Как обнаружить короткозамкнутые витки

Последствия короткого замыкания проводки

Во время КЗ падает напряжение и растет сила тока в электрической цепи. Этот процесс представляет собой большую опасность:

  • В местах соприкасания проводников элементов приборов появляется источник возгорания, что часто становится причиной пожаров.
  • Возникающие электромагнитные волны оказывают влияние на линии коммуникаций и связи.
  • Упавшее напряжение вызывает сбои в работе бытовой техники и электрооборудования, вплоть до серьезных поломок.
  • Может возникнуть целая цепь аварий, которая приводит к полному отключению потребителей электроэнергии от системы до устранения причины короткого замыкания электропроводки.

Это интересно. Люди научились использовать КЗ в своих целях. Например, на принципе этого явления основана работа короткозамыкателей. Это специальные приборы для преднамеренного замыкания цепи с целью защитного отключения высоковольтных линий в случае возникновения аварийных ситуаций.

Польза короткого замыкания

На основе короткого замыкания зародилась дуговая сварка, которая используется на производстве. Точка контакта стержня и металлическая поверхность нагревается до температуры плавления, металлическая конструкция соединяется в единое целое. Например, современные кузова автомобилей скреплены именно посредством короткого замыкания – дуговой сварки.

Как мы увидели, короткое замыкание может приносить разрушения, если сила тока используется не по назначению. Если правильно управлять энергией, можно достичь отличных технических достижений.

Рассмотрим особый случай параллельного соединения проводников — так называемое короткое замыкание.

Им называется параллельное включение в цепь проводника с очень маленьким сопротивлением. Рассмотрим пример. Пусть лампы и выключатель соединены так, как показано на схемах

Обратите внимание, что выключатель и вторая лампа соединены параллельно, кроме того, замкнутый выключатель на правой схеме — проводник с очень маленьким сопротивлением. Следовательно, согласно определению,на правой схеме существует короткое замыкание лампы

Пусть, например, напряжение источника тока подобрано так, что при разомкнутом выключателе обе лампы светятся не очень ярко — в полнакала (поэтому на первой схеме они наполовину закрашены). Если же выключатель замкнуть, то левая лампа будет гореть ярко, а правая лампа вообще погаснет. Таким образом, увеличение яркости левой лампы указывает нам, что при существовании в цепи короткого замыкания сила тока резко возрастает.

Согласно закону Джоуля-Ленца, возрастание силы тока может привести к перегреванию проводов и возникновению пожара. Объясним, почему левая лампа загорается ярче. Вспомним, что при параллельном соединении проводников их общее сопротивление становится меньше меньшего из них, то есть даже меньше, чем сопротивление выключателя (у которого оно и так почти равно нулю). Согласно закону Ома, уменьшение сопротивления приводит к возрастанию силы тока. А возрастание тока, согласно закону Джоуля-Ленца, приводит к более сильному накалу спирали левой лампы. Объясним теперь, почему гаснет правая лампа. Поскольку при параллельном соединении проводников напряжение на каждом из них одинаково, то напряжения на правой лампе и на выключателе одинаковы. По закону Ома U=I·R. Как мы выяснили в предыдущем абзаце, сопротивление этого соединения почти равно нулю, то есть R»0. Подставляя ноль в формулу, получим: U=I·0=0. То есть, напряжение на выключателе и лампе равно нулю (точнее, очень маленькое). Такого напряжения явно недостаточно, чтобы поддерживать свечение лампы, поэтому она гаснет.

Для защиты электроприборов от короткого замыкания применяют предохранители.

Их назначение — отключать электроэнергию в случае, если ток возрастает больше допустимой величины. На рисунке справа вы видитеавтоматический предохранитель с винтовым цоколем как у лампы. Такие предохранители (в просторечии «пробки») вворачивают в специальные патроны, которые укрепляют на стене. Существуют такжеплавкие предохранители. В них основной деталью является тонкая (диаметром около 0,1 мм) проволочка из олова или свинца (см. рисунок ниже). В случае сильного возрастания тока она практически мгновенно плавится, и цепь размыкается, прерывая ток. В отличие от «многоразовых» автоматических предохранителей, плавкие предохранители являются одноразовыми электроприборами.

Если предположить, что провода, подводящие ток к квартирной проводке, сделаны из алюминия и имеют диаметр 1 мм, то площадь сечения свинцовой проволочки окажется в 100 раз меньше. Кроме того, заглянув в таблицу, мы увидим, что удельное сопротивление свинца примерно в 10 раз больше, чем у алюминия. Следовательно, сопротивление проволочки примерно в 1000 раз больше сопротивления алюминиевого провода такой же длины. Поскольку провод и предохранитель (то есть проволочка внутри него) соединены последовательно, то сила тока в них одинакова. Так как по закону Джоуля-Ленца Q=I2Rt, следовательно, количество теплоты, выделяющееся в проволочке, в каждый момент времени в 1000 раз больше, чем в проводе. Именно поэтому проволочка плавится, а электропроводка остаётся в сохранности. В настоящее время плавкие предохранители практически не применяются в технике, уступив место автоматическим.

Что нужно знать о приборе, чтобы прозванивать провода

Если вы планируете прозвонить проводку в квартире, нужно знать о мультиметрах несколько принципиально важных фактов. В первую очередь стоит отметить, что проверить провод можно самым простым прибором. Вполне подойдёт недорогая китайская модель с минимальными возможностями.

Но при этом удобнее всего использовать устройство, в котором есть сама функция прозвонки. Для того чтобы установить ручку прибора в соответствующее положение, необходимо повернуть её в направлении значка диода (как вариант, дополнительно может быть нанесено изображение звуковой волны). Это означает, что при проверке целостности провода при замыкании контактов прозвучит звуковой сигнал.

Но наличие звукового сопровождения совершенно необязательно для прозвонки проводов мультиметром. О том, что цепь разорвана, будет свидетельствовать единица на дисплее, показывающая, что уровень сопротивления между щупами выше, чем предел измерений. Если же на исследуемом участке повреждений нет, на экран будет выведено значение сопротивления, которое в идеале должно стремиться к нулю (при условии работы в бытовых сетях небольшой протяжённости).

Схема прибора для проверки межвиткового замыкания

Схема прибора описывалась в журнале «Радио» №7 за 1990 год, но до сих пор не потеряла свою актуальность благодаря своей простоте и надежности. С таким пробором проверка межвиткового замыкания осуществляется за считанные секунды.

Собранный для сайта тестер немного отличается от этой схемы. О внесенных изменениях в схему читаем в конце статьи.

Основу тестера составляет измерительный генератор. Он собран на транзисторах VT1, VT2. Частота этого генератора не постоянная и зависит от колебательного контура, который образуется конденсатором С1, а также подключаемой катушкой, она подсоединяется к ХР1 и ХР2. Резистором R1 устанавливается нужная глубина положительной обратной связи, для обеспечения надежной работы измерительного генератора. VT3, включен в диодном режиме, он создает нужный сдвиг напряжения между эмиттером VT2 и базой VT4.

VT4, VT5 представляют собой генератор импульсов, вместе с усилителем мощности на транзисторе VT6 способен обеспечить горение светодиода в трех различных режимах: не горит, мигает с постоянной частотой, а также простое свечение. Выбор режима работы генератора импульсов определяется напряжением смещения на базе транзистора VT4.

При сборке устройства целесообразно проверять правильность схемы постепенно. Проверку работоспособности генератора импульсов можно осуществить подключением переменного резистора на 1 кОм, как показано на схеме. Вращая движок этого резистора можно убедиться, что генератор импульсов работает правильно во всех режимах

При установки сопротивления 200-300 Ом, важно убедиться, что происходит мигание светодиода

Работа тестера осуществляется следующим образом. Если выводы тестера замкнуты, измерительный генератор не возбуждается вовсе, VT2 будет открытым. Напряжения на эмиттере VT2, а значит, на базе транзистора VT4 будет недостаточно, что бы заработал генератора импульсов. VT5, VT6 в таком случае будут открыты, а диод будет гореть постоянно, что сигнализирует о целостности цепи.

В случае подключения к измерительным выводам устройства исправной катушки,припустим, осуществляется проверка трансформатора на межвитковое замыкание, а также произведя подстройку с помощью R1, измерительный генератор начнет возбуждаться. На эмиттере VT2 напряжение будет увеличиваться, это все приведет к увеличению напряжения смещения на базе VT4, а также пуска генератора импульсов. Диод должен мигать.

Если окажется, что обмотка, которую проверяют, имеет короткозамкнутые витки, тогда измерительный генератор не будет возбуждаться, а прибор заработает также, как и в случе замкнутых выводов (контрольный диод засветится).

Когда измерительные выводы будут отключены или появится обрыв, тогдаVT2 будет закрыт. Напряжение на его эмиттере, а это значит, что и на базе VT4 возрастает. Он открывается до насыщения, а колебания генератора импульсов будут сорваны. VT5, VT6 закроются, а контрольный диод не засветиться вовсе.

Еще одной особенностью этого тестера есть возможность проверки p-n переходов. Подключая к аппарату кремниевый диод или транзистор (анод к ХР1, катод к ХР2), контрольный светодиод должен мигать. При пробое светодиод просто горит, а в случае обрыва не светится.

Вместо VT1— VT3 можно ставитьКТ358В или КТ312В. КТ361Б легко заменяются на КТ502, КТ209. При использовании светодиода необходимо последовательно с ним включать сопротивление около 30-60 Ом.; питания прибора осуществляется от источника — 3В. При использовании кроны целесообразно применить стабилизатор на 3,3В.

Иногда в крайнем правом положении переменного резистора, а также разомкнутых щупах тестера диод может засветиться. Необходимо изменить сопротивление резистора R3 (немного его увеличить), добиться, чтобы диод потух.

Когда проверяются катушки небольшой индуктивности, интенсивность перестройки переменного резистора, возможно, будет чрезмерной. Можно с легкостью выйти из этого положения включением последовательно с резистором R1 дополнительного переменного резистора с небольшим максимальным сопротивлением, например 1 кОм.

Как получить двуполярное питание из однополярного — искусственная средняя точка

Одним из самых больших недостатков данной схемы является двухполярное питание. Более практично и удобно питать тестер межвиткового замыкания от батареи типа «Крона» (9 В) и сформировать искусственную среднюю точку. Используя простую схему, работа которой описана в книге «Стабилизаторы напряжения и тока на ИМС (СИ)» Успенский Б. можно получить искусственную среднюю точку.

Из применяемых деталей в схеме:

  • операционный усилитель: mc34072 (или любой другой аналог типа LM393)
  • транзисторы SS8050 и SS8550 (можно и более слабую пару, с рабочим током коллектора не менее 200-300 мА)
  • электролитические конденсаторы 22 мкФ с рабочим напряжением 16 В.

Внимание! При наладке схемы ни в коем случае не стоит устраивать КЗ со средней точкой, моментально выходит из строя один из транзисторов, а также выходит из строя ОУ

Универсальный агрегат

При помощи многофункционального прибора для проверки межвиткового замыкания можно безошибочно измерить сопротивление между обмоткой и корпусом. В рабочем состоянии разница полученных данных остается незначительной. Если полученный показатель превышает отметку 11 процентов, то качественного ремонта не избежать. Мастеру придется заменить всю обмотку, которая будет иметь меньшее сопротивление. Основные ремонтные работы должны быть направлены на перематывание неисправных деталей. Такие манипуляции доступны только в специальных условиях. Работу можно доверить исключительно специалистам.

Несколько полезных советов

Если ваша постройка имеет солидный возраст, старую электропроводку лучше всего поменять полностью. Короткое замыкание может произойти в любом другом месте, поскольку изоляция проводников уже потеряла нужные свойства. Если обнаружите, что какой-то из выключателей или розетка начинают искрить – лучше сразу же заменить их. Именно в таких местах возникают очаги повышенной вероятности замыкания. Если по каким-то причинам защитные автоматы и УЗО (устройство защитного отключения) не установлены – необходимо эту недоработку устранить, иначе последствия могут быть плачевными. Такое упущение наблюдается в старых зданиях. Если устанавливается новая электропроводка, сечение кабеля обязательно должно быть с запасом, чтобы не перегреть жилы во время больших нагрузок. Для этого вы должны чётко представлять себе, какие электроприборы будут подключаться и где.

Чётко выполняя все вышеуказанные рекомендации, можно устранить короткое замыкание проводов собственными силами, не имея для этого специального образования и навыков.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками

Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.

Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.

Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.

Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.

С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.

При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.

Как найти межвитковое замыкание

Замыкание витков легко определить, для этого есть несколько методов

Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора

Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.

Причины короткого замыкания

Чаще всего такая авария случается зимой. При наступлении холодов все включают электроконвекторы, электронагреватели, «дуйчики» и прочее. В сети поднимается нагрузка и нагревается провод. В старых проводках из-за этого часто ослабевают контакты, греется и может даже оплавиться изоляция. В результате возникает КЗ.

В других случаях к замыканию приводят банальные повреждения кабеля. Со временем ухудшается прочность изоляции, защищающей проводник, теряются ее свойства. В итоге, она может осыпаться или пробиться напряжением с фазного провода. Далее фаза и нейтраль спаиваются, от чего и возникает авария.

Также изоляция может повредиться механически. Например, если передавить кабель стулом или зацепить электрокосой. Вскрывается внешняя оболочка и оголенная часть фазы соприкасается с нейтралью. Иногда аварии случаются во время ремонта. Например, если кто-то сверлит стену или забивает гвоздь и случайно попадает в провод.

Повредить проложенный в стене кабель могут не только люди, но и грызуны. Особенно, если это частный дом или какое-либо подсобное помещение. Мыши и крысы с легкостью выедают дыры в деревянных досках, потому полиэтиленовая или ПВХ изоляция им вообще не преграда. При прорезании оболочки, оголенные проводники могут соприкоснуться, не без помощи того же грызуна.

Иногда урон проводке наносят и домашние питомцы. Например, коты и собаки часто играют с проводами и могут прокусить изоляцию. В результате сомкнутся контакты, и пострадает, не только животное, но и квартира.

Неправильно выбранный уровень пылевлагозащиты также может стать причиной КЗ. Например, если в ванной поставить розетку с низким показателем IP (незащищенную от влаги), в ней со временем будет скапливаться конденсат, а как известно вода — прекрасный проводник. Замкнутся контакты, и резко начнет повышаться температура. В итоге возникнет оплавление и деформация, вследствие чего оголившаяся «фаза» может соприкоснуться с «нулем».

Иногда сырость скапливается под обивкой и облицовкой. От этого на кабеле появляется плесень. Со временем повреждается оболочка, и влага проникает внутрь. Влага соединяет контакты и «мокрое место» начинает коротить и искриться. От этого происходит нагревание, и оболочка уже начинает плавиться. Как только соприкасаются контакты, проводка горит по всей длине.

Тем не менее часто короткое замыкание возникает и от банального нарушения техники безопасности. Например, раскололась или выпала розетка, а Вы продолжаете ею пользоваться. При нагрузке в поврежденной розетке ослабевают контакты, и в один момент фаза «отвалится» и соприкоснется с нулем.

Наверное, каждый в своей жизни видел ситуацию, когда в одну розетку натыкана куча тройников и электроприборов. От этого увеличивается нагрузка, розетка греется и уменьшается прочность контактов. Под весом переходников розетка может «с мясом» вырваться со стены. В результате повреждения «фаза» соприкоснется с «нулем» и возникнет КЗ.

Иногда КЗ случается и не по вине пользователей. Например, если рядом с квартирой находится стройка, и при включении мощного строительного оборудования возникают скачки напряжения. Резкое падение ниже 200В в однофазной сети выводит из строя чувствительное электрооборудование, особенно электронику. При поломке контакт противоположных полюсов может случиться внутри корпуса или на плате, из-за чего начнет гореть вся проводка.

Как говорится, «лучшая защита — это нападение», а лучший способ защититься от короткого замыкания — найти и устранить потенциальные его причины.

Что такое КЗ и причины его возникновения

КЗ (короткое замыкание) – это контакт между проводами с разными потенциалами. В домашней проводке чаще всего возникает КЗ между фазным и нулевым проводом, а при трехфазной проводке возможно замыкание между фазами, а также между одной из фаз и нулевым проводником.

Поскольку сопротивление проводов электропроводки незначительное, то при КЗ резко увеличивается величина тока, вызывающая резкий нагрев проводников. Если не сработает автомат защиты, то нагрев может достичь критических величин и вызвать возгорание изоляции и легко воспламеняющихся материалов.

Основные причины возникновения КЗ в бытовой электропроводке:

  • старение изоляции приводит к ее разрушению, особенно в местах пересечений и перегибов. На состояние изоляции оказывает разрушающее воздействие высокая влажность;
  • механическое повреждение изоляции между проводами. Очень часто подобное повреждение возникает из-за вбивания обычного гвоздя прямо в скрытую в стене проводку. При проведении различных строительных работ рекомендуется определиться с расположением проводки в стене;
  • проводка не рассчитана на реальную потребляемую мощность, поэтому в процессе эксплуатации проводка нагревается, а изоляционный слой плавится;
  • в любом электрическом приборе может возникнуть неисправность, которая приведет к КЗ в сети;
  • известны случаи возникновения короткого замыкания из-за крыс, перегрызающих кабель.

Виды индикаторов короткого замыкания

Типы индикаторов ИКЗ для ВЛ-6-10-35-110кв рассмотрим на примере ведущего производителя Horstmann (Германия).

У них очень хорошо представлена вся линейка от простейших моделей только с визуальной индикацией (подошел ножками – посмотрел), до умных экземпляров с передачей данных и записью в память самых важных параметров.

Сводная таблица по всем разновидностям представлена ниже.

Самым простым является индикатор Navigator-LM (до 46кВ).

Технические характеристики

Такое “странное” напряжение (46кВ) обусловлено необходимостью обеспечить универсальность датчиков для систем эл.снабжения в разных странах.

Датчик обладает только локальной индикацией (без возможности удаленной передачи данных). Что называется, подошел – посмотрел.

Внутри корпуса находятся светодиоды, которые при протекании через прибор тока КЗ и его сработке, начинают моргать с заданной периодичностью.

Одиночное мигание – одно КЗ. При неуспешном АПВ – двойное мигание. Светодиоды хорошо видно даже в яркий солнечный день.

Заявленная видимость – до 50м (ночью до 150м). Такое свечение можно легко увидеть даже не выходя из машины.

Сравните это с двумя еле различимыми лампочками в американских Fault Indicators.

Сброс сработавшего состояния может происходить:

вручную

через заданный промежуток времени после КЗ

при восстановлении тока нагрузки

при восстановлении напряжения (подали U на ЛЭП без подключения самих потребителей)

Для высокого напряжения 110кв есть разновидность HV (рассчитаны до 161кВ).

Корпус ИКЗ выполнен из полиамида устойчивого к ультрафиолету. Все металлические детали из нержавейки.

Механизм крепления к проводу у всех моделей очень надежный и проверяется производителем в аэродинамической трубе на скорости воздуха 200км/ч.

То есть, индикатор не сползет в середину пролета при большом уклоне и вибрации проводов.

Минимальный диаметр провода на который можно “насадить” ИКЗ начинается от 4-8мм (в зависимости от модели). То есть, на проводе АС-35 (d-8,4мм), не говоря уже про АС-50 (d-9,6мм) и выше, индикатор будет сидеть как влитой.

Класс защиты IP68. Температура эксплуатации от -40С до +85С. Ограничение температуры вызвано наличием батарейки внутри корпуса.

Сам полиамид выдерживает конечно и большие температуры, а вот батарейка нет. По поводу замены аккумулятора не переживайте, срок его службы – около 20лет.

Замена АКБ элементарная. Сбоку откручивается крышечка, достается аккумулятор и ставится новый. Состояние заряда постоянно контролируется.

Вообще световая индикация гораздо надежнее всяких ИКЗ с роторно-поворотным механизмом.

Никогда точно не знаешь, в рабочем они состоянии или что-то у них заклинило или примерзло в наших суровых зимних условиях.

Светодиоды запрятаны в прозрачную полусферу из поликарбоната, также устойчивого к УФ. С годами он не потускнеет.

Данный индикатор срабатывает по токовой характеристике. Есть три варианта настройки:

200А-100мс

200А-200мс

100А-100мс

Для каждой конкретной линии вы сами рассчитываете, заказываете и выбираете те или иные параметры.

Опасность КЗ и его последствия

Негативные последствия короткого замыкания во многом зависят от места расположения аварии и продолжительности воздействия высоких токов. В связи с этим данное явление характеризуется как местное или общее.

В первом случае последствия наступают более серьезные, вплоть до открытого возгорания проводов и дальнейшего распространения пожара. Помимо проводки, загораются расположенные рядом отделочные материалы и предметы мебели.

Дополнительно, короткое замыкание вызывает следующие повреждения:

  • Термические и механические воздействия полностью разрушают розетки и выключатели.
  • Уровень сетевого напряжения существенно понижается, в результате чего электроприборы и оборудование могут выйти из строя. Это же подтверждает эксперимент с аккумуляторами.
  • Компьютеры, средства телекоммуникации и другие чувствительные электронные приборы подвергаются разрушительному воздействию электромагнитных волн.
  • Каждый человек, находящийся в непосредственной близости от места аварии, может получить ожоги, механические травмы и другие увечья, опасные для жизни и здоровья.
  • При попадании влаги нередко замыкает скрытая проводка. В этом случае человек может получить удар током нечаянно коснувшись стены.

Механизм образования витков

Механизм образования завихрений в трансформаторе стандартный для любых типов оборудования. Общий поток при прохождении делится на первый поток, который распределяется по плоскостям, которые не охвачены витками полюса. Второй поток электромагнита находится на плоскости, которая принадлежит кв. На втором образуется ЭДС, приводящая к токовому импульсу. При этом возникает определенного значения угол, который определяется индуктивностью.

Одновременно с прохождением потока возникает сила притяжения. Она складывается из двух составляющих, которые сдвинуты во времени. Пульсация (амплитудные соотношения) определяется сугубо углом сдвига, который возникает между двумя потоками в области действия. Угол никогда не превышает значение 90 градусов. Обычно его значение лежит между 50 и 80 градусами. Объясняется это тем, что достигнуть сдвига потоков на прямой угол невозможно.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: