Литература
- Метеорология и гидрология за 50 лет Советской власти, под ред. Е. К. Федорова, Л., 1967;
- Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958;
- Зверев А. С., Синоптическая метеорология и основы предвычисления погоды, Л., 1968;
- Хромов С. П., Метеорология и климатология для географических факультетов, Л., 1964;
- Тверской П. Н., Курс метеорологии, Л., 1962;
- Матвеев Л. Т., Основы общей метеорологии. Физика атмосферы, Л., 1965;
- Будыко М. И., Тепловой баланс земной поверхности, Л., 1956;
- Кондратьев К. Я., Актинометрия, Л., 1965;
- Хвостиков И. А., Высокие слои атмосферы, Л., 1964;
- Мороз В. И., Физика планет, М., 1967;
- Тверской П. Н., Атмосферное электричество, Л., 1949;
- Шишкин Н. С., Облака, осадки и грозовое электричество, М., 1964;
- Озон в земной атмосфере, под ред. Г. П. Гущина, Л., 1966;
- Имянитов И. М., Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.
М. И. Будыко, К. Я. Кондратьев.
- Эта статья или раздел использует текст Большой советской энциклопедии.
История открытия
Дальнейшее развитие теория электричества получила несколько столетий спустя. Создал теорию У. Гильберт, который заинтересовался подобными явлениями.
В начале 18века было доказано, что получаемое при трении разных материалов электричество бывает разное. А в 1729 г. голландец Мушенбрук обнаружил, что если стеклянную банку залепить с обеих сторон листиками станиоля, там будут накапливаться электроэнергия.
Это явление получило название лейденской банки.
Важно! УченыйБ. Франклин первым предположил, что существуют положительные и отрицательные заряды
Он смог пояснить процесс лейденской банки, доказав, что обкладку банки можно «заставить» электризоваться разными по знаку зарядами. Франклин занимался изучением атмосферных электрических явлений. Почти одновременно с ним подобные исследования вели русский физик Г. Рихман и ученый М.В. Ломоносов. Тогда же был изобретен громоотвод, действие которого пояснялось возникновением разности напряжений.
А. Вольт (1800 год) создал гальваническую батарею, составив ее из круглых серебряных пластин, между которыми он расположил размоченные соленой водой бумажные кусочки. Химическая реакция внутри батареи вырабатывала электрический заряд.
Начало 1831 г. ознаменовалось тем, что Фарадей создал электрический генератор, действие которого основано было на открытом этим ученым законе электромагнитной индукции.
Немало электрических приборов создал известный ученый Никола Тесла в XX тысячелетии. Основные события в развитии электричества можно изложить в таком хронологическом порядке:
- 1791 г. — ученый Л. Гальвани открыл движение зарядов по проводникам, т.е. электрический ток,
- 1800 г. – представлен генератор тока А. Вольтом,
- 1802 г. — Петров открыл электродугу,
- 1827 г. — Дж. Генри сконструировал изоляцию проводов,
- 1832 г. — член академии Петербурга Шиллинг показал электрический телеграф,
- 1834 г. — академик Якоби создал электродвигатель,
- 1836 год — С. Морзе запатентовал телеграф,
- 1847 г. — Сименс предложил резиновый материал для изоляции проводов,
- 1850 год — Якоби изобрел буквопечатающий телеграф,
- 1866 г. — Сименс предложил динамо-машину,
- 1872 г. — А.Н. Лодыгин создал лампу накаливания, где использовал угольную нить,
- 1876 г — изобретен телефон,
- 1879 год — Эдисон разработал систему электроосвещения, используемую до сих пор,
- 1890 год — стал стартовым относительно широкого применения электроприборов в быту,
- 1892 г. — появились первые бытовые приборы, используемые хозяйками на кухне,
Перечень открытий можно продолжить. Но все они были уже основаны на предыдущих.
Первые опыты с электричеством
Впервые опыты с зарядами были проведены в 1729 г. англичанином С. Греем. Во время этих опытов ученый установил: не все предметы передают электрический заряд. С середины 1833 г. серьёзными исследованиями этой области науки занялся француз Ш. Дюфе. Повторив опыты Фалеса и Гильберта, он подтвердил существование двух видов заряда.
Важно! С конца 18 столетия началась новая эра достижений науки. Россиянин В
Петров открыл «Вольтову дугу». Жан А. Нолле сконструировал первый электроскоп, который послужил впоследствии прообразом электрокардиографа. А 1809 год ознаменовался важным открытием: английский ученый Деларю изобрел первую лампочку накаливания, давшую толчок в промышленном применении открытых законов физики.
Как получить электричество из воздуха в домашних условиях
Опыты Николы Тесла показали, что получать электричество из воздуха своими руками можно без особого труда. В наше время, когда атмосфера пронизана различными энергетическими полями, эта задача упростилась. Все, что производит излучения (теле- и радиовышки, ЛЭП и т. п.) создает энергетические поля.
Принцип получения электричества из воздуха очень прост: над землей поднимается пластина из металла, которая играет роль антенны. Между землей и пластиной возникает статическое электричество, которое, со временем накапливается. Через определенные временные интервалы происходят электрические разряды. Таким образом генерируется, а затем используется атмосферное электричество.
Схема получения атмосферного электричества своими руками
Такая схема достаточно проста ‑ для генерации потребуется только металлическая антенна и земля. Потенциал, который устанавливается между проводниками, со временем накапливается, хотя рассчитать его силу невозможно. При достижении определенного максимального значения потенциала происходит разряд тока, подобный молнии.
Общая информация
На протяжении многих лет ученые мужи ищут альтернативный источник электроэнергии, который даст возможность получать электричество из доступных и восстанавливаемых ресурсов. Возможность добыть ценные ресурсы из воздуха интересовала еще Теслу в девятнадцатом веке. Однако если энтузиасты прошлых веков не имели в собственном распоряжении столько технологий и изобретений, как современные экспериментаторы, то сейчас возможности по реализации очень сложных и безумных идей смотрятся вполне возможно. Получить альтернативное электричество из атмосферы можно 2-мя способами:
- благодаря ветрогенераторам;
- при помощи полей, которые пронизывают атмосферу.
Наукой доказали, что электрический потенциал способен собираться воздухом за конкретный временной промежуток. Сегодня обстановка настолько пронизана разными волнами, электрическими приборами, а еще настоящим полем Земли, что получить из нее энергетические ресурсы можно без больших усилий или непростых изобретений.
Традиционным способом энергодобычи из воздуха считается ветрогенератор. Его функция состоит в преобразовании силы ветра в электричество, которое поставляется для домашних потребностей. Мощные ветровые установки широко применяются в ведущих государствах мира, включая:
Однако одна ветряная установка способна обслужить лишь несколько электрических приборов, благодаря этому для питания пунктов проживания, фабрик или заводов приходится ставить очень большие поля подобных систем. Кроме значительных достоинств у данного варианта есть и минусы. Один из них — непостоянность ветра, благодаря чему нельзя предугадать уровень напряжения и собирания электрического потенциала. В числе достоинств ветрогенераторов подчеркивают:
- фактически тихую работу;
- отсутствие вредных выбросов в атмосферу.
Полезные советы
Создавая прибор по добыче электроэнергии из воздуха, необходимо помнить об определенной опасности, которая связана с риском появления принципа молнии
Чтобы избежать непредвиденных последствий, важно соблюдать правильность подключения, полярность и прочие важные моменты. Работы по изготовлению устройства для получения доступного электричества не требуют больших финансовых затрат или усилий
Достаточно подобрать простую схему и в точности следовать пошаговому руководству
Работы по изготовлению устройства для получения доступного электричества не требуют больших финансовых затрат или усилий. Достаточно подобрать простую схему и в точности следовать пошаговому руководству.
Конечно же, сверхмощный прибор своими руками создать проблематично, так как он требует более сложных схем и может обойтись в кругленькую сумму. А вот что касается изготовления простых механизмов, то такую задачу можно реализовать в домашних условиях.
Энергия из пустоты
Наука не даёт вразумительного определения ни полю, ни энергии. Зато она ясно формулирует — энергия не берётся из ниоткуда и никуда не девается. Пытаясь добывать «энергию из ничего», мы можем только стараться «встраиваться» в процесс её естественного преобразования из одних видов в другие.
Энергия определяется полезной работой, а поле — пространственными характеристиками влияния его источника. И статический электрический заряд, и динамический магнитный эффект вокруг проводника с током, и тепло нагретого тела считаются полями.
Любое поле может выполнить полезную работу, следовательно, передать часть своей энергии. Именно это свойство побуждает искать источники дармовой энергии в различных полях. Считается, что такой энергии существует в разы больше, чем в освоенных человечеством традиционных источниках.
Например, мы умеем использовать энергию гравитации огромной Земли, но не умеем её извлекать из притяжения малюсенького камня. Она слишком незначительная, чтобы это имело смысл, но практически неисчерпаема. Если придумать некий способ её извлечения из камешка, мы получим новый источник энергии.
Примерно этим занимаются исследователи и разработчики всех видов и мастей в попытках извлечь «энергию из ничего». То поле, из которого различные изыскатели стремятся научиться добывать энергетический ресурс, они называют эфир.
Что такое атмосферное электричество
Первым всерьез занялся проблемой гениальный Никола Тесла. Источником появления свободной электрической энергии Тесла считал энергию Солнца. Созданный им прибор получал электроэнергию из воздуха и земли. Тесла планировал разработку способа передачи полученной энергии на большие расстояния. Патент на изобретение описывал предложенный прибор, как использующий энергию излучения.
Устройство Теслы было революционным для своего времени, но объем получаемой им электроэнергии был небольшим, и рассматривать атмосферное электричество как альтернативный источник энергии, было неверно. Совсем недавно изобретатель Стивен Марк запатентовал прибор, производящий электричество в больших объемах. Его тороидальный генератор может подавать электричество для ламп накаливания и более сложных бытовых приборов. Он работает длительное время, не требуя внешней подпитки. Работа этого прибора основана на резонансных частотах, магнитных вихрях и токовых ударах в металле.
На фото рабочий образец тороидального генератора Стивена Марка
Электрический ток в атмосфере.
Рис. 2. Унитарная вариация напряжённости электрического поля.
Движение ионов под действием сил электрического поля создаёт в атмосфере вертикальный ток проводимости in = Eλ, со средней плотностью, равной около (2—3)·10-12 а/м2. Таким образом, в зонах «хорошей» погоды сила тока на всю поверхность Земли составляет около 1800 а. Время, в течение которого заряд Земли за счёт токов проводимости атмосферы уменьшился бы до 1/е ≈ 0,37 от своего первоначального значения, равно ~ 500 сек. Так как заряд Земли в среднем не меняется, то очевидно, что существуют «генераторы» атмосферного электричества, заряжающие Землю. Помимо токов проводимости, в атмосфере текут значительные электрические диффузионные и конвективные токи.
«Генераторы» атмосферного электричества.
«Генераторами» атмосферного электричества в зонах нарушенной погоды являются пылевые бури и извержения вулканов, метели и разбрызгивание воды прибоем и водопадами, облака и осадки, пар и дым промышленных источников и т. д. При почти всех перечисленных явлениях электризация может проявляться весьма бурно: извержение вулканов, песчаные бури и даже метели приводят иногда к образованию молний, всё же наибольший вклад в электризацию атмосферы вносят облака и осадки.
По мере укрупнения частиц облака, увеличения его толщины, усиления осадков из него растет его электризация. Так, в слоистых и слоисто-кучевых облаках плотность объёмных зарядов ρ ≈ 3 10-12 к/км3, что приблизительно в 10 раз превышает их плотность в чистой атмосфере, а в грозовых облаках r доходит до 3·10-8 к/м3. Облака могут быть заряжены положительно в верхней части и отрицательно в нижней, но могут иметь и противоположную полярность, а также преимущественный заряд одного знака. Плотность тока осадков на Землю из слоисто-дождевых облаков ioc = 10-12 а/м2, в то время как из грозовых ioc = 10-9а/м2. Полная сила тока, текущего на Землю от одного грозового облака, в средних широтах равна около — (0,01—0,1) а, а ближе к экватору до — (0,5—1,0) а. Сила токов, текущих в самих этих облаках, в 10—100 раз больше силы токов, притекающих к Земле. Таким образом, гроза в электрическом отношении подобна короткозамкнутому генератору.
При высоких значениях электрического поля у земной поверхности порядка 500—1000 в/м начинается электрический разряд с острых вытянутых предметов (травы, деревьев, мачт, труб и т.д.), который иногда становится видимым (так называемые огни святого Эльма, особенно яркие в горах и на море, см. Эльма огни). Возникающие при метелях, ливнях и особенно грозах токи коронирования способствуют обмену зарядами между Землёй и атмосферой.
Таким образом, электрическое поле Земли и ток Земля — атмосфера в зонах хорошей погоды поддерживаются процессами в зонах нарушенной погоды. На земном шаре одновременно существует около 1800 гроз (см. кривую 3, рис. 2); суммарная сила тока от них, заряжающего Землю отрицательным зарядом, доходит до 1000 а. Облака слоистых форм, хотя и менее активные, чем грозовые, но зато покрывающие около половины земной поверхности, также вносят существенный вклад в поддержание электрического поля Земли. Исследования атмосферного электричества позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.
Атмосферное электричество в восемнадцатом веке
Первым ученым, который решил строго изучать молнию, а еще и защиту от нее, стал выдающийся американский ученый-дипломат Бенджамин Франклин. В 1750 Франклин напечатал работу, в которой предложил поэкспериментировать – запустить воздушного змея в грозовую погоду. В распоряжении Франклина были довольно доступные средства:
- Традиционный воздушный змей, на крестовине которого был прикреплен металлический провод.
- Бечевка, с привязанной к ней шелковистой лентой и металлическим ключом.
Он запускал его в грозовую погоду и получил два поразительных результата:
- Доказал электрическую природу молнии, так как шелковые края ленты начали топорщиться, из ключа вылетали искры и электризовался металлический провод.
- Первый раз открыл громоотвод.
В первой половине 50-ых годов восемнадцатого века подобный эксперимент с молнией проводил Георг Рихман в Петербурге. Он стоял на расстоянии всего 30 см от собственного прибора, который назывался электрическим указателем и был прототипом электроскопа. В грозовую погоду возле прибора появился бледно-голубой шар и направился к голове ученого. Прозвучал гулкий хлопок, и Рихман упал замертво. Помощником ученого в тот день был Соколов, который в последствии изобразил схему, представленную ниже.
Во времена Франклина и Рихмана приборы для опытов стали более серьезными, но молния продолжает вызывать много вопросов.
Явления, связанные с отражением солнечного света
Все много раз видели, как после дождя или недалеко от бурного водного потока на небе появляется цветной мост — радуга. Радуга обязана своими красками солнечным лучам и капелькам влаги, взвешенным в воздухе. Когда свет попадает на каплю воды, он как бы распадается на различные цвета. В большинстве случаев капля отражает свет только один раз, но иногда свет отражается от капли дважды. Тогда па небе вспыхивают две радуги.
Многие путешественники в пустынях становились свидетелями другого атмосферного явления миража. Посреди пустыни появлялся оазис с пальмами, караван или корабль, движущиеся по небу. Это происходит, когда раскалённый над поверхностью воздух поднимается вверх. Его плотность с высотой начинает возрастать. Тогда изображение дальнего объекта может быть видно выше его реального положения.
В морозную погоду вокруг Солнца и Лупы появляются ярко выраженные кольца гало. Они образуются, когда свет отражается в кристаллах льда, находящихся довольно высоко в атмосфере, например в перистых облаках. С внутренней стороны гало может иметь яркую окраску и красноватый оттенок. Кристаллы льда иногда столь причудливо отражают солнечный свет, что на небе появляются другие иллюзии: два солнца, вертикальные столбы света или солнечные дуги. Вокруг Солнца и Луны иногда образуются ореолы — венцы. Венцы выглядят как несколько вложенных друг в друга колец. Они возникают в высококучевых и высокослоистых облаках. Цветной венец может появиться вокруг тени, отбрасываемой, например, самолётом на нижележащие облака.
Простые схемы
Желая добыть атмосферное электричество своими руками, следует рассмотреть различные схемы и чертежи. Некоторые из них настолько простые, что даже начинающий изобретатель без особых трудностей сможет воплотить их в жизнь и создать примитивную установку
Важно отметить, что современные сети и линии электропередач вызывают дополнительную ионизацию воздушного пространства, что повышает количество электрического потенциала, содержащегося в атмосфере. Остается научиться добывать его и накапливать
Наиболее простая схема подразумевает использование земли в качестве основания и металлической пластины в виде антенны. Такое устройство может накапливать электроэнергию из воздуха, а затем распределять ее для решения бытовых задач.
При создании такой установки не приходится задействовать дополнительные накопительные приборы или преобразователи. Между металлической землей и антенной устанавливается электрический потенциал, который имеет свойство расти. Однако из-за непостоянной величины предугадать его силу очень проблематично.
Принцип работы такого устройства чем-то напоминает молнию — когда потенциал достигает пиковой отметки, происходит разряд. Из-за этого можно добыть из земли и атмосферы внушительный объем полезных ресурсов.
Среди плюсов вышеописанной схемы следует выделить:
- Простоту реализации в домашних условиях. Такой опыт можно с легкостью выполнить в домашней мастерской, используя подручные материалы и инструменты.
- Дешевизну. При создании устройства не придется покупать дорогие приспособления или узлы. Достаточно найти обычную металлическую пластину с токопроводящими свойствами.
Однако кроме плюсов есть и существенные недостатки. Один из них заключается в высокой опасности, связанной с невозможностью рассчитать примерное количество ампер и силу импульса. Также в рабочем состоянии система создает открытый контур заземления, способный притягивать молнию. Именно по этой причине проект не приобрел массового распространения.
Действие электрического тока, некоторые факты об электричестве
Как правило, электрический переменный ток, наиболее распространенный в быту, оказывает на человеческий организм негативное влияние. Степень которого зависит от значения такой его характеристики, как сила тока:
- При силе тока от 5 до 7 милиампер наблюдаются судороги в мышцах рук;
- Токи с силой от 8 до 25 милиампер приводят к появлению болевых ощущений, нарушению дыхания;
- Ток с силой 50-80 милиампер вызывает паралич дыхания и нарушение работы сердца;
- Ток с силой свыше 80 милиампер вызывает остановку сердца и паралич дыхания.
- Токи небольшой силы (до 1,5 милиампер) приводят к легкому дрожанию пальцев и не вызывают болевых ощущений.
Простые факты, как вырабатывается электричество
Чтобы добыть электричество из магнита от динамика, на него наматывают два медных провода. И два конца спаивают вместе, к оставшимся подсоединяют небольшую лампочку, светодиодную ленту. Для того, чтобы сделать источник питания для лампы накаливания на 220 В, нужно использовать более мощные и крупные магниты, толстые медные провода большого сечения. Самой древней батарейкой считается найденное при раскопках в Египте устройство, представляющее собой медный сосуд с вставленным в него железным стержнем, не касающимся стенок.
Интересный опыт проводили при дворе короля Людовика. Для того чтобы показать, как вырабатывается и протекает электричество, сделали взаимосвязь с Лейденской банкой и строем солдат. Взявшиеся за руки солдаты при этом образовывали ни что иное, как первую в мире полноценную живую электрическую цепь; Из-за большого количества смертей от даров молний в Италии в XVIII веке во многих европейских странах появилась очень странная мода на шляпки и зонтики с громоотводами; В скандинавских странах главный, порой и единственный, источник электроэнергии – это гидроэлектростанции. Благодаря таким станциям, в этих государствах очень низкий уровень загрязнения атмосферы.
Электричество: как это работает?
Никогда не помешает знать то, как работает привычное нам всем электричество
Во-первых это очень познавательно, а во-вторых ,это немаловажно для не только для расширения кругозора,но и для обеспечения собственной безопасности в современном мире, где достаточно опасная электроэнергия встречается почти на каждом шагу
Атмосферное электричество.
Рис. 1. Изменение напряжённости электрического поля с высотой.
1) Совокупность электрических явлений и процессов в атмосфере. 2) Раздел физики атмосферы, изучающий электрические явления в атмосфере и её электрические свойства. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют метеорологические факторы — облака, осадки, метели и тому подобное. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.
Начало атмосферного электричества как науке было положено в 18 веке американским учёным Б. Франклином, экспериментально установившим электрическую природу молнии, и русским учёным М. В. Ломоносовым — автором первой гипотезы, объясняющей электризацию грозовых облаков. В 20 веке были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений, изучению которых посвящены соответствующие науки, выделившиеся из атмосферного электричества. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами. Две основные современные теории атмосферного электричества были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, — поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.
Атмосферное электричество данного района зависит от глобальных и локальных факторов. Районы, где отсутствуют скопления аэрозолей и источники сильной ионизации, рассматриваются как зоны «хорошей», или «ненарушенной» погоды, здесь преобладают глобальные факторы. В зонах «нарушенной» погоды (в районах гроз, пыльных бурь, осадков и др.) преобладают локальные факторы.
Генератор Стивена Марка
Существует еще одна оригинальная и рабочая схема — генератор TPU, дающий возможность добыть электричество из атмосферы. Ее придумал всем известный экспериментатор Стивен Марк.
При помощи такого прибора можно собрать конкретный электрический потенциал для обслуживания приборов для домашнего применения, не задействуя при этом добавочную подпитку. Процедура была запатентована, благодаря чему сотни энтузиастов пытались повторить опыт дома. Но из-за характерных особенностей ее не получилось пустить в массы.
Работа генератора Стивена Марка выполняется по обычному принципу: в кольце устройства происходит образование резонанса токов и магнитных вихрей, которые вызывают возникновение токовых ударов. Для создания тороидального генератора необходимо держаться следующей инструкции:
-
Первоочередно необходимо приготовить основание прибора. В качестве него можно применять отрезок фанеры в форме кольца, кусочек резины или полиуретана. Также следует найти две коллекторные катушки и катушки управления. В зависимости от чертежа размеры конструкции могут разниться, но подходящим вариантом являются следующие показатели: внешний диаметр кольца составляет 230 мм, внутренний — 180 мм. Ширина составляет 25 мм, толщина — 5 мм.
- Нужно накрутить внутреннюю коллекторную катушку, применяя из нескольких жил провод из меди. Для лучшего взаимного действия используют трехвитковую намотку, хотя профессионалы уверены, что и один виток сумеет запитать лампочку.
- Также необходимо приготовить 4 управляющие катушки. При размещении таких элементов требуется соблюдать прямой угол, иначе возможно появятся помехи магнитному полю. Намотка таких катушек плоская, а просвет между виточками составляет меньше 15 мм.
- Совершая намотку управляющих катушек, принято использовать одножильные провода.
- Чтобы провести установку последней катушки, следует применить заизолированный провод из меди, который наматывают по всей территории основания конструкции.
После выполнения указанных действий остается объединить выводы, установив перед этим конденсатор на 10 микрофарад. Питание схемы выполняется при помощи быстроходных транзисторов и мультивибраторов, которые выбираются с учетом размеров, типа проводов и прочих особенностей конструкции.
Строение атома, положительный и отрицательный ионы
Итак, любое вещество, любого происхождения (вода, дерево, камень, стекло) состоит из более мелких элементов. Они называются молекулами. Взять хотя бы каплю воды. Она состоит из множества отдельных молекул, имеющих знакомую нам химическую формулу H2O. Далее молекулу вещества можно разделить еще на более мелкие частицы – атомы.
Строение вещества
В настоящее время известны всего лишь более ста различных атомов, однако это еще не предел. Атомы могут образовать миллионы разных молекул и соответственно столько же разных веществ.
Молекула воды
Планетарная модель атома
Как всем известно еще со школьной программы, в центре атома находится наиболее тяжелый его элемент — ядро. Вокруг него на определенном расстоянии по разным орбитам перемещаются электроны. Ядро не является цельным элементом, его составляют протоны и нейтроны.
Планетарная модель атома
Электроны обладает отрицательным зарядом, а протоны – положительным. Нейтрон, как видно из самого названия, не проявляет свойств ни тех, ни других зарядов. Иначе говоря, он нейтрален.
Чтобы уяснить суть электричества, поближе познакомимся со строением атомов. Для упрощения некоторых процессов применяется планетарная модель атома. Как в нашей солнечной системе вокруг солнца (ядра) движутся планеты по своей траектории, так и в атоме вокруг ядра движутся электроны. Электрон представляет собой не плотную частичку материи.Это размазанный в пространстве сгусток энергии, наподобие расплюснутой шаровой молнии.
Масса протона приблизительно в 2000 раз превышает массу электрона. Но суммарный положительный электрический заряд всех протонов равен суммарному отрицательному заряду всех электронов. Поэтому при нормальных условиях атом электрически нейтрален и за его пределами не ощущаются никакие силы. Положительные и отрицательные заряды как бы нейтрализуют друг друга.
Рассмотрим периодическую систему химических элементов, известную всем, как таблица Менделеева. В этих элементах все атомы расположены в строгой последовательности: от наиболее легкого до наиболее тяжелого – по величине относительной атомной массе, основную долю которой составляют протоны
Нейтроны также имею массу, но поскольку они не обладают выраженным электрическим зарядом, не будет заострять на них внимание
Периодическая система Менделеева
Способ с заземлением
Если ваш частный дом оборудован нормальным контуром заземления, то знайте, что часть потребляемого вами тока уходит через него в грунт, особенно если включено сразу много электроприборов.
В результате этого процесса, между нулевым проводом вашей сети и заземляющим возникает разница потенциалов, составляя от 15 до 20 Вольт. Подключив к ним низковольтную лампочку, вы заставите ее светиться
Схему можно усовершенствовать, установив трансформатор и выровняв тем напряжение. А включив в схему аккумулятор, можно запасать энергию, что позволит использовать схему, когда остальные приборы в доме «молчат».
Вариант рабочий, но подходит он только для частных домовладений, так как в квартирах нет нормального заземления, а использование водопроводных труб для этого законодательно запрещено. Тем более нельзя использовать для подключения землю и фазу, так как заземление окажется под напряжением в 220В – цена такого опыта, возможно, чья-то жизнь.