Применение системы TN-C-S
Система TN-C-S — основная для применения в соответствии с ПУЭ. В ней от трансформаторной подстанции до ввода в здание используется объединенный проводник РЕN, который на вводе в здание присоединяется к повторному заземлению и разделяется на рабочий проводник N и на защитный проводник РЕ.
Такое разделение осуществляется, как правило, в главном электрощите промышленного объекта или жилого здания. Далее, после главного электрощита, по зданию проводники N и РЕ разделены. В этом случае электророзетки имеют заземленный контакт, к которому присоединяется РЕ-проводник.
Система TN-C-S наиболее оптимальна с точки зрения цены и электробезопасности. Применяется в проектируемых жилых и промышленных зданиях.
Особенности подстанций
Все ранее описанное относится и к подстанциям, несмотря на то, что они находятся под крышей. Исключение составляет лишь то, что там довольно часто или постоянно находятся люди, а, следовательно, к их заземлению предъявляются особые требования.
В общем случае заземление подстанции состоит из следующих элементов:
- внутренний контур;
- внешний контур;
- устройство молниезащиты объекта.
Внутренний контур заземления подстанции обеспечивает простое и надежное соединение с землей всех устройств, находящихся внутри подстанции. Для этого по периметру всех помещений объекта на высоте 40 см от пола дюбелями закрепляют стальную полосу. Контуры всех помещений, а также и их составные части соединяются сваркой или резьбовыми соединениями, если таковые предусмотрены. Все металлические части, непредназначенные для прохождения тока (корпуса приборов, ограждения, люки и подобное тому), соединяются с этой шиной. Подобные полосы оснащаются резьбовыми соединениями с шайбами увеличенной ширины и гайками типа «барашек». Это позволяет получить надежное переносное заземление. Нулевая шина силового трансформатора, учитывая схему с глухозаземленной нейтралью, соединяется с полученным контуром.
Технические характеристики
В процессе проектирования систем освещения и установке опор учитываются их технические характеристики:
- вес
- устойчивость к ветровым нагрузкам
- срок службы
- высота
Вес высотных конструкций зависит от нескольких факторов: назначения, размера по вертикали и материала изготовления. Габаритные силовые и высокомачтовые опоры, учитывая большой размер светильников, имеют большой вес. Алюминиевые конструкции самые лёгкие, чугунные обладают повышенной массой.
Практически все опоры имеют хорошую ветровую нагрузку, и могут выдерживать скорость ветра до 44 м/сек., за счет конусообразной формы . Максимальный срок службы металлических опор 50-75 лет, но все зависит от материала изготовления и качества антикоррозийного покрытия. Высота опорных конструкций зависит от назначения и имеет некоторые ограничения. Высота несиловых опор может достигать 12 метров, декоративных – до 6 метров. В городских условиях, особенно, рядом с жилыми домами высота этих конструкций не должна быть больше 12 метров.
Высокомачтовые изделия собираются из 3,4,5,6 или более звеньев. Например, в аэропортах могут устанавливаться опоры высотой в 20 метров, а на отдельных объектах и до 50 метров.
Заземление опоры освещения
Воздушные линии электропередач
На опорах воздушных линий электропередач необходимо повторно заземлять PEN-проводник, идущий от трансформаторной подстанции. Это нужно делать, чтобы повысить электробезопасность участков ВЛ и для надежной работы автоматических выключателей. Количество повторных заземлений на трассе воздушной линии определяется проектом электроснабжения.
Такое устройство обязательно применяется на опорах в конце воздушных линий электропередач, на опорах перед вводом в промышленное здание или частный дом, перед ответвлением от трассы ВЛ протяженностью более 200 м. Для монтажа используется подземная часть опоры. Если ее недостаточно, применяется дополнительный контур заземления, обычно состоящий из одного или двух заземлителей.
На опорах уличного освещения должно быть организовано заземление корпусов светильников и всех металлических частей опоры. Для этого используются специальные заземлители и заземляющие проводники. В городской черте не всегда имеется возможность установки стандартных вертикальных заземлителей, поэтому часто используются в качестве заземлителей горизонтальные полосы, заглубленные в землю.
Как правильно делать заземления опорных конструкций
В современном мире освещение окружает нас повсеместно: и дома и на улице. Причем роль наружного типа освещения очень важна в городах и селах, ведь оно позволяет избегать множества проблем в вечернее и ночное время суток. При создании наружного типа освещения одним из важных этапов монтажа является заземление опор.
В ходе заземления для опор наружного типа освещения, необходимо понимать и знать основные правила, которые регламентируются соответствующей документацией (например, ПУЭ). Особенно важна данная процедура для воздушных линий (ВЛ) и сети опор наружного типа освещения. Обо всем, что касается этой процедуры, мы поговорим в данной статье.
Для чего нужно
Опоры системы наружного освещения
Заземление для сети опор наружного типа освещения или ВЛ (0,4, 6-10, 20 и 35 кв) играет большое значение, поскольку препятствует риску получения электротравмам при соприкосновении с элементами конструкции в ситуации, когда произошло повреждение изоляции кабеля. При наличии заземления на металлической опоре сети наружного типа освещения или ВЛ, напряжение «разливается» по земле, тем самым становясь безопасным для людей. Данный показатель зависит от того, какое сопротивление имеет почва, в которой установлена опора ВЛ (0,4, 6-10, 20 и 35 кв). В результате, даже если где-то и произошло нарушение изоляции ВЛ, конструкции останутся безопасными.
При штатных условиях работы штыревые изоляторы, смонтированные на опорах, будут обеспечивать надежную изоляцию всех проводов от конструкционных элементов. Но бывают ситуации, когда напряжение в сети значительно превышает то напряжение, на которое была рассчитана ВЛ (0,4, 6-10, 20 и 35 кв). В такой ситуации перенапряжения возможен пробой изоляции ВЛ и, как следствие, выход сети из строя. Для того чтобы ограничить значение перенапряжения и повысить безопасность, необходимо понизить сопротивление для «растекания тока». С этой целью и устанавливают на ВЛ (0,4, 6-10, 20 и 35 кв) и подпорах наружного типа освещения защитное заземление.
Особенности процедуры
Заземление металлических опор
Контур заземления формируют исходя из того, из чего была изготовлена опора. На сегодняшний день применяется три варианта конструкций:
- железобетонные. Здесь при наличии сети заземленной нейтралью, вместе с арматурой конструкций, защиту оформляют через подсоединение к заземленному проводу (нулевому) специального проводника. Последний должен идти диаметром от 6 мм (не менее);
- деревянные. На деревянных подпорах штыри и крюки не заземляют;
При заземлении ВЛ (0,4, 6-10, 20 и 35 кв) необходимо учитывать и расстояние между соседними опорами. Обычно расстояние между ними составляет 100 или 200 м. Это параметр определяется среднегодовым числом гроз, характерным для данной местности. Обязательно следует делать заземление опор (повторное или нет), имеющих ответвление к сооружениям, где находится большое количество людей. Для предохранения от перенапряжения применяются две разновидности заземлителей:
- вертикальные штыри, которые зарываются в землю вертикально;
- горизонтальные пластины. Такие заземлители как правило применяются для каменистых почв.
Подготовительные работы для установки освещения
Начальный этап работ – это изготовление проекта, где будут прописаны требования к системам освещения, особенности рельефа, мощность предполагаемого для использования оборудования, число светильников, система управления, технология электромонтажа. Доступ электроэнергии к светильникам может быть осуществлен как по воздуху, так и под землей с прокладкой кабеля. Рассмотрим подробнее второй вариант.
Работы, связанные с монтажом кабеля под землей будут требовать получения специальных разрешений
Для монтажа кабеля под землей на поверхности нужно будет пометить, где будут установлены опоры наружного освещения, причем, желательно приобщить к процессу нивелира, который поможет определить места установки согласно проекту максимально верно.
Чтобы кабель не повредился в процессе эксплуатации, важно продумать защиту для него от случайных повреждений механического характера. Многое зависит от типа кабеля
Так, например, если речь идет об изделии из шитого полиэтилена, то нужно будет проложить защищающие его от повреждений трубы. В случае с применением бронированного кабеля потребуется использовать такие трубы только в местах прохождения его через автомагистрали, парковки или другие аналогичные площади, представляющие потенциальную угрозу для целостности изделия
Многое зависит от типа кабеля. Так, например, если речь идет об изделии из шитого полиэтилена, то нужно будет проложить защищающие его от повреждений трубы. В случае с применением бронированного кабеля потребуется использовать такие трубы только в местах прохождения его через автомагистрали, парковки или другие аналогичные площади, представляющие потенциальную угрозу для целостности изделия.
1.7.55
Для заземления в электроустановках разных назначений и напряжений, территориально сближенных, следует, как правило, применять одно общее заземляющее устройство.
Заземляющее устройство, используемое для заземления электроустановок одного или разных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок: защиты людей от поражения электрическим током при повреждении изоляции, условиям режимов работы сетей, защиты электрооборудования от перенапряжения и т.д. в течение всего периода эксплуатации.
В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению.
Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими.
При выполнении отдельного (независимого) заземлителя для рабочего заземления по условиям работы информационного или другого чувствительного к воздействию помех оборудования должны быть приняты специальные меры защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.
Для объединения заземляющих устройств разных электроустановок в одно общее заземляющее устройство могут быть использованы естественные и искусственные заземляющие проводники. Их число должно быть не менее двух.
Как выбирают способ заземления
Схему заземления выбирают с учётом положений соответствующих нормативных документов
При этом необходимо принимать во внимание следующее:
- Нужно учитывать параметры работы освещения.
- Необходимо составить представление о характеристиках почвы, о степени её влажности в конкретном месте.
- Диаметр заземляющих проводников рассчитывают исходя из конкретных условий. Они не могут иметь толщину меньше 6 мм.
- Более предпочтительным является вертикальное положение электродов заземлителя. Если есть возможность их применить, детали располагают на глубине до 3 м.
- В некоторых случаях бывает так, что почва имеет относительно высокое удельное сопротивление. В этом случае заземлители нескольких столбов соединяют вместе для того, чтобы увеличить площадь соприкосновения с грунтом.
- В большинстве ситуаций площадь сечения заземляющей магистрали не превосходит 100 кв. мм. В тех случаях, когда выполняются задачи молниезащиты, минимально допустимая величина равна 16 кв. мм.
- При работе с сухим грунтом нужно использовать детали, имеющие на 2-3 мм размеры большие, чем обычно.
- Глубина верхней части заземлителя не должна быть меньше 0,5 мм.
После завершения установки заземления надо проверить его сопротивление. Оно не должно превышать 50 Ом. Если этого не удалось добиться, необходимо увеличить проводимость заземляющей магистрали.
Металлические опоры освещения нуждаются в качественном заземленииИсточник ksosvet.ru
Когда заземление установлено необходимо регулярно проводить проверку его исправности. Рекомендуется, чтобы периодичность не превышала 6 месяцев. Сопротивление измеряют не реже, чем раз в 6 лет. Каждые 12 лет нужно разрыть и визуально проконтролировать заземление на одном из участков, выбранном случайно.
Монтаж контура заземления для опорыИсточник electriktop.ru
Длина сварного шва полосы заземления
3.1.12. При монтаже наружного контура выполняются следующие операции: – размечают трассу контура и места заглубления в грунт электродов;
– заглубляют вертикальные электроды в грунт;
– прокладывают в траншее горизонтальные электроды и с их помощью соединяют вертикальные электроды между собой. Для углубленных заземлителей прокладывают горизонтальные заземлители на дне котлованов по периметру фундамента здания и соединяют их между собой;
– проводят осмотр наружного контура и проверку качества соединения и составляют акт на скрытые работы;
– засыпают траншею (котлован);
– измеряют сопротивление растеканию тока наружного контура.
3.1.13. Разметку производят, руководствуясь рабочими чертежами. При этом расстояние между вертикальными электродами должно быть не менее 1,5-2 длины электрода, что исключает взаимное экранирование и следовательно, способствует уменьшению сопротивления растеканию тока. Расстояние от фундамента здания до частей заземлителя должно быть не менее 2,5 м. Это требование не относится к углубленным заземлителям.
3.1.14. Не допускается располагать заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п., в местах, где высока опасность коррозии заземлителя.
3.1.15. Траншеи для вертикальных заземлителей отрываются на глубину 0,5-0,7 м. После заглубления вертикальных электродов в грунт верхний конец должен выступать над дном траншеи на 0,1-0,2 м. Горизонтальные электроды укладываются на дно траншеи на глубине 0,5-0,7 м.
3.1.16. Для искусственных заземлителей должна применяться сталь. Размеры стальных искусственных заземлителей должны быть не менее:
– диаметр круглых неоцинкованных – 10 мм; оцинкованных – 6 мм;
– сечение прямоугольных – 48 мм 2 ;
– толщина прямоугольных – 4 мм;
– толщина полок угловой стали – 4 мм.
Искусственные заземлители не должны иметь окраски.
3.1.17. Заземлитель обеспечивает контакт заземляющего устройства с землей. Чем глубже в грунт заглублен заземлитель, тем, как правило, меньше будет его сопротивление растеканию тока. Длина стержневых электродов вертикального заземлителя должна быть 4,5-5 м, а электродов из угловой стали – 2,5-3 м.
3.1.18. Соединение всех элементов заземлителя между собой, а также присоединение к естественным заземлителям, выполняется сваркой. Длина сварочного шва должна быть равна двойной ширине проводника при прямоугольном сечении и шести диаметрам при круглом сечении. При Т-образном соединении внахлестку двух полос длина нахлестки определяется шириной полосы. Примеры соединений стержневых электродов с заземляющими проводниками и присоединений к трубопроводам представлены на рисунках 3.1.1 и 3.1.2.
Рис. 3.1.1. Соединение стержневых электродов с заземляющими проводниками (длина сварного шва 6d):
а
,б – из круглой стали;в ,г – из полосовой стали
1
– стержневой электрод;2 – заземляющий проводник из круглой стали;3 – заземляющий проводник из полосовой стали;4 – планки из полосовой стали (применяется при B ≤ 3 мм).
Рис. 3.1.2. Примеры присоединения заземляющих проводников к трубопроводам:
а
,б ,в – сваркой;г – с помощью хомута:
1
– заземляющий проводник из полосовой стали;2 – трубопровод;3 – заземляющий проводник из круглой стали;4 – хомут.
3.1.19. Присоединение заземляющих проводников к трубопроводу, используемому в качестве естественного заземлителя, должно выполняться до ввода трубы в здание (до водомера, задвижек, фланцев), в противном случае над водомерами, задвижками, фланцами должны монтироваться обходные перемычки из полосовой стали сечением не менее 100 мм 2 . Перемычка присоединяется к трубам сваркой или хомутами (рис.3.1.3).
Из чего состоит заземление
- Внешний контур заземления. Располагается за пределами помещений, непосредственно в грунте. Представляет собой пространственную конструкцию из электродов (заземлителей), соединенных между собой неразделимым проводником.
- Внутренний контур заземления. Токопроводящая шина, размещенная внутри здания. Охватывает периметр каждого помещения. К этому устройству подсоединяются все электроустановки. Вместо внутреннего контура может быть установлен щиток заземления.
- Заземляющие проводники. Соединительные линии, предназначенные для подключения электроустановок непосредственно к заземлителю, или внутреннему контуру заземления.
Рассмотри эти компоненты подробнее.
Внешний, или наружный контур
Монтаж контура заземления зависит от внешних условий. Прежде чем начать расчет, и выполнить проектный чертеж, необходимо знать параметры грунта, в котором будут установлены заземлители. Если вы сами строили дом, эти характеристики известны. В противном случае лучше вызвать геодезистов, для получения заключения по грунту.
Какие бывают грунты, и как они влияют на качество заземления? Примерное удельное сопротивление каждого типа грунта. Чем оно ниже, тем лучше проводимость.
- Глина пластичная, торф = 20–30 Ωм·м
- Суглинок пластичный, зольные грунты, пепел, классическая садовая земля = 30–40 Ом·м
- Чернозем, глинистые сланцы, полутвердая глина = 50–60 Ом·м
Это лучшая среда для того, чтобы установить наружный контур заземления. Сопротивление растекания тока будет достаточно низким даже при малом содержании влаги. А в этих грунтах естественная влажность обычно выше среднего.
Полутвердый суглинок, смесь глины и песка, влажная супесь — 100–150 Ом·м
Сопротивление немного выше, но при нормальной влажности параметры заземления не выйдут за нормативы. Если в регионе установки установится продолжительная сухая погода, необходимо принимать меры к принудительному увлажнению мест установки заземлителей.
Глинистый гравий, супесок, влажный (постоянно) песок = 300–500 Ом·м
Гравий, скала, сухой песок – даже при высокой общей влажности, заземление в такой почве будет неэффективным. Для соблюдения нормативов, придется устанавливать глубинные заземлители.
Многие владельцы объектов, экономя «на спичках», просто не понимают, для чего нужен контур заземления. Его задача при соединении фазы с землей обеспечить максимальную величину тока короткого замыкания. Только в этом случае быстро сработают устройства защитного отключения. Этого невозможно достичь, если сопротивление растекания тока будет высоким.
Определившись с грунтом, вы сможете выбрать тип, и самое главное — размер заземлителей. Предварительный расчет параметров можно выполнить по формуле:
Расчет приведен для вертикально установленных заземлителей.
Расшифровка величин формулы:
- R0 — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
- Рэкв — удельное сопротивление грунта, см. информацию выше.
- L — общая длина каждого электрода в контуре.
- d — диаметр электрода (если сечение круглое).
- Т — вычисленное расстояние от центра электрода до поверхности земли.
Задавая известные данные, а также меняя соотношение величин, вы должны добиться значения для одного электрода порядка 30 Ом.
Если установка вертикальных заземлителей невозможна (по причине качества грунта), можно рассчитать величину сопротивления горизонтальных заземлителей.
Поэтому лучше потратить больше времени на забивание вертикальных стержней, чем следить за барометром и влажностью воздуха.
И все же приводим формулу расчета горизонтальных заземлителей.
Соответственно, расшифровка дополнительных величин:
- Rв — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
- b — ширина электрода — заземлителя.
- ψ — коэффициент, зависящий от погодного сезона. Данные можно взять в таблице:
ɳГ — так называемый коэффициент спроса горизонтально расположенных электродов. Не вдаваясь в подробности, получаем цифры из таблицы на иллюстрации:
Предварительный расчет сопротивления необходим не только для правильного планирования закупок материала: хотя будет обидно, если вам не хватит для завершения работ, пары метров электрода, а до магазина несколько десятков километров. Более-менее аккуратно оформленный план, расчеты и чертежи, пригодятся для решения бюрократических вопросов: при подписании документов о приемке объекта, или составлении ТУ с компанией энергосбыта.
Разумеется, никакой инженер не подпишет бумаги только на основании пусть и красиво исполненных чертежей. Будут произведены замеры сопротивления растекания.
Как нужно заземлить металлические опоры наружного освещения?
У многих возникает вопрос: «Надо ли заземлять металлические опоры освещения?»
Согласно нормам электробезопасности, инструкции по молниезащите и устройству сетей заземления, все стальные опоры, используемые для обустройства систем наружного освещения, нужно заземлить.
ПУЭ п.6.1.45. При выполнении защитного заземления осветительных приборов наружного освещения должно выполняться также подключение железобетонных и металлических опор, а также тросов к заземлителю в сетях с изолированной нейтралью и к РЕ (PEN) проводнику в сетях с заземленной нейтралью.
Принцип действия защитного заземления заключается в том, что в случае нарушения изоляции электрический ток стекает на землю. Таким образом, в зоне растекания распределяются не опасные для человека напряжения, зависящие от удельного сопротивления почвы и расположения заземлителя. В том случае, если уличное освещение устанавливается в сетях с изолированной нейтралью, штыри или крюки фазных проводов на железных опорах, а также арматура и любые металлические конструкции должны быть заземлены при помощи специальных устройств — заземляющего контура, состоящего непосредственно из заземлителей и заземляющих проводников. Фундаменты под опоры не являются заземлителями, т.к. покрыты спецмастикой от корозии, имеющей диэлектрические свойства.
Как заземлить опору освещения?
Заземлители представляют собой специальные элементы, которые устанавливаются в грунте и могут быть в виде стержней — металлических прутков, так и в виде стальных полос (см. чертеж заземления опоры освещения треугольным контуром заземления). Вертикальные стержни забиваются на глубину до 3 метров, при этом их верхняя часть заземлителя должна устанавливаться приблизительно на расстоянии пол метра от основания почвы. На такой же глубине располагаются и горизонтальные проводники заземлителя, которые, чаще всего, применяются на каменистых почвах. При монтаже заземлителей, проводники, используемые для подсоединения контура заземления должны иметь диаметр как минимум 6 мм. Соединяются между собой заземляющие проводники и заземлители монтажной сваркой, а места соединений окрашиваются краской. Если наружное освещение устанавливается в сетях с заземленной нейтралью, штыри и крюки фазных проводов на металлических опорах, а также арматура и любые металлические конструкции должны подсоединяться к нулевому рабочему проводу. Как правило, это выполняется при помощи специального болта приваренного непосредственно к опоре или проушины. Таким образом, заземление металлических опор уличного освещения с кабельным питанием производится: • В сетях с изолированной нейтралью посредством использования металлической оболочки кабеля; • В сетях с заземленной нейтралью через нулевую жилу, которая соединена с оболочкой кабеля. Для контроля заземления опор уличного освещения после проведения всех электромонтажных работ следует провести замер сопротивления заземляющего устройства с помощью специального прибора. Значение сопротивления не должно быть выше 50 Ом. Заземление осветительных опор может выполнять функции молниезащиты
Особенно это важно, когда опора уличного освещения устанавливается вдали от зданий на открытых площадках. В силу конструктивных габаритов, то есть значительного возвышения над землей, осветительные опоры подвергаются большему воздействию различного вида погодных явлений, чем остальные составляющие пейзажа; высота опоры может достигать от 3 до 11 метров, в силу чего одна из первых и принимает на себя электроразряд
Особенно это актуально для мест, особо подверженных попаданию разряда. Ведь в случае попадания молнии в опору без заземления перенапряжение может возникнуть в целом по сети, что может привести к серьезным последствиям.
Например, представим ситуацию: молния всё же ударила в опору освещения (независимо от того есть там молниеприёмник или нет). Куда пойдёт ток молнии? Если связи с землёй нет вообще, то весь импульс молнии уйдёт в электрическую сеть. Вывод: заземлять опоры надо (причём лучше каждую) как минимум для отвода тока молнии; в подстанции откуда питается уличное освещение необходимо предусматривать хорошую защиту от перенапряжения вторичных проявлений молнии.