Раздел 6. электрическое освещение

Выявленные недостатки и их причины

В ходе эксплуатации осветительных установок стало понятно, что система управления требует постоянного внимания персонала. По большому счету все сводилось к тому, что становилось очевидно: подсветка зданий включается слишком поздно, а отключается слишком рано. Эта проблема решалась корректировкой коэффициентов в системе диспетчеризации. Путем ручного подбора коэффициентов удавалось достигнуть времени включения и отключения, соответствующего городскому графику. Коэффициенты оставались неизменными до следующей подобной ситуации. А повторялись такие ситуации довольно часто.

Было сделано предположение, что причина проблемы кроется в проекте, загруженном в ПЛК. Ознакомиться с исходниками проекта не представлялось возможным. Из текстового описания проекта стало понятно, что для определения времени включения/отключения освещения используется функциональный блок, доступный в проприетарной среде программирования. Используя триальную версию этой среды, удалось получить доступ к справке и более подробному описанию этого блока. Это внесло некоторую ясность: функциональный блок высчитывает время, когда угол (высота) Солнца над горизонтом для заданного географического положения станет равен 0. Коэффициенты корректируют этот угол. Например, при коэффициенте «-6» будет высчитано время, когда Солнце окажется ниже горизонта на 6°. Но в ходе проведенных экспериментов сложилось мнение, что функциональный блок производит расчеты не совсем так, как это предполагается. Дальнейшие работы в этом направлении были прекращены ввиду отсутствия универсальности такой реализации.

Сервисные функции

  • автоматическая диагностика каналов связи со шкафом пункта включения;

  • автоматическая диагностика коммутирующего оборудования;

  • конфигурирование системы;

  • проведение в регламентируемых пределах подключений / отключений, проверки / замены элементов системы;

  • ручной ввод установок и констант управления, обработки информации;

  • защита от несанкционированного доступа в среду системы;

  • доступ к функциональным возможностям системы предоставляется согласно установленным административным разграничениям уровней доступа.

Внедрение автоматизированной системы управления освещением промышленного предприятия (как административных, так и производственных объектов) позволяет осуществлять телекоммуникационный контроль состояния сетей и осветительных приборов, управлять рабочими режимами светильников, дистанционно управлять освещением отдельных участков объекта по заранее заданному графику, а также вести учет энергопотребления и следить за эффективным использованием электроэнергии.

Наиболее значимые объекты с применением систем управления освещением со светильниками Revolight (В проектах, в частности, использовалось оборудование Beckhoff CX-xxxx, что способствовало получению награды за лучший городской проект Embedded Intelligence 2014):

1) Памятные стелы Фронтам и Флотам, Парк Победы, Поклонная гора, г. Москва

Система управления художественной подсветки (СУХП) на основании ТЗ на разработку системы управления установкой по объекту.

Описание объекта: 15 памятных стел, установленных в парке города.

Светильники: Для каждой из 15 стел устанавливаются 9 светильников RC-AX-RGB со шкафами управления для архитектурной подсветки в вечернее и ночное время. Для освещения предлагаются RGB светильники общего освещения с DМX управлением динамического полихромного освещения, предусматривающего возможность реализации различных сценариев художественной подсветки.

Система управления: Двухуровневая система управления состоит из шкафов локального управления наружным освещением и центрального сервера. Шкафы локального управления расположены в непосредственной близости от монумента, управление светильниками которого они осуществляют и соединены с центральным сервером в диспетчерской через роутер Wi-Fi. Роутер обеспечивает управление способами:

  • локально;

  • автоматически (приборами управления шкафа управления);

  • вручную (органами местного ручного управления и с помощью переносного компьютера или специального мобильного оборудования, подключаемых к интерфейсу шкафа управления);

  • дистанционно (комплексная автоматизированная система управления установками из диспетчерского пункта управления художественной подсветкой).

Москва, Поклонная гора, Парк Победы, Главная аллея, Памятные стелы Фронтам и флотам ВОВ 1941-1945гг, Установленны прожекторы RGB с подключением к системе удаленного управления

Художественное освещение верхней части зданий, расположенных вдоль Садового Кольца, г. Москва, проект «Золотое Сечение»

В проекте выполнено освещение всех зданий, расположенных по обе стороны от автомобильной дороги. Вся система объединена в единый комплекс. В архитектурном освещении каждого дома используются статические и динамические осветительные приборы.

Система управления:

  • обеспечивает управление режимами работы архитектурного освещения дома;

  • реализует три режима работы архитектурного освещения дома:

  • тестовый режим;

  • повседневный режим (режим I);

  • праздничный режим (режим II);

  • контроль положения дверей силового щита;

  • обеспечивает управление динамическими осветительными приборами по протоколу DMX-512;

  • обеспечивает дистанционное управление динамическими осветительными приборами по протоколу DMX-512 по беспроводному каналу с помощью антенны-передатчика;

  • осуществляет контроль состояния аппаратов и электрических параметров в силовой части щита архитектурного освещения дома, (контроль напряжения на вводе);

  • обеспечивает автоматический контроль и учет потребления электроэнергии, затраченной на архитектурное освещение дома;

  • обеспечивает возможность передачи информации и восприятие управляющих команд от КАСУ по каналу GSM;

  • обеспечивает возможность передачи информации с электросчетчика в существующую систему АСКУЭ;

  • обеспечивает синхронизацию времени для динамических осветительных приборов с использованием систем ГЛОНАСС/GPS.

Функции уличного освещения

Вне зависимости от масштаба объекта — будь это придомовая территория или автомагистраль — его нужно освещать в темное время суток. Свет нужен для безопасного передвижения жильцов дома, обеспечения движения автотранспорта, декоративной подсветки зданий или их отдельных элементов, освещения рекламы на билбордах и т. д.

Что касается частного жилья, помимо освещения подъезда к дому, подсветка выполняет следующие функции:

общее освещение территории (важно с точки зрения безопасности);
освещение ступенек в дом;
подсветка пешеходных дорожек;
освещение локальных участков (например, возле беседки);
декоративная подсветка архитектурных и ландшафтных особенностей участка.

Что входит в состав системы?

Автоматическое управление освещением включает в себя комплекс высокотехнологических устройств, которые способны работать в автоматизированном и автоматическом режиме, то есть без участия человека. Конструкция системы состоит не только из осветительных приборов, но и из датчиков и вспомогательных устройств. В любой момент можно подключить новые внешние устройства, ведь система масштабируема. Перечень оборудования:

  • Умные выключатели, которые способны включаться и выключаться как в обычном ручном режиме, так и после соответствующих команд с пульта управления. Есть механические и сенсорные выключатели.

  • Умные диммеры – устройства, предназначенные для плавного изменения мощности осветительных приборов. Иными словами, используются для автоматизированного редактирования яркости освещения.

  • Умные лампы – имеют возможность включаться и выключаться в автоматическом режиме, а также плавно изменять яркость своего свечения. Некоторые модели способны менять цвет и температуру.

  • Светодиодные ленты – имеют те же возможности, что и смарт-лампы. При этом они отличаются меньшим энергопотреблением, повышенной безопасностью использования, а также длительным сроком службы.

Не меньшую роль в автоматизации системы освещения играют датчики, которые следят за изменениями в среде. В рассматриваемых схемах наибольшей востребованностью пользуются сенсоры, реагирующие на движение, присутствие, открытие и закрытие дверей, окон, на изменение уровня освещения. Также автоматизация может успешно взаимодействовать с другими системами здания, в том числе с пожарной сигнализацией или же с ОВК.

Категории электроустановок и обязательные требования по автоматизации

В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие три категории (ПУЭ 7):

Электроприемники первой категории – электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения. В нормальных режимах работы они должны обеспечиваться электроэнергией от двух независимых источников питания, переключение вводного источника электроснабжения должно происходить в автоматическом режиме (АВР).

Из состава электроприемников первой категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров. Для них должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

Электроприемники второй категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей. В нормальных режимах работы они должны обеспечиваться электроэнергией от двух независимых источников питания.

Электроприемники третьей категории – все остальные электроприемники, не подпадающие под определения первой и второй категорий. Их электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 суток.

Обязательным элементом системы электроснабжения для I категории приемников является щит автоматического ввода резерва (АВР). Щит АВР распределяет электроэнергию, а также переключает нагрузки на резервный ввод автоматического резерва, если в сети произошло отключение. Щиты АВР являются неотъемлемой частью объектов в жилищном строительстве (лифты, противопожарные системы) и в различных отраслях промышленности.

Он представляет собой металлический или пластиковый щит с размещенными в нём оборудованием. В зависимости от реализуемой схемы питания потребителей, в шкафу АВР размещаются контакторы или автоматические выключатели с мотор-приводами.

При пропадании одной или нескольких фаз, а также в случае других нарушениях происходит автоматическое отключение основного ввода и переключение на резервный. На передней панели щита АВР и на диспетчерском пульте отображается, от какого ввода осуществляется электроснабжение. Оборудование в щите АВР обычно имеет характерное симметричное расположение.

По схеме работы шкафы АВР бывают:

Методы управления уличным освещением

На практике используется три способа управления светом: ручное, дистанционное и автоматическое.

Ручное управление

Включение и выключение уличных светильников осуществляется в ручном режиме. Каждый источник света или их группа управляется оператором непосредственно на месте.

Этот способ самый древний. Издавна фонарщики подходили к каждому фонарю (газовому или масляному) и зажигали столб, а позднее — гасили. Даже сегодня во дворах частных домов используется ручное управление наружным светом. Однако в коммунальных службах управлять светом в ручном режиме невозможно из-за масштабов работы, поэтому такой способ используется только в экстренных случаях (например, при выполнении ремонта).

Удаленный контроль

С течением времени технологии развивались — вместо фонарщиков управлять освещением стали служащие энергораспределительных сетей. Делали работники служб это дистанционно, включая или выключая рубильник. В результате действий напряжение подается в сеть или, наоборот, прекращается.

Автоматическое управление

Управление с помощью автоматики — наиболее продвинутый способ управления светом. Включение и выключение света осуществляется за счет использования датчиков, действующих по определенному алгоритму. В результате система освещения работает без непосредственного участия человека.

Существует два обстоятельства, диктующих переход на автоматическое управление:

  1. Чаще всего строить отдельные подстанции для уличного освещения экономические невыгодно. Нынешние трансформаторы преобразуют напряжение для всех потребителей электричества на заданной территории.
  2. Для централизованного контроля за включением и отключением светильников понадобилось бы подтягивать к каждой подстанции отдельный кабель, что только повысит и без того большие расходы.

В связи с этим начался массовый переход на автоматические системы. В самом начале развития технологии принцип управления был прост: на подстанциях монтировались приборы, контактирующие с датчиками освещенности.

Со временем стали видны изъяны такого подхода:

  • некорректное срабатывание при неверной калибровке;
  • фонари часто гасли в темное время из-за света фар от проезжающих машин или даже от лунного света;
  • если датчик покрывался снегом, грязью или льдом, происходило ложное срабатывание светильника;
  • датчики нередко выходили из строя.

Еще один недостаток датчиков освещенности — линейность технологии. Свет не обязательно нужен даже в темное время суток, если на территории отсутствуют движущиеся объекты.

Чтобы как-то оптимизировать технологию, датчики стали объединять с временными реле. В результате таймер включал и выключал светильники в определенное время. Например, освещение работало с 10 часов вечера до четырех часов утра.

Позднее появились астрономические реле. В таких устройствах программа по определенному алгоритму рассчитывает время заката и рассвета. На основании расчета происходит управление освещением.

Датчики освещенности по-прежнему используются. Приборы актуальны для управления светом при неожиданном снижении естественной освещенности (например, туман).

На сегодняшний день наиболее популярны автоматические системы на основе цифровых технологий, где сочетаются автоматика и ручное управление.

Где используются системы управления освещением

Как сказано выше, системы управления освещением или значительно экономят электроэнергию или же используются для комфорта в умных домах. Для значительной экономии электроэнергии, профессиональные системы управления освещением применяют на самых разных объектах:

  • складские помещения;
  • офисные и административные здания;
  • гостиницы;
  • парковки и охраняемые территории;
  • многоквартирные жилые дома;
  • промышленные предприятия;
  • торговые комплексы;
  • учебные учреждения;

Очень важно грамотно спроектировать систему управления освещением еще на этапе планирования здания, но возможно её применение и в эксплуатирующемся здании. Применить в проекте подходящее и надежное оборудование, продумать управление группами освещения, спланировать алгоритм работы системы, все это необходимо для стабильной работы системы

Естественно, что для каждого типа объекта система управления будет индивидуальна, но и типовые решения для помещений также имеются.

ТИПОВАЯ АРХИТЕКТУРА АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ

Система управления освещением построена по иерархическому принципу и представляет собой двухуровневую структуру (рис.2). На нижнем уровне системы расположены шкафы управления (ШУ) пунктов включения. Данные ШУ в своем составе содержат комплект силового оборудования для непосредственного управления наружным освещением, трехфазный электросчетчик и контроллер, обеспечивающий сбор и первичную обработку входных информационных сигналов для передачи на верхний уровень, а также выдачу управляющих воздействий силовому оборудованию ПВ. Контроллеры ШУ ПВ осуществляют обмен данными с серверами Центрального диспетчерского пункта (ЦДП), составляющими верхний уровень. Резервируемые серверы ЦДП с функциями архивирования предоставляют оперативному персоналу удобный человеко-машинный интерфейс для контроля состояния и управления наружным освещением, анализа накопленных архивных данных, а также обеспечивают формирование отчетной документации (рис. 3). Подсистема печати верхнего уровня представлена сетевым черно-белым лазерным принтером формата А4.

Рис.2. Структура АСУ наружным освещением

Автоматизация управления освещением

Сети уличного освещения являются существенной частью структуры коммунального хозяйства городов, поселков и крупных предприятий

Современные сети уличного освещения – это энергоемкие объекты, правильное построение которых важно для их эффективной работы, рационального использования и минимизации потерь энергоресурсов. Внедрение новых технологий автоматизации сетей освещения позволяют не только решать эти задачи, но также облегчить их обслуживание и мониторинг

В настоящее время значительная часть оборудования районных и городских сетей освещения морально и физически устаревает и встает вопрос о его обновлении. Кроме того, современные системы автоматизации – это не просто дань моде, они имеют и экономические преимущества:

  • в автоматическом режиме строго соблюдается расписание, т.к. исключается влияние человеческого фактора;
  • нет необходимости выезжать на проверку включения или отключения освещения;
  • в случае не отключения освещения не происходит потерь электроэнергии, т.к диспетчер оперативно об этом оповещается и принимает соответствующие меры (ранее о не отключении сообщали через несколько часов граждане – потери могли быть значительными);
  • для осуществления технического учета энергии нет необходимости выезжать и снимать показания со счетчиков визуально;
  • телеизмерения позволяют оперативно выявлять несанкционированные подключения к сетям освещения и выявлять хищения электроэнергии;
  • с помощью телеизмерений напряжений, токов и мощностей можно осуществить первичную диагностику осветительной сети в случаях каких-либо аварий,
  • более надежная система, построенная из современных компонентов, требует меньше затрат на свое обслуживание.

Диспетчеризация систем освещения

предлагает системы автоматизированного управления уличным освещением. Основными отличительными особенностями наших систем являются:

  • Максимальное использование имеющегося оборудования сетей освещения. Например, реконструкции могут подвергаться только головные пункты включения (ГПВ) каскадов – вся дальнейшая древовидная структура управления освещением сохранена. Могут быть использованы штатные коммутационные аппараты (пускатели), обновление их на более современные заказчик может осуществить самостоятельно. Даже оставшиеся от старой системы двухпроводные линии для включения освещения ручной подачей импульсов постоянного тока могут быть использованы как каналы связи с ГПВ посредством телефонных модемов;
  • Программное обеспечение комплекса построено с применением промышленной SCADA, что обеспечивает повышенную надежность, функциональность, гибкость и удобство в работе. Ориентированная на стандартный ОРС интерфейс SCADA позволяет провести легкую интеграцию в систему телемеханики заказчика с сохранением всех функциональных возможностей.

Какое уличное освещение можно автоматизировать с помощью Ajax

Система Ajax позволяет управлять любым уличным освещением.

Уличное освещение состоит из трех основных компонентов — осветительных приборов, электропроводки и оборудования, отвечающего за управление питанием. Модули автоматизации Ajax подключаются к элементам управления питанием уличного освещения, обеспечивая контроль с помощью приложений Ajax, сценариев автоматизации и кнопки Button.

В зависимости от задачи к устройствам автоматизации Ajax можно подключить как один, так и цепь осветительных приборов.

Типы освещения по напряжению питания:

  • 110/230 вольт — управляется с помощью WallSwitch. Используется один и тот же источник питания.
  • 12/24 вольт — управляется с помощью Relay. Используется один и тот же источник питания.
  • 24/36 вольт — управляется с помощью Relay. Используются разные источники питания.

Как подключить Ajax к уличному освещению

Подключение Ajax к электроцепи 110–230 В

WallSwitch и уличное освещение можно подключить к одному источнику питания. Подключите WallSwitch к цепи питания уличного освещения согласно схеме ниже и настройте систему.

  1. Подключите источник питания к клеммам питания WallSwitch.
  2. Клеммы контактов реле подключите к входам питания уличного освещения.

Настройка WallSwitch

В приложении Ajax:

  1. Перейдите во вкладку Устройства .
  2. Выберите WallSwitch и перейдите в его Настройки .
  3. Установите необходимые параметры:
    • Режим работы реле: бистабильный или импульсный.

      Импульсный режим позволяет включать освещение на заданное время: от 0,5 до 255 секунд. Это может быть полезно, например, для включения подсветки дороги только на время парковки автомобиля.

    • Продолжительность импульса (если выбран импульсный режим): от 0,5 до 255 секунд.
    • Состояние контакта: нормально замкнут или нормально разомкнут.
  4. Нажмите Назад — настройки сохранятся.

Для большей информативности уведомлений переименуйте WallSwitch. Например, назовите устройство «Уличное освещение».

Подключение Ajax к электроцепи 12/24 В

Relay, промежуточное реле и уличное освещение можно запитать от одного источника питания. Подключите Relay к цепи питания уличного освещения согласно схеме ниже и настройте систему.

  1. Подключите источник питания к клеммам питания Relay.
  2. К одной из клемм контактов реле подключите «+» источника питания, а к другой клемме контактов реле — «+» осветительного прибора.
  3. Контакт «–» осветительного прибора подключите к «–» источника питания.

Настройка Relay

В приложении Ajax:

  1. Перейдите во вкладку Устройства .
  2. Выберите Relay и перейдите в его Настройки .
  3. Установите необходимые параметры:
    • Режим работы реле: бистабильный или импульсный.

      Импульсный режим позволяет включать освещение на заданное время: от 0,5 до 255 секунд. Это может быть полезно, например, для включения подсветки дороги только на время парковки автомобиля.

    • Продолжительность импульса (если выбран импульсный режим): от 0,5 до 255 секунд.
    • Состояние контакта: нормально замкнут или нормально разомкнут.
  4. Нажмите Назад — настройки сохранятся.

Для большей информативности уведомлений переименуйте Relay. Например, назовите устройство «Уличное освещение».

Подключение Ajax к электроцепи 36 В

Relay питается от источника питания 12/24 В. Уличное освещение запитывается от другого источника питания с напряжением 36 В. Подключите Relay к цепи питания уличного освещения согласно схеме ниже и настройте систему.

  1. Подключите источник питания 12/24 В к клеммам питания Relay.
  2. Подключите «+» источника питания 36 В к одной из клемм контактов Relay.
  3. Вторую клемму контактов Relay подключите к «+» осветительного прибора.
  4. Контакт «–» осветительного прибора подключите к «–» источника питания 36 В.

Настройка Relay

В приложении Ajax:

  1. Перейдите во вкладку Устройства .
  2. Выберите Relay и перейдите в его Настройки .
  3. Установите необходимые параметры:
    • Режим работы реле: бистабильный или импульсный.

      Импульсный режим позволяет включать освещение на заданное время: от 0,5 до 255 секунд. Это может быть полезно, например, для включения подсветки дороги только на время парковки автомобиля.

    • Продолжительность импульса (если выбран импульсный режим): от 0,5 до 255 секунд.
    • Состояние контакта: нормально замкнут или нормально разомкнут.
  4. Нажмите Назад — настройки сохранятся.

АСУНО «Горсвет»

Автоматизированная система управления наружным освещением «Горсвет» представляет собой централизованную трехуровневую систему, работающую в реальном масштабе времени.

Верхний уровень “Диспетчер”

На первом (верхнем) уровне системы освещения располагается центральный диспетчерский пункт (ЦДЛ). Автоматизированное рабочее место (АРМ) диспетчера персональный компьютер (сервер) с установленным программным обеспечением и комплектом аппаратуры связи диспетчерского пункта с объектами. Возможно подключение дополнительных диспетчерских пунктов, в том числе мобильных, например, сервисного обслуживания с ограничением для этих АРМ прав доступа к информации, к функциям управления и конфигурирования АСУНО «Горсвет».

Средний уровень “Управление”

На втором (среднем) уровне системы освещения располагаются шкафы управления освещением (ШУО) при линиях уличного освещения или в трансформаторных подстанциях, которые предназначены для автоматизации процесса управления установками наружного освещения электрических сетей и для контроля параметров этих сетей с суммарным током потребления до 80, 100 А (в зависимости от исполнения) по каждой фазе. Каждый ШУО контролирует один участок сети наружного освещения и осуществляет управление всеми режимами освещения (вечерний, ночной, утренний, дневной) путём раздельной коммутации фаз А, В, С отходящих линий.

Нижний уровень “Наружное освещение”

На третьем (нижнем) уровне системы освещения расположены пускорегулирующие аппараты “ЭПРАН”, предназначенные для зажигания и электропитания натриевых ламп высокого давления типа ДНаТ или аналогичных, и устанавливаемые в светильниках уличного освещения.

Для управления и контроля дополнительного оборудования, подключаемого к линиям наружного освещения (реклама, праздничная иллюминация, подсветка и т.д.) используются адресуемые ключи (АК), управляемые из ЦДП. Обмен информацией между первым и вторым уровнями АСУНО “Горсвет” осуществляется по радиоканалу или сети GSМ (с автоматическим выбором варианта связи GPRS или CDS). Обмен между вторым и третьим уровнями АСУ наружного освещения “Горсвет” осуществляется по проводам линий наружного освещения.

Поэтапный вариант внедрения АСУ наружным освещением «Горсвет»:

организация автономной работы исполнительных пунктов с возможностью последующего подключения в произвольном порядке новых ИП, оборудования третьего уровня и центрального диспетчерского пункта.*

*Количество приборов в системе АСУНО «Горсвет» зависит от количества и конфигураций линий наружного освещения и определяется при оформлении заказа конкретной поставки

Экономический эффект от применения системы управления

Управляя освещением в автоматическом или полуавтоматическом режиме, в зависимости от присутствия, освещенности и времени, мы можем значительно ограничить потребление электроэнергии. Например, регулируя светильники, поддерживать постоянную освещенность над рабочим местом или выключать освещение, когда освещенности в помещении стало достаточно. Это значит, что при том же уровне комфорта, мы тратим гораздо меньше электроэнергии. Не зря системы управления освещением обязательно присутствуют в так называемых “умных домах”, но как правило их функционал (групповое управление, включение в разное время суток, и т.д) заключается в удобстве использования, интеграции освещения в общую систему автоматизации (для различных сценариев) и не нацелен на экономию.

Это интересно: Поезда на магнитном подвесе — изучаем обстоятельно

Комбинация всегда лучше

Выше мы описали различные варианты того, каким образом может быть организовано наружное освещение управляемого типа. В каждом отдельно случае устройство управления нужно помещать либо в ящик управления (электрический щит), либо подключать к осветительной установке.

Такой вариант организации управления уличной подсветкой имеет очевидные преимущества:

  • возможность использовать наиболее эффективные методы управления сразу (датчики движения, таймер и т.д.);
  • минимизировать риск сбоя системы. При наличии взаимодополняющих элементов риск отсутствия света на конкретном участке равняется нулю;
  • исключение человеческого фактора и т. д.

Но, чтобы организовать комбинированный тип освещения улиц и городской инфраструктуры, необходимо знать следящие нюансы:

где расположен электрический щит или ящик управления системой освещения. Это необходимо знать в тех ситуациях, когда элементы управляемых устройств, как при использовании фотореле, нужно поместить в щит;

Выключатели в щитке

каким образом осуществляется подключение управляющего устройства к той или иной осветительной установке или ящику управления;
условия эксплуатации управляющих освещением приборов

Это очень важно, так как для каждого устройства (датчик движения, фотореле и т.д.) производители указывают конкретные условия работы, при которых они могут гарантировать качественную и продолжительную работу приборов в меняющихся условиях улицы.. Эти нюансы характерны не только для комбинированного типа управлением освещения, но и для конкретных одиночных ситуаций

Их обязательно следует учитывать, при организации управляемой системы наружной подсветки своими руками и у себя на приусадебной территории. Такой вариант организации освещения можно легко совместить с охранной системой

Эти нюансы характерны не только для комбинированного типа управлением освещения, но и для конкретных одиночных ситуаций. Их обязательно следует учитывать, при организации управляемой системы наружной подсветки своими руками и у себя на приусадебной территории. Такой вариант организации освещения можно легко совместить с охранной системой.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: