Требования ПУЭ
В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:
- Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
- При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
- Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
- Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
- В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
- Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
- ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
- Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
- При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
- Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.
В процессе производства, преобразования, транспортировки, распределения и потребления электроэнергии используется трехфазная симметричная система проводов. Достичь такой симметричности стало возможно путем приведения фазных и линейных напряжений в одинаковое состояние. В результате, на всех фазах образуется равномерная токовая загрузка, а также одинаковый сдвиг фаз токов и напряжений.
Однако во время функционирования всей этой системы рано или поздно возникают аварийные ситуации в виде обрыва провода, пробоя изоляции и прочих специфических неисправностей, приводящих к нарушениям симметрии трехфазной системы. Последствия таких нарушений должны быть устранены как можно скорее. Большую роль в этом играет степень быстродействия релейной защиты, на работу которой влияет изолированная и глухозаземленная нейтраль. Каждый из этих режимов имеет свои достоинства и недостатки и применяется в наиболее подходящих условиях. В любом случае от их состояния во многом зависит нормальное функционирование релейной защиты.
Сеть с глухозаземленной нейтралью
Рядовые потребители электрической энергии редко понимают, что источником тока в розетке являются силовые трансформаторы. При соединении трёхфазных обмоток трансформатора в «звезду» появляется совместная точка. Нейтраль – так она называется. При соединении нейтрали с контуром заземления непосредственно у источника появляется глухозаземленная нейтраль.
Наибольшая область применения систем с глухозаземленной нейтралью – напряжение до 1000 Вольт (так называемое низкое напряжение). Электрические сети городов и посёлков, дачные домики и элитные коттеджи – все они запитываются от силовых трансформаторов с заземлѐнной нейтралью.
Особенности конструктива
Конструктивной особенностью глухозаземленной нейтрали является наличие фазного и линейного напряжения. Источники электрической энергии, используемые в рассматриваемых электроустановках, обладают тремя силовыми: фазными концами и одним нейтральным – нулевым. Разность потенциалов, появляющаяся между фазными проводами, называется линейным напряжением, а между одним из фазных и нулевым – фазным.
По величине показателя линейного напряжения говорят о напряжении всей электросети. В нашей стране оно зафиксировано на значениях, равных 220В, 380В и 660В.
√3 раз – такова разница между фазным и линейным напряжением. Соответственно, фазное напряжение будет принимать вид 127 В, 220 В и 380 В. Самое распространённая величина номинального напряжения – 380 В. При линейном напряжении 380 В фазное равно 220 В.
Электрическую сеть с нейтралью, заземлённой непосредственно рядом с источником, можно использовать для электроснабжения трехфазных нагрузок на напряжение 380 В и однофазных на напряжение 220 В. Для последних подключение производится между «фазой» и «нулём». Распределение однофазных потребителей производят равномерно по фазам А, В и С во избежание перекоса.
Контур заземления ТП
Любая трансформаторная подстанция с действующим трансформатором обязана быть окружена контуром заземления. Контур заземления трансформаторной подстанции – это таким образом соединённые между собой металлические заземлители, заглублённые в грунт, чтобы сопротивление их не превышало 4-х Ом при номинальном напряжении 380 В. Это значение закреплено в главном нормативном документе электротехники – ПУЭ.
От контура заземления подстанции делаются выводы для присоединения в распределительном устройстве к специальной металлической полосе – нулевой шине. К ней же подключается нулевой вывод трансформатора. У отходящих кабельных линий соответствующие жилы так же заводятся на эту шину. Фазные жилы «сажаются» на коммутационные аппараты.
Кабели, выходящие из кабельного полуэтажа подстанции, должны быть четырёхжильными. В давно введённых в эксплуатацию электроустановках встречаются кабели с тремя жилами и оболочкой из алюминия. В этом случае она используется как нулевой проводник.
Для принятия напряжения от сетевой организации каждый потребитель обязан организовать у себя на объекте вводное распределительное устройство 0,4 кВ (ВРУ). В нем необходимо предусмотреть нулевую шину соответствующего сечения. К ней присоединяются все нулевые жилы подходящих и отходящих кабелей. Повторное заземление ВРУ тоже заводится на нулевую шину.
Система TN и ее подсистемы, их особенности, достоинства, недостатки
Общая особенность системы TN сводится к тому, что нейтраль источника питания имеет глухое заземление (подключено к заземляющему контуру, установленному рядом с подстанцией).
К этому заземлению и подключаются открытые участки электрической проводки посредством нулевых проводников.
Имеющиеся подсистемы как раз и разделяются по способу подключения этих проводников к заземлению.
TN-C.
Система TN-C – один из самых распространенных видов заземления, который на данный момент является уже устаревшим, но часто встречается в домах старых построек.
Она отличается тем, что проводники N и PЕ (рабочий и защитный), объединены в единый по всей системе – PEN-проводник.
Широкое распространение эта система получила благодаря простоте монтажа и экономичности, поскольку не требует укладки и подключения дополнительных проводов. Это и является ее основными достоинствами.
Но в этой системе не предусмотрено отдельное защитное заземление. То есть, на конечной точке электропроводки жилого дома – розетке, оно отсутствует, что значительно понижает безопасность использования электроприборов в жилье.
Присутствующий же в системе PEN-проводник подводится только к электрощитам – вводному и этажному.
Из-за этих конструктивных особенностей при монтаже новых линий электросетей, а также реконструкции, уже существующих запрещено использовать данную систему.
Для повышения безопасности нередко используется зануление, позволяющее бороться с короткими замыканиями, которые могут возникнуть в сети.
Если замыкание произойдет, зануление обеспечит срабатывание автоматических выключателей для обесточивания электросети дома.
TN-S.
В новых постройках система TN-C уже не применяется, для них более предпочтительна система TN-S.
Она характеризуется тем, что рабочий и защитный нулевой проводники – раздельны по всей системе. То есть, проводка включает в себя отдельно N и PE-проводники.
Эта система отличается обеспечением высокой степени безопасности человека и защиты оборудования и электроприборов, поскольку защитное заземление имеют даже конечные точки электросети.
К тому же, в ней не образовываются высокочастотные помехи, которые могут возникать в первой системе во время использования пылесоса, дрели и прочих электроприборов.
К достоинствам этой системы также относится отсутствие надобности в периодической проверке состояния контура заземления.
При этом стоимость прокладки такой системы очень высокая. Обусловлено это тем, что при монтажных работах необходимо укладывать многожильные кабели.
Для однофазной сети кабель должен содержать 3 жилы (фазная, рабочая нулевая N и защитная PE).
А для трехфазной – кабель нужен уже 5-жильный (3 фазных – А, В, С, а также N и РЕ).
Именно высокая стоимость и является основным недостатком этой системы.
TN-C-S.
Последняя подсистема – TN-C-S объединяет в себе конструктивные особенности двух предыдущих систем.
Основное ее отличие заключается в том, что от подстанции на жилой дом идет PEN-проводник. Но на определенном этапе производится его разделение на рабочий N-проводник и защитный РЕ-проводник.
Обычно разделение делается на вводно-распределительном устройстве (ВРУ), то есть, на входе в дом.
При этом после разделения для PE-проводника делается повторное заземление, путем соединения его с заземляющим контуром дома.
После расщепления к квартирным щиткам уже подводится раздельные нулевые проводники, что позволяет создать защитное заземление на конечных точках сети. То есть, получается, что до ВРУ идет система TN-C, а после него – уже TN-S.
Такая система достаточно перспективная у нас, поскольку позволяет быстро и с небольшими затратами модернизировать систему TN-C, тем самым значительно повысив безопасность при использовании бытовыми электроприборами.
Но есть у нее и один недостаток, который сводится к тому, что в случае повреждения PEN-проводника, проводка полностью лишается заземления, что может привести к поражению электрическим током, поскольку корпусы электроприборов могут оказаться под напряжением.
Эффективно-заземлённая нейтраль | Электротехнический журнал
Эффективно-заземлённая нейтраль (трех-фазной электроустановки) — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.
Термин «глухозаземлённая нейтраль» в сетях выше 1000В в данный момент не применяется. Электроустановки, в которых нейтраль соединяется с заземляющим устройством непосредственно, также относятся к электроустановкам с эффективно-заземлённой нейтралью.
Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.
Иначе говоря при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза
Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше
В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше.
Недостатки
- Возникновение больших токов короткого замыкания (ТКЗ) через заземлённые нейтрали трансформаторов при замыкании одной фазы на землю, что должно быть быстро устранено отключением от устройств релейной защиты. Большинство коротких замыканий на землю в сетях 110 кВ и выше относятся к самоустранимым и электроснабжение обычно восстанавливается АПВ.
- Удорожание сооружения контура заземления, способного отводить большие токи к.з.
- Значительный ток однофазного к.з., при большом количестве заземлённых нейтралей трансформаторов может превышать значение трёхфазного тока к.з. Для устранения этого вводят режим частично разземлённых нейтралей трансформаторов (часть трансформаторов 110-220 кВ работают с изолированной нейтралью: нулевые выводы трансформаторов присоединяются через разъединители, которые находятся в отключённом состоянии). Ещё одним из способов ограничения тока к.з. на землю-это заземление нейтралей трансформаторов через активные токоограничивающие сопротивления.
Особенности выполнения эффективно заземлённой нейтрали
Согласно ПТЭЭП максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.
Примечания
- ПУЭ — правила устройства электроустановок, издание 6-е и 7-е.
- ПТЭЭП — правила технической эксплуатации электроустановок потребителей.
Просмотров всего: 135, Просмотров за день: 1
www.el-info.ru
- Эффективно заземленная нейтраль и глухозаземленная отличия
- Испытания кабеля из сшитого полиэтилена 10 кв
- Испытания кабеля из сшитого полиэтилена 10 кв
- Плюсы и минусы тэц
- Плюсы и минусы тэц
- Разъединитель шинный 10 кв
- Разъединитель шинный 10 кв
- Разъединитель рндз
- Разъединитель рндз
- Протокол испытания кабеля сшитого полиэтилена
- Протокол испытания кабеля сшитого полиэтилена
Виды нейтралей в электрических сетях
Электрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В.
Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду.
Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.
Виды заземления нейтрали в сетях до 1кВ
В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:
- 1-ая буква описывает способ заземления нейтрали источника питания
- T (terra) – нейтраль глухозаземленная
- I (isolate) – нейтраль изолирована (и – изолирована, легко запомнить)
- 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей
- N (neutral) – ОПЧ заземлены через глухозаземленную нейтраль источника питания
- T – ОПЧ заземлены независимо от источника питания
В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C — combine, S — separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.
Рассмотрим теперь каждую систему более подробно.
Система заземления TN
В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль.
Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).
В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.
Система заземления TT
Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.
Система заземления IT
В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо.
Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания.
Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.
Виды заземления нейтрали в электросетях выше 1кВ
В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.
Сети с незаземленной (изолированной) нейтралью
Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.
Сети с эффективно-заземленной нейтралью
Этот вид заземления используется в сетях напряжением выше 110кВ.
Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы.
В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.
Сети с нейтралью, заземленной через резистор или реактор
Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.
Заземление через реактор – при отсутствии замыкания ток через реактор мал.
Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора.
Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).
Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю.
Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно.
Низкоомное заземление наоборот используется при больших емкостных токах.
Выбор виды заземления нейтрали зависит от следующих факторов:
- величина емкостного тока сети
- допустимая величина однофазного замыкания
- возможности отключения однофазного замыкания
- вида и типа релейных защит
- безопасности персонала
- наличия резерва
Принцип работы глухозаземленной нейтрали
Сначала необходимо понять, что является определением понятия глухозаземленная нейтраль. Согласно ПУЭ этот способ предполагает прямое соединение нейтрали трансформатора с заземляющим элементом. В электротехнике такой способ заземления принято называть рабочим. Также необходимо помнить, что в электроустановках, рассчитанных на напряжение 220−380 вольт, сопротивление заземляющих элементов не должно превышать показатель в 4 Ом.
Принцип действия глухозаземленной нейтрали можно продемонстрировать на примере трехпроводной электроцепи, соединяющей источник энергии с жилым домом. При ее создании нейтраль просто распределяется по щитку, и к ней подключаются все заземляющие контуры потребителей. Такая цепь не предполагает наличия различных устройств, которые могут нарушить ее единство.
Если предположить, что по причине частых вибраций в холодильнике от места крепления отсоединился фазный проводник и вступил в контакт с корпусом, то такая ситуация является аварийной. Все это приводит к появлению короткого замыкания и стремительному увеличению силы тока. Однако автоматический выключатель быстро справляется с поставленной задачей и размыкает цепь. Если человек случайно дотронется до провода, то поражения током не произойдет, ведь сопротивление R0 будет меньше в сравнении с возникающим при прохождении через человеческое тело.
Плюсы и минусы способа
Глухозаземленная нейтраль имеет больше преимуществ и меньше недостатков в сравнении с изолированной. Среди преимуществ можно отметить:
- Появляется возможность использовать оборудование с таким уровнем изоляции, который был изначально запланирован.
- Отпадает необходимость в использовании специальных защитных схем.
- Эффективно справляется с подавлением перенапряжения.
Достоинства и недостатки изолированной нейтрали
Несомненным достоинством режима изолированной нейтрали является отсутствие необходимости быстрого отключения первого однофазного замыкания на землю. Кроме того, в местах повреждений образуется малый ток, при условии малой токовой емкости на землю.
Однако этот режим имеет ряд существенных недостатков, из-за которых его использование существенно ограничено.
Основные недостатки изолированной нейтрали:
- Возможные дуговые перенапряжения перемежающегося характера дуги малого тока в месте однофазного замыкания на землю.
- Повреждения могут возникнуть во многих местах по причине пробоя изоляции на других соединениях, где возникают дуговые перенапряжения. По этой причине выходят из строя сразу многие кабели, электродвигатели и другое оборудование.
- Дуговые перенапряжения воздействуют на изоляцию в течение продолжительного времени. В результате, в ней постепенно накапливаются дефекты, что приводит к снижению срока эксплуатации.
- Все электрооборудование необходимо изолировать на линейное напряжение относительно земли.
- Места повреждений довольно сложно обнаружить.
- Реальная опасность поражения людей электротоком в случае продолжительного замыкания на землю.
- При однофазных замыканиях не всегда может быть обеспечена правильная работа релейной защиты, поскольку значение реального тока замыкания полностью связано с режимом работы сети, в частности, с количеством включенных присоединений.
Таким образом, большое количество недостатков перекрывает все достоинства данного режима заземления. Однако в определенных условиях этот метод считается достаточно эффективным и не противоречит требованиям ПУЭ.
Оборудование и средства для измерения сопротивления заземления
Основным прибором, которым производятся измерения сопротивления растекающимся токам, является измеритель заземления ИС-10. Данный прибор работает в пяти диапазонах измерения, что объясняет его широкое применение. Минимальным диапазоном является сопротивление от 0,01 до 9,99 Ом, затем следуют диапазоны 0,1–99,9 Ома, 1–999 Ом, 0,01–9,99 кОма. Максимальное сопротивление, определяемое этим прибором, составляет диапазон от 1 до 999 мОм. В сочетании с прибором для измерений используются выносные токовые и потенциальные электроды.
Следует отметить, что измерительная схема заземления собирается по строгим правилам – соединительные проводники прибора, в первую очередь, к токовым и потенциальным электродам, затем к прибору и в последнюю – к заземлителю.
Способы включения нейтрали
Специфика работы высоковольтных (ВВ) систем состоит в том, что в случае обрыва или повреждения линии, сопровождающегося замыканием отдельного провода на землю, токи утечки могут достигать очень больших величин.
В соответствии с этим защитные меры, предпринимаемые в таких сетях, заметно отличаются от аналогичных действий в цепях конечного потребителя.
Для сетей 6-35 киловольт характерны перечисленные ниже режимы заземления нейтрали:
- прямое соединение с ЗУ, обустроенным непосредственно у подстанции или у высоковольтной опоры (глухозаземленная нейтраль заземления);
- подключение через специальный дугогасящий реактор или компенсатор;
- использование для этих целей системы заземления, при которой нейтраль подключается через резистор;
- без подключения к ЗУ в границах защищаемой линии или объекта (изолированная нейтраль).
Установка специальных компенсационных элементов в цепи включения нейтрального проводника способствует снижению емкостных составляющих токов замыкания.
В процессе работы такой цепочки эти токи удаётся нейтрализовать за счёт плавного изменения индуктивности катушки, напряжение в которой имеет обратную фазу.
https://youtube.com/watch?v=pkRcral1-qI
При определённом значении индуктивности ток в точке замыкания заземлителя на землю снижается до нулевого значения. Для повышения эффективности действия такого заземления параллельно индуктивности включается резистор, обеспечивающий условия для стекания активной составляющей тока, используемой для срабатывания высоковольтного реле защиты. Остальные варианты включения нейтрали будут рассмотрены отдельно ниже.
Без этого устройства используемые схемы включения не могут эффективно выполнять свои защитные функции, поскольку при случайном обрыве нейтрального проводника силовое оборудование подстанций останется незащищённым.
Возможен ещё один вариант, при котором заземление нейтрали в сетях 6-35 кВ осуществляется через включение общей точки в питающую сеть, называемый эффективным заземлением и реализуемый через создание практически идеальных условий для стекания тока в землю.
Однако он считается слишком дорогостоящим и применяется обычно лишь на питающих подстанциях с входными напряжениями 110 киловольт и выше.
Принцип действия сетей с глухозаземленной нейтралью
Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:
- Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
- Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
- Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
- В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.
В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.
Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.
Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.
Движение тока при КЗ на корпус
Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.
При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.
Устройство и принцип действия сетей с глухозаземлённой нейтралью
Принцип работы источников электроэнергии, в частности, понижающих трансформаторов основан на законе взаимоиндукции и передаче энергии по магнитному сердечнику. Первичная обмотка при этом может и не иметь нулевого провода, в отличие от вторичной, где соединение его с нулём через проводник с низким сопротивлением, который можно приравнять с нулевым значением, будет являться эффективным средством защиты от поражения человека опасным для его жизни и здоровья напряжением.
Главной особенностью сетей с глухозаземлённой нейтралью является появление не только линейного, но и фазного напряжения. Что это такое и чем оно отличается друг от друга, рассмотрим на примере простой принципиальной схемы.
Фазное напряжение — это потенциал между одним из проводов линии и нулевой точкой, присоединенной к земле, то есть наглухо заземлённой. Линейное напржение — разница потенциалов между двумя выводами линий, то есть L1 и L2, L1-L3, или же L2-L3, называется оно также межфазное. Такие источники электрической энергии в бытовых условиях имеют распространенное значение напряжения в виде 380 В — линейного, и 220 — фазного. Линейное напряжение больше фазного на √3, то есть на 1,72.
Но основная задача такой системы это не только транспортировка к потребителю двух систем электроснабжения с разными номиналами и разными количеством фаз, но и защита человека при пробое изоляции и появлении напряжения в точках, которые в нормальном состоянии не имеют опасного потенциала. В жилых зданиях это:
- корпуса всех бытовых приборов, которые проводят электрический ток, то есть сделаны из стали или другого токопроводящего металла;
- металлоконструкции щитовых и распределительных устройств;
- защитная оболочка кабелей.
Также для обеспечения безопасности все перечисленные выше элементы должны быть заземлены, именно в этом случае опасность от использования напряжения и применения бытовых приборов в сетях с глухозаземлённой нейтралью будет минимальна. При этом для таких цепей обязательна равномерность распределения однофазных нагрузок.