Схемы подключения rgb усилителя светодиодной ленты

Подключение светодиодной RGB ленты

Правильный порядок подключения элементов цепи выглядит следующим образом:

Правильный порядок подключения

Запомните. Участки ленты, длиной больше 5 метров, должны подключаться только параллельно.

Что будет, если подключить последовательно?

Во-первых, вы заметно потеряете в яркости на конце участка. Хотя светодиоды и имеют очень малое сопротивление, но потери есть. При такой протяженности на конце напряжение будет порядка 10В. Пониженное напряжение даст пониженную яркость, уже заметную для глаза.

Неправильное подключениеПравильное подключение

Во-вторых, токопроводящие дорожки ленты рассчитаны на максимальную длину 5м. Подключив последовательно еще 5, дорожки будут перегреваться и освещение скорее всего перегорит в самом начале участка.

RGB коннектор

Соединять ленту между собой можно с помощью пайки или клеммами. Для одноцветных вариантов продаются двухвыводные клеммы (коннекторы), для RGB – четырёх или пяти. Уточняйте этот момент при покупке.

Подробнее как соединять rgb ленту между собой.

Блок питания подключается в сеть 220В (клеммы AC, полярность не важна), преобразует переменное напряжение в постоянное 12В (клеммы V+, V-)

При подключении следующих элементов цепи важно соблюдать полярность

Клеммы подключения на БП

RGB контроллер подключается после блока питания (с соблюдением полярности), а в него подключается ргб лента. Каждый вывод на корпусе предназначен для конкретного вывода светодиодов. Если перепутаете местами, ничего страшного не произойдет, просто цвета будут перепутаны.

Клеммы подключения контроллера к светодиодам

В результате готовая схема в сборе должна иметь вид:

Схема в сборе

Усилитель внешне похож на контроллер, отдельно подключается к БП, только имеет не одну плашку с клеммами, а две. Маркируется чаще всего как Led Amplifier, устанавливается в разрыв ленты. Подключается по схеме:

Порядок подключения RGB усилителя в цепьНазначение клемм led amplifier

Разберем теперь схемы подключения лент разной длины с усилителем и без, с одним или несколькими блоками питания.

Схема подключения RGB светодиодной ленты без усилителя

Это простейшая схема включения rgb светодиодной ленты длиной до 5 метров через контроллер с пультом.

Электрическая схема подключения RGB освещения

Для подключения светодиодной RGB ленты длиной 10 или 15 метров, убедитесь, что хватает мощности контроллера и БП (с запасом), и подключайте по следующей схеме:

Схема подключения 10 или 15 

Схема подключения ленты с RGB усилителем

Усилитель используем, если не хватает мощности контроллера. Если мощность блока питания позволяет подключить контроллер и усилитель, используем следующую схему:

Когда суммарная мощность контроллера и усилителя выше мощности БП или блок такой мощности использовать нерационально (большой, сильно греется или шумит), тогда подключаем led amplifier к отдельному питанию по схеме:

Схема подключения усилителя с 2 блоками питания

По такой схеме наращивать суммарную длину ленты можно сколько угодно. Вся она будет управляться с одного пульта.

Помимо последовательного подключения, как в примерах выше, усилители можно подключать параллельно.

Схема параллельного подключения нескольких RGB усилителей с одним блоком питания.

Схема: один БП несколько усилителей

Схема с несколькими параллельными усилителями с отдельным питанием.

Схема: несколько параллельных усилителей с отдельными БП

Если клемм нет – используйте паяльник и монтажный провод, НО не перегревайте контактные площадки. Подробнее как соединять ленту.

Правильная схема подключения 20 метров RGB ленты показана на видео.

Это интересно: Лампы с цоколем gu10 и их применение

Как выполнить подключение RGB ленты через контроллер

Как подключить RGB ленту к контроллеру стоит разобрать отдельно, так как есть некоторые особенности.

На фото ниже изображена схема подключения РГБ ленты к контроллеру, соединяющаяся при помощи четырех проводов: 3 из них цветные и 1 соединительный для подачи тока от блока питания. Контроллер должен строго устанавливаться между трансформатором и диодным отрезком.

  1. Первое, что нужно сделать – с одной стороны где только два провода «+» и «-», соединить контроллер с трансформатором, соблюдая полярность проводов.
  1. Далее, с другой стороны, нужно подключить отрезок светодиодной ленты с контроллером, как это сделать смотрите подробно на картинке выше. Соедините четыре провода, 3 из них с соблюдением цветной маркировки, а четвертый провод прикрепите на оставшееся место (он обычно белого или черного цвета).

На деле, если выполнить подключение правильно, процесс оказывается совсем не сложным. Если с первого раза не получилось выполнить соединение верно, то не волнуйтесь – током не ударит. Просто поменяйте провода местами.

Основные схемы подключения RGB-ленты

Когда разобрались с подключением контроллера к RGB-ленте, ваш следующий шаг – соединить все оставшиеся детали в общую цепь. Рассмотрим несколько схем подключения, когда требуется соединить один и более отрезок, а также в каком случае необходим усилитель.

  1. Простой вариант установки всех элементов между собой. Эта схема будет полезна для тех, кто собирается подключить только одну диодную ленту, длиной не более, чем 5 метров. При этом способе достаточно применить один блок питания и RGB контроллер. Если требуемая мощность блока рассчитана правильно, то усилитель не понадобится. Ниже представлена наглядная схема подключения.
  1. Способ для подключения двух светодиодных отрезков, каждый длиной не более 5 м. Этот метод подключения RGB ленты также прост, но требует некоторых условий для его реализации:
  • мощности блока питания и контроллера должно быть достаточно для обслуживания током нескольких диодных отрезков, у которых суммарная длина не более 10 м.
  • потребуются дополнительные провода. Как показано на схеме ниже, это можно выполнить путем присоединения к соответствующим выходам контроллера по два провода, которые идут на две разные ленты, соединяя их параллельно друг другу. То есть к одному контакту контроллера присоединяются сразу два провода.

Насколько эффективен этот способ остается только гадать. Ведь мощности одного блока питания может не хватить на долгое время обслуживания двух отрезков лент, а если вы допустили ошибки в расчетах, то конструкция может вовсе не работать.

Для подключения двух отрезков диодных лент существуют более надежные способы. Подразумевается два основных метода соединения всей цепи, длиной свыше 5 м: при помощи дополнительного блока питания и при помощи усилителя.

  1. Рассмотрим схему подключения РГБ ленты к двум источникам питания, которая представлена ниже. Эта цепь гораздо лучше подходит для обслуживания более длинных участков лент, так как мощность распределяется равномерно на оба отрезка в необходимом объеме. Недостаток этого способа кроется в том, что трансформатор стоит дороже, чем усилитель.
  1. Следующий метод соединения заключается в добавлении нового элемента – усилителя. При его выборе не требуется рассчитывать мощность всей ленты, а только отдельного отрезка, к которому он присоединяется. Его удобнее использовать, так как трансформатор выглядит более громоздким и тяжелым. К тому же не каждый контроллер выдерживает такое напряжение тока. Здесь на помощь приходит использование RGB усилителей сигнала. В итоге оба отрезка будут синхронно работать. Чтобы было понятнее, взгляните на схему.
  1. Способ подключения, который позволяет создать более сложную конструкцию из светодиодов любой длины и сложности. Для этого потребуется несколько блоков питания и усилителей, в соответствии с количеством светодиодных лент. Нужно ли добавлять дополнительный трансформатор зависит от мощности освещения. Ниже следует схема того, как вы сможете постепенно наращивать длину подсветки, добавляя через каждые 5 метров по одному усилителю.

Вот еще одна возможная схема подключения сложных конструкций, схожая с предыдущими. Как ее выполнить смотрите ниже.

Вот такое существует разнообразие вариаций подключения, и это не предел, дальше все зависит от вашей фантазии. Главное, найти место для размещения всего этого оборудования.

Схемы подключения RGB усилителя светодиодной ленты.

RGB усилитель это устройство, повторяющее или усиливающее сигнал, поступающий с диммера или контроллера.

Дело в том, что самые популярные контроллеры рассчитаны как правило, на подключение 5-10 метров светодиодной ленты, не более.

Если же вам нужно сделать подсветку протяженностью 15, 20, 25 метров и так далее, то здесь вам и понадобится этот самый усилитель. На его вход подается сигнал с контроллера, после чего с выхода мы получаем точно такой же сигнал, но гораздо большей мощности.

То есть, вам не придется увеличивать мощность контроллера и менять его на другой, достаточно подключить после него еще один дополнительный блочок.

Увеличивая количество усилителей в одной схеме, можно подключить любую мощность светодиодной ленты, без оглядки на мощность самого контроллера. Правда при наличии соответствующего блока питания.

Все кто впервые сталкивался с вопросом, как правильно подключить светодиодную ленту, обязательно натыкался на главное ограничение: нельзя подключать последовательно более 5 метров ленты.

Так вот, благодаря одной маленькой коробочке, это правило можно некоторым образом обойти. Вот схема того, как вы сможете последовательно наращивать метраж своей подсветки, добавляя через каждые 5 метров по одному усилителю.

Монтировать такое количество блоков питания вовсе не обязательно, при условии что у вас есть один более мощный и все усилители будут запитаны от него.

Конечно никто не мешает вам установить дополнительный контроллер для каждого отрезка. Но в этом случае вам понадобятся несколько независимых пультов управления. И здесь встает вопрос — как вы будете их синхронизировать по цветам?

Есть вариант с установкой многозонных контроллеров, однако это выйдет в разы дороже.

С простыми девайсами получится такая картина, когда одна половина освещения будет гореть одним цветом, а вторая другим. При этом смена цветов будет происходить с запаздыванием и визуально различимой задержкой.

Толку от таких контроллеров будет мало. Всю полную информацию по этим устройствам можете найти в статье ниже. Узнаете для себя много нового.

Включив же в схему усилитель, вы без лишних затрат сможете синхронно управлять подключенной подсветкой на всей протяженности. При этом без каких-либо потерь яркости.

Один из главных вопросов — как определить нужную мощность усилителя? Тут все достаточно просто и напоминает расчет при выборе блока питания.

RGB технологии

В основе технологии заложен оптический эффект смешивания базовых цветов: красного (R), зелёного (G) и синего (B). Светодиод устроен таким образом, что, в зависимости от изменения поступающего тока на 3 кристалла, начинает излучать свет базовых цветов разной мощности.

РГБ контроллер, выполняя команды пульта управления, «заставляет» светиться квадраты кристаллов с разной силой. Это позволяет окрасить общий световой пучок в разные цвета и оттенки. Цветовой эффект достигается благодаря особым свойствам кристаллов. Меняющаяся плотность светового потока позволяет получить пропорциональное смешение цветов.


RGB подсветка

Отличия от обычной ленты

Монохромная лента содержит отдельные светодиоды определённого цвета. К каждому диоду подведены 2 токопроводящие полоски. На ленте RGB LED к диодам могут быть подведены четыре или пять проводников.

Важно! Аббревиатура LED – это первые буквы английского выражения «light electric diod», что в переводе означает световой электрический диод

Преимущества и способы применения

РГБ лента обладает рядом достоинств:

  • широкая сфера применения;
  • простой монтаж;
  • экономичное энергопотребление;
  • использование полос любой длины;
  • возможность получения большого числа оттенков всех цветов радуги;
  • RGB ленты с контролером и пультом позволяют дистанционно устанавливать различные цветовые композиции подсветки из любого места помещения;
  • безопасность эксплуатации RGB освещения обеспечивается низковольтовым питанием.

Существует несколько способов применения. Вот некоторые из них:

  1. Ленты крепят к нижней поверхности мебели (кресла, журнальные столики, диваны и пр.). В комнате при выключенном верхнем освещении подсветка создаёт уютную красочную атмосферу;
  2. В помещении устраивают потолочный коробчатый карниз с пазом. В него вкладывают диодную ленту с пультом управления. Во время проведения праздничных ужинов, просмотров фильмов по домашнему кинотеатру потолочная светодиодная лед полоса создаст в комнате неповторимую световую гармонию.
  3. В Рождественские праздники подсветка RGB может украсить оконные и дверные проёмы.
  4. RGB ленту с контроллером и пультом подключают к датчику движения. Такую систему устанавливают в проходных помещениях. Контроллером можно настроить светодиоды на белое освещение.
  5. LED полосами можно обозначить акцентную стену, выделить пилястры, плинтусы и другие рельефные детали, подчеркнув эстетичность интерьера помещения.

Способы подключения к сети 220 В

В зависимости от количества светодиодов в ленте, им требуется питание на 12 или 24 В. Но в обычной квартире или доме такого питания нет, а есть обычно однофазная сеть. Подключение возможно при помощи двух вариантов:

  1. Специальная лента, которая напрямую подключается к сети 220 В. Она представляет собой 20 шт светодиодов, подключенных параллельно. При таком способе соединения им для нормальной работы как раз и нужны 220 В. Но это речь идет о специальных лентах. Они, как правило, идут сразу в комплекте с вилкой.

  2. Обычная светодиодная лента с последовательным соединением большого количества светодиодов подключается через адаптеры (преобразователи напряжения), которые 220 В понижают до 12 В или 24 В (адаптеры разные).

Так как ленты с непосредственным подключением в 220 В в особых средствах не нуждаются, дальше говорить будет о подключении тех, которым необходимо пониженное напряжение.

Схемы для одной ленты

Светодиодная лента идет обычно куском длиной в 5 метров. Если вам достаточно такой длины, отлично, Просто берете преобразователь 220/12 В или 220/24 В. Ко входу подключаете сетевой шнур с вилкой, к выходу ленту. В этом случае схема подключения выглядит (рисунок ниже) как последовательное подключение (один за одним) всех элементов.

Схема подключения одной светодиодной ленты к 220 В

При подключении соблюдайте полярность. Плюс — к плюсу, минус — к минусу. Эти обозначения (плюс и минус, есть как на блоке питания, так и на ленте. Не перепутайте, иначе работать не будет. Для подключения одной ленты можно взять медные провода в защитной оболочке (например, витую пару), сечением 1,5 мм².

Если длина должна быть более 5 метров (2, 3 ленты и более)

Часто для подсветки потолка или других объектов необходима светодиодная лента длиной более 5 метров. Это может быть 10, 15 или 20 метров, то есть надо подключить две ленты и более. Последовательно (одну за другой) их соединять нельзя. Через светодиоды, находящиеся ближе других к блоку питания, будет проходить повышенный ток, что приведет к их перегреву. Они быстро потеряют яркость, а потом вообще гореть перестанут. В этом случае надо подключить светодиодную ленту к 220 В параллельно: от блока питания протянуть провод к одной и к другой.

Как подключить две светодиодные ленты к 220 В. Один из вариантов

Если физически одна лента должна находится за другой, просто от блока питания тянем длинный провод

Обратите внимание: его сечение 1,5 мм². Если подключить требуется три или четыре ленты, их тоже подсоединяем к выходу блока питания отдельной парой проводов

При таком подключении все ленты будут светиться одинаково

Только будьте внимательны: надо выбрать адаптер, который выдает нужное напряжение 12/24 В с  силой тока, достаточной для питания всех лент (о том, как посчитать нужную мощность чуть ниже)

При таком подключении все ленты будут светиться одинаково. Только будьте внимательны: надо выбрать адаптер, который выдает нужное напряжение 12/24 В с  силой тока, достаточной для питания всех лент (о том, как посчитать нужную мощность чуть ниже).

Это способ хорош всем, кроме того, что мощный блоки питания имеет большие размеры, больший вес и значительно большую стоимость. Вес и размеры — проблема, если делаете подсветку потолка. Ведь надо придумать где это оборудование установить, Что далеко не всегда легко. Да и цена, тоже немаловажна. Потому стоит рассмотреть вариант с двумя адаптерами меньшей производительности.

Вариант подключения с двумя адаптерами

На схеме показано подключение двух лент к двум адаптерам. Если вам надо подключить три ленты, не обязательно использовать три адаптера. Один может быть более мощный, он может питать две ленты (подключение параллельное, как на рисунке выше).

Как запитать мощные ленты

Однако, если по этой схеме подключить к 220 В светодиодные ленты большой мощности (от 14 Вт/м и более), на каждом из светодиодов происходит заметное падение напряжения, в результате дальний край ленты светится намного слабее. Если по такой схеме подключена многоцветная RGB лента, она может светить не теми цветами. Чтобы избавится от этого явления, каждую ленту подключают к источнику питания с двух сторон.

Как подключить светодиодную ленту к 220 В и не потерять в яркости свечения

При таком способе возрастает расход провода, но зато светятся светодиоды более равномерно. По опыту замечено, что этот способ подключения увеличивает и срок службы светодиодов — они медленнее деградируют. Это решение не обязательное, но оно действительно продлевает срок жизни и выравнивает неравномерное свечение.

Виды светодиодной ленты

Всё многообразие светодиодных лент можно условно разделить на несколько основных групп в зависимости от ключевых характеристик и области применения. По цвету свечения делятся на монохромные и многоцветные RGB-ленты. По степени защищенности различают открытые и герметичные. Еще можно выделить типы «Бегущий огонь» и бокового свечения.

Изучим каждую группу подробнее.

Монохромные

Монохромная лента белого цвета

Монохромные ленты отличаются тем, что дают только один цвет свечения. Палитра ограничена шестью цветами — белым, красным, синим, зеленым, желтым, оранжевым и розовым.

Многоцветные RGB

RGB светодиодная лента

Многоцветные RGB ленты позволяют принудительно изменять цвет свечения в широком диапазоне оттенков. Подобный эффект достигается за счет совмещения в одной ленте по сути трёх цветных: красной (Red), зеленой (Green) и синей (Blue). Оптическое смешение этих цветов и даёт многообразие палитры.

За регулировку цвета отвечает специальный контроллер. Базовые модели контроллеров способны передавать около 3 миллионов цветов. Продвинутые — до 16 миллионов. Кроме этого контроллер позволяет настраивать алгоритмы автоматической смены цвета, управлять яркостью свечения и дистанционно включать/выключать подсветку.

RGBW — светодиодная лента

Особой разновидностью многоцветных лент является RGBW. В ней к RGB-светодиодам добавлен светодиод «холодного» белого цвета (около 6000 кельвин). Отдельный белый канал может работать в независимом режиме или же дополнять цветные, смягчая их интенсивность.

Открытые

В базовом исполнении светодиодные ленты выпускаются открытыми. Все элементы — печатная плата, диоды, резисторы — ничем не защищены.

Открытая светодиодная лента белого цвета

В таком виде светодиодная лента уязвима к воздействию влаги или механическим повреждениям, но зато отличается низкой ценой . Поэтому этот тип применяют в качестве скрытой подсветки в мебели и декоративных конструкциях интерьера. Или же ее закладывают в специальные световые короба, выполняющие функцию внешней защитной оболочки.

Герметичные

Для защиты светодиодов от внешнего воздействия — влаги, пыли или предметов покрупнее — на ленту наносят слой прозрачного герметика, не проводящего ток.

Герметичная светодиодная лента класса IP65

Варьируя состав и толщину герметика, производители выпускают изделия разной степени защищенности.

Класс защищенности присваивается по системе Ingress Protection Rating (IP), соответствующей международному стандарту IEC 60529. Первая цифра в кодировке — защита от проникновения предметов. Вторая цифра — защита от влаги.

Класс Защита от предметов Защита от влаги
IP33 от крупных предметов диаметром более 2,5 мм от дождя и брызгов, падающих под углом 60°
IP65 полная защита контакта от пыли от водяных струй с любого направления
IP67 полная защита контакта от пыли от кратковременного погружения в воду на 1 метр

Сфера применения герметичных лент — это в первую очередь помещения с повышенной влажностью (ванные комнаты, бани, сауны, бассейны). За счет того, что герметик защищает еще и от механических воздействий — случайных ударов, упавших предметов или наступания ногой, такие ленты подходят для монтажа в полу или на ступенях лестниц.

Ленты «Бегущий огонь»

В светодиодных лентах типа «Бегущий огонь» за счет особой конструкции печатной платы, в которую вмонтированы адресные микросхемы управления, можно задавать цвет и яркость каждого диода в отдельности.

Светодиодная RGB-лента «Бегущий огонь»

В результате с помощью контроллера можно создавать сценарии освещения, которые недоступны обычным монохромным и RGB-лентам. Например, создать эффекты переливающихся цветов или мерцания, огней, бегущих в разных направления и с разной интенсивностью.

«Бегущий огонь» излюбленный способ декорирования и организации освещения в развлекательных заведениях, клубах и ресторанах.

Ленты бокового свечения

В лентах бокового свечения применяются цилиндрические светодиоды, которые припаяны к торцу платы.

Лента бокового свечения

Торцевое расположение диодов изменяет направление света — диоды светят вдоль освещаемой плоскости. Подобные ленты часто используются для подсветки плазменных экранов и мониторов, а также в рекламных конструкциях.

Контроллер для RGB-ленты

Чтобы воспользоваться всеми возможностями RGB-ленты, подключите к схеме контроллеры, выполняющие ряд функций:

  • управление ПДУ;
  • изменение яркости LED-диодов;
  • изменение цвета свечения;
  • выбор режима — переключение частоты смены цветов и их переливания;
  • комбинация основных цветов с целью получения новых оттенков.

При выборе RGB-контроллера учитывайте два основных критерия — совместимость с подключаемой лентой и способ управления.

Такой контроллер может управляться:

  • через сеть Wi-Fi при помощи планшета или смартфона;
  • пультом ДУ с инфракрасными диодами;
  • без пульта (переключателем на стене).

Последний вариант актуален, если отсутствует необходимость в частом переключении режимов ленты.

Основной физический параметр, характеризующий RGB-контроллер, — его номинальная мощность. Для ее расчета возьмите формулу Mk = Ml*L*Km, где:

  • Mk — номинальная мощность контроллера;
  • L — длина отрезка в метрах;
  • Ml — мощность ленты в Вт/м;
  • Km — коэффициент мощности изделия.

Напряжение, необходимое для питания контроллера, должно быть таким же, как и у RGB-ленты.

Выбор светодиодной ленты

  1. Для подсветки домашнего/офисного интерьера в помещении достаточно открытой ленты IP20 мощностью до 10 Вт/м. Если такая плата выполняет функцию освещения мощность увеличивается до 14 Вт/м. Рабочее напряжение составляет 12/24 В.
  2. Для подсветки в местах с повышенной влажностью (ванная комната, крытый бассейн, баня) используют СДЛ со степенью защиты IP 54 и выше. Рабочее напряжение составляет 12/24 В.
  3. В местах с повышенной влажностью (подводная подсветка бассейна, уличный пруд, уличная контурная подсветка) применяют СДЛ со степенью защиты IP 67/68. Рабочее напряжение составляет 12 В для подводного освещения, в случае уличного освещения возможно подключение герметичной СДЛ напрямую к сети 220 В.

Важно знать мощность ленты, т.к. при её значении больше 10 Вт/м необходимо устанавливать дополнительный алюминиевый профиль по всей длине для теплоотвода

Это продлит срок службы диодов и защитит от перегрева.

Остальные показатели (цвет подложки и свечение, яркость) определяются «по вкусу» или дизайнерскому проекту.

История теории и использования цветовой модели RGB

Цветовая модель RGB основана на теории Юнга-Гельмгольца в трехцветной цветового зрения , разработанная Томасом Юнгом и Герман фон Гельмгольц в начале к середине девятнадцатого века, и Джеймс Клерк Максвелл цветового треугольника «s, конкретизирующие эту теорию (около 1860 ).

Ранние цветные фотографии

Первая постоянная цветная фотография, сделанная Дж. Максвеллом в 1861 году с использованием трех фильтров, а именно красного, зеленого и фиолетово-синего.

Фотография Мухаммеда Алим-хана (1880–1944), эмира Бухары , сделанная в 1911 году Сергеем Прокудиным-Горским с использованием трех экспозиций с синим, зеленым и красным фильтрами.

Фотография

Первые эксперименты с RGB в ранней цветной фотографии были проведены в 1861 году самим Максвеллом и включали процесс объединения трех отдельных кадров с цветовой фильтрацией. Для воспроизведения цветной фотографии потребовались три одинаковых проекции на экране в темной комнате.

Аддитивная модель RGB и варианты, такие как оранжево-зеленый-фиолетовый, также использовались в цветных пластинах Autochrome Lumière и других технологиях экранных пластин, таких как цветной экран Joly и процесс Педжета в начале двадцатого века. Цветная фотография с использованием трех отдельных пластин использовалась другими пионерами, такими как россиянин Сергей Прокудин-Горский в период с 1909 по 1915 год. Такие методы использовались примерно до 1960 года с использованием дорогостоящего и чрезвычайно сложного процесса трехцветного карбюратора Autotype .

При использовании, воспроизведение отпечатков с фотографий с тремя пластинами выполнялось красителями или пигментами с использованием дополнительной модели CMY , путем простого использования отрицательных пластин отфильтрованных дублей: обратный красный цвет дает голубую пластину и так далее.

Телевидение

До появления практического электронного телевидения еще в 1889 году в России были патенты на системы цветного сканирования с механическим сканированием . Цветной телевизор пионер Джон Логи Бэрд продемонстрировал первый в мире RGB передачи цвета в 1928 году, а также первый в мире цветной вещания в 1938 году в Лондоне . В его экспериментах сканирование и отображение производились механически путем вращения раскрашенных колес.

Columbia Broadcasting System (CBS) , началось экспериментальное RGB — полевой последовательной системы цветности в 1940 году Изображения были отсканированы электрически, но система все еще используется движущуюся часть: прозрачный RGB цветовое колесо вращается со скоростью 1200 оборотов в минуту выше синхронно с вертикальным сканированием. И камера, и электронно-лучевая трубка (ЭЛТ) были монохроматическими . Цвет обеспечивался цветовыми колесами в камере и ствольной коробке. Совсем недавно цветовые круги стали использоваться в проекционных ТВ-приемниках с чередованием полей на основе монохромного DLP-формирователя изображения Texas Instruments.

Современная технология теневой маски RGB для цветных ЭЛТ-дисплеев была запатентована Вернером Флехсигом в Германии в 1938 году.

Персональные компьютеры

Ранние персональные компьютеры конца 1970-х — начала 1980-х годов, например, от Apple и Commodore VIC-20 , использовали композитное видео, тогда как Commodore 64 и семейство Atari использовали производные S-Video . IBM представила 16-цветную схему (четыре бита — по одному разряду для красного, зеленого, синего и интенсивности) с адаптером цветной графики (CGA) для своего первого компьютера IBM PC (1981), позже усовершенствованным с помощью адаптера расширенной графики (EGA). ) в 1984 году. Первым производителем полноцветной графической карты для ПК (TARGA) была компания Truevision в 1987 году, но только после появления видеографического массива (VGA) в 1987 году технология RGB стала популярной, в основном благодаря аналоговой технологии. сигналы в соединении между адаптером и монитором, что позволило получить очень широкий диапазон цветов RGB. Фактически, пришлось подождать еще несколько лет, потому что оригинальные карты VGA управлялись палитрой, как EGA, хотя и с большей свободой, чем VGA, но поскольку разъемы VGA были аналоговыми, более поздними вариантами VGA (изготовленными различными производителями под неофициальной название Super VGA) со временем добавил true-color. В 1992 году журналы активно рекламировали оборудование Super VGA с истинным цветом.

Что нам потребуется для подключения RGB ленты

На фото изображены все составляющие цепочки для правильной работы диодной ленты. Разберемся для чего нужен каждый из них и какую они несут функцию.

RGB лента, которую важно тщательно выбирать. Это первый элемент, с чьими характеристиками вам нужно определиться заранее

Все зависит от того, где и в каких условиях она будет размещена. При покупке учитывайте влагостойкость и защищенность от внешних воздействий.

Контроллер – дополнительное звено, которое необходимо для осуществления работы цветных диодов. Подключение контроллера к RGB светодиодной ленте позволяет выполнять функцию выбора и регулирования цвета. При его помощи вы можете составить собственный оттенок подсветки. Заглавные буквы RGB расшифровываются как:
R – red, в переводе с английского красный цвет, G – green (зеленый цвет), B – blue (синий).

При помощи пульта для управления контроллером дистанционно, вы также можете регулировать яркость свечения, устанавливать фиксированный оттенок, включать и выключать светодиодную ленту.

Чтобы выбрать контроллер, необходимо рассчитать требуемую мощность. Это легко сделать, применив следующую формулу:

Потребляемая мощность одного метра умножить на длину светодиодной ленты. Итоговый цифровой показатель и будет являться мощностью контроллера (Вт).

  1. Трансформатор (блок питания) – это еще одна важная деталь для работы всей цепи. Выбирать его следует индивидуально, определив условия помещения и правильно рассчитав требуемую мощность для бесперебойной работы светодиодной подсветки.

Подготовьте место для монтажа трансформатора заранее, где воздух циркулирует свободно, чтобы избежать перегрева прибора. При этом не располагайте его вблизи с легковоспламеняющимися предметами. Рассчитайте требуемую мощность.

Важно! Она должна быть на 20–30% выше суммарной мощности всех светодиодных лент. Этот запас мощности блока питания необходим для того, чтобы снабдить стабильным током всю конструкцию без перебоев и скачков напряжения

Если избежать этого правила, вы рискуете тем, что светодиоды быстро выйдут из строя или будут недостаточно хорошо работать. Как выполнить расчеты мощности, а также еще больше дельных советов по выбору трансформатора, вы можете найти здесь.

Усилитель применяется по желанию и когда этого требует отдельный случай. Его стоит использовать для диодной ленты, длина которой более 5 м, если вся конструкция получает питание от одного трансформатора.

Особенно рекомендуется использовать RGB-усилитель при последовательном подключении нескольких светодиодных отрезков. Таким образом он реализует подачу тока непосредственно от трансформатора к каждой отдельной составной части.

Усилитель благоприятно влияет на работу блока питания и контроллера. Он снижает нагрузку, снабжая стабильным питанием без перепадов напряжения.

Также, если вы решили создать сложную осветительную конструкцию из RGB-ленты, вам в этом очень поможет усилитель.

  1. Пульт дистанционного управления. Единственное примечание относительно него – проверьте присутствие батареек внутри.
  2. Алюминиевый профиль можно использовать по желанию. Большинство светодиодных лент уже защищены от внешних факторов при помощи силиконового покрытия, поэтому в профиле нет особой необходимости. Но если ваша светодиодная лента относится к моделям с высоким электропотреблением, то такой профиль необходим. Он будет играть роль радиатора охлаждения.

Подключение к сети

Подключение светильников к компьютеру — это, по сути, использование его блока питания. Обычно остается несколько свободных разъемов, которые можно использовать для присоединения подсветки. При этом, есть и другие варианты подключения, от штатного применения драйвера, до включения в гнездо USB. Все они отличаются типом источника питания, поскольку сам светильник требует только штатного подключения. Рассмотрим эти способы внимательнее:

Через блок питания

Присоединение светодиодных лент к стандартной сети 220 В требует использования специального блока питания, или драйвера. Он обеспечивает стабильную подачу 12 В (иногда 24 В) постоянного тока, необходимую для работы светодиодов. Техника подключения никакой сложности не представляет — драйвер включается в сеть 220 В, а светильник — к соответствующим контактам на выходе.

Большинство подобных устройств можно использовать без пайки, с помощью специальных коннекторов. Они вполне надежны, но со временем покрываются пленкой окислов. Контакт ослабляется, свечение ленты становится тусклым, мерцающим. Поэтому большинство пользователей предпочитает пайку, при которой никаких временных изменений не происходит. Единственным недостатком является необходимость обладать навыкам работы с паяльником, иметь инструменты и соответствующие материалы.

Без блока питания

Существуют светодиодные ленты, для которых не требуется блок питания. Однако, просто включать их в розетку нельзя. Они нуждаются постоянном токе, для чего на специальном сетевом проводе установлен небольшой выпрямитель. Если его не использовать, свечение будет мерцающим с частотой 50 герц. Не все люди способны это заметить, но для некоторых мерцание весьма отрицательно воздействует на нервную систему. Наиболее чувствительные люди рискуют получить эпилептический припадок. Поэтому использовать подобные конструкции следует только в связке со штатным сетевым проводом и преобразователем.

Отличие высоковольтных лент от обычных состоит в том, что минимальным отрезком будет 50 см (а чаще — 1 м). В среднем, светодиоды потребляют напряжение 3,7 В. Если в обычных светильниках параллельно соединены сборки по 3 элемента, потребляющие в сумме 12 В, то в таких конструкциях каждый минимальный отрезок имеет 60 элементов (220 : 3,7 ≈ 60). Как и в обычных образцах, резать такую ленту можно только в специальных участках, отмеченных на основе поперечными линиями и значком «ножницы».

Резку надо производить только после отключения от сети, внимательно следить за состоянием контактов на срезе — они могут быть прижаты друг к другу, что вызовет короткое замыкание. Свободный конец необходимо изолировать, чтобы никто не случайно не получил удар током, ли не случилось замыкание.

Через USB

  • приобрести или собрать его своими руками;
  • затем подключить его вход к гнезду USB, используя контакты 1 («+») и 4 (земля). В стандартных штекерах USB 2.0 это крайние провода слева и справа.
  • соблюдая полярность, присоединить выход преобразователя к контактам светодиодной ленты.

Для отключения светодиодной конструкции можно установить выключатель (если его нет), или просто вынимать штекер из гнезда USB. Используя преобразователь, можно подключить также ленту RGB, только прежде надо присоединить контроллер.

https://youtube.com/watch?v=%2520

Подключить светодиодную ленту к компьютеру можно несколькими способами:

  • к блоку питания;
  • к гнезду USB;
  • используя специальный разъем материнской платы.

“>

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: