнитного поля на рамку с током или магнитную стрелку можно использовать для определения направления вектора магнитной индукции. За принимается направление, который показывает северный полюс N магнитной стрелки. Для определения направления вектора магнитной индукции поля, созданного прямолинейным проводником с током, пользуются правилом буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика указывает направление вектора магнитной индукции.

направление вектора магнитного поля прямого проводника с током.

Если между полюсами подковообразного магнита поместить проводник с током, то он будет втягиваться или выталкиваться из поля магнита. Закон, определяющий силу, действующую на отдельный небольшой участок проводника, был установлен в 1820 г. А. Ампером.

Сила действия однородного маг­нитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F=B.I.ℓ. sin α — закон Ампера.

  • Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.
  • Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.

Направление силы Ампера (правило левой руки) Если левую руку расположить так, чтобы перпендикулярная составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током.

Макроскопическим проявлением силы Лоренца является сила Ампера. Запишем силу, действующую на одну частицу. Если заряженная частица влетает в магнитное поле со скоростью , на нее со стороны магнитного поля действует сила, которую называют силой Лоренца: , a

– угол между векторами и .

  • В однородном магнитном поле, направленном перпендикулярно вектору скорости, под действием силы Лоренца заряженная частица будет равномерно двигаться по окружности постоянного радиуса r. Сила Лоренца в этом случае является центростремительной силой:
  • Если заряженная частица движется в магнитном поле так, что вектор скорости составляет с вектором магнитной индукции угол a , то траекторией движения частицы является винтовая линия с радиусом r.

Если расположить левую руку так, чтобы составляющая магнитной индукции , перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движению положительного заряда, то отогнутый на 900 большой палец укажет направление действующей на заряд силы Лоренца Fл

.

Формула закона полного тока

В этом разделе приведены формулы для уточненных расчетов и примеры типовых конструкций. Для интегральных вычислений вполне подходит закон Гаусса, который применяют в электростатике.

Интегральная формула закона полного тока

Пояснения:

  • L – обозначает замкнутый контур, созданный по произвольной траектории;
  • векторы В и r направлены перпендикулярно;
  • dl (dl0) – элементы произвольной части (силовой линии), соответственно;
  • ϕ – угол между элементами.

Из формулы на рисунке понятно, что циркуляция вектора индукции не равняется нулю. Такие поля называют «соленоидальными» или вихревыми. В отличие от электродинамики, в данном случае отсутствуют потенциальные характеристики. Как и в базовом определении, полный ток определяется циркуляцией магнитной индукции (векторное выражение) по контуру произвольной формы, окружающему сумму токов.

Формула для расчета индуктивности, которую создает длинный соленоид

В этом примере n – число витков обмотки на единицу длины основы.

Расчет параметров поля внутри тороида

Параметры:

  • количество сделанных витков – N;
  • внешний, внутренний и произвольный радиусы – R1, R2 и r.

Следует помнить! Вне тороида магнитное поле равно нулю.

Рассмотренные методики расчетов применяют с учетом реальных условий. Особое значение при выборе компонентов конструкций уделяют ферромагнитным свойствам сердечника. Проводники для обмоток выбирают с запасом, учитывая максимальную силу тока источника.

Закон Ома и резистор

Резисторы являются пассивными элементами, которые оказывают сопротивление потоку электрического тока в цепи. Резистор, который функционирует в соответствии с законом Ома, называется омическим сопротивлением. Когда ток проходит через такой резистор, то падение напряжения на его выводах пропорционально величине сопротивления.

Формула Ома остается справедливой и для цепей с переменным напряжением и током. Для конденсаторов и катушек индуктивности закон Ома не подходит, так как их ВАХ (вольт-амперная характеристика) по сути, не является линейной.

Формула Ома действует так же для схем с несколькими резисторами, которые могут быть соединены последовательно, параллельно или иметь смешанное соединение. Группы резисторов, соединенные последовательно или параллельно могут быть упрощены в виде эквивалентного сопротивления.

В статьях о параллельном и последовательно соединении более подробно описано как это сделать.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: