Как происходит процесс
При подаче нагрузки намагничивание прибора из-за включения рассматривается как негативное явление, способное спровоцировать БТН максимальной амплитуды. При отключении ток намагничивания сокращается до нулевой отметки, а магнитная индукция корректируется в зависимости от степени намагничивания стального сердечника, в результате чего в магнитопроводе сохраняется остаточная индукция.
Если через время повторить включение токопреобразующего устройства под напряжение, подчиненное синусоидальному закону изменения, магнитная индукция меняется со смещением остаточной величины до 90% от номинального значения. В результате возникает высокая амплитуда намагничивания и изменение формы кривой.
Рис. 3. Кривая БНТ классического типа
Уровень намагничивающего тока затухает на десятые доли секунды, но полное «сглаживание» кривой наступает в течение нескольких секунд, а при определенных условиях – через несколько минут. Длительность затухания апериодической составляющей осциллограммы БТН обусловлена высокой амплитудой тока в начальный (нулевой) момент времени и содержанием разных гармоник. Пиковая величина зависит от нагрузочного напряжения и его параметров, а также от значения и полярности остаточного магнитного потока в сердечнике.
Пик тока может быть выше номинального значения для высокомощных агрегатов в 10-15 раз, а для приборов мощностью (
Что такое нейтраль трансформатора
Нейтраль представляет собой несколько соединенных точек или проводников, которые либо не подключены к сети напряжений, либо имеют контакт с землёй путём преодоления больших сопротивлений.
Заземление нейтралей необходимо по следующим причинам:
- Правила техники безопасности;
- Автономная бесперебойная работа защиты по замыканию на землю;
- Возможность использования простых схем цепей.
При изменении напряжения относительно земли, создаются токи замыкания на землю, и появляется перенапряжение. Это происходит из-за нарушения симметрии системы. Нейтраль может иметь разные режимы, которые зависят от степени изменения симметрии. Так, в зависимости от режимов, нейтраль может быть:
- Глухозаземленная. Нейтраль, присоединенная к заземлителю через малое сопротивление.
- Изолированная. Не соединенная с заземлителем нейтраль.
- Резонансно-заземленная. Нейтраль, соединенная с заземлителем с помощью реактора.
- Резистивно-заземленная. Заземленная через резистор нейтраль.
Нейтрали трансформатора могут быть изолированы от земли или заземлены через активные сопротивления. Также сопротивления могут быть индуктивными. Изолированные нейтрали работают от 6 кВ до 35 кВ.
Дифференциальная защита на базе реле ДЗТ
В тех случаях, когда отстройка от периодической составляющей токов небаланса во время коротких замыканий слишком велика, что приводит к росту порога чувствительности, на смену реле серии ДНТ приходят реле серии ДЗТ. В основу их работы положен принцип магнитного торможения, реализованный на базе насыщающегося трансформатора тока, но уже без короткозамкнутой обмотки.
Отсутствие короткозамкнутой обмотки компенсируется повышенным коэффициентом отстройки от переходных токов вследствие небаланса и бросков тока намагничивания. Конструктивно в данном случае вокруг магнитопровода среднего стержня намотаны первичные обмотки, вокруг левого и правого – катушки вторичной и тормозной обмоток. Часть витков вторичной обмотки питает исполнительный орган, получающий сигнал при возникновении коротких замыканий путём электромагнитных преобразований в системе НТТ.
3.2.3
С целью удешевления электроустановок вместо
автоматических выключателей и релейной защиты следует применять предохранители
или открытые плавкие вставки, если они:
могут быть выбраны с требуемыми параметрами (номинальные
напряжение и ток, номинальный ток отключения и др.);
обеспечивают требуемые селективность и чувствительность;
не препятствуют применению автоматики (автоматическое
повторное включение — АПВ, автоматическое включение резерва — АВР и т. п.),
необходимой по условиям работы электроустановки.
При использовании предохранителей или открытых плавких
вставок в зависимости от уровня несимметрии в неполнофазном режиме и характера
питаемой нагрузки следует рассматривать необходимость установки на приемной
подстанции защиты от неполнофазного режима.
Дифзащита трансформаторов применяется для предотвращения аварийных и ненормальных режимов работы при возникновении короткого замыкания между фазами, межвитковых КЗ и замыкания одной или более фаз на землю.
Дифзащита применяется как основный вид автоматического отключения для мощных трансформаторов и для трансформаторов меньшей мощности, в случае если другие виды защиты не обеспечивают требуемого быстродействия.
Принцип работы дифференциальной защиты заключается в сравнении токов входящих и выходящих из трансформатора,и отключении трансформатора при неравенстве токов.
Конструктивно дифзащита включает в себя (Рис. 1) два трансформатора тока ТТ1 и ТТ2 включенных по высокому и низкому напряжению и реле автоматики А. Коэффициент преобразования измерительных трансформаторов подобран так, что при возникновении короткого замыкания вне защищаемого участка (Рис.1 слева), результирующий ток проходящий через реле был равный нулю.
Рис. 1
При возникновении короткого замыкания возникает асимметрия втекающих и вытекающих токов (Рис. 1 справа). Через реле протекает ток, включающий схему защитного отключения. Высокая избирательность дифференциальной системы не требует реле времени, т.к. защита включается в идеальном случае только при внутренних КЗ.
В реальных условиях требуется настройка дифзащиты трансформатора для исключения ложного срабатывания.
При подаче напряжения на входные обмотки трансформатора возникает ток подмагничивания, вызывающий неравенство входных и выходных токов. Ток подмагничивания имеет вид затухающих колебаний.
Без нагрузки это влияние достаточно мало и составляет не более одного процента. При включении трансформатора с нагрузкой или восстановлении работы энергосистемы после замыкания, разность токов может привести к срабатыванию защиты.
Для компенсации этого явления ток включения дифзащиты выбирают большим, чем ток подмагничивания. Загрубление тока срабатывания может привести к несрабатыванию защиты даже при наличии КЗ внутри трансформатора.
Исключить влияния тока подмагничивания можно при помощи искусственной блокировки защиты при подключении высокого напряжения.
При возникновении повреждения трансформатора или замыкания его выводов при блокированном автоматическом отключении задержка может привести к аварии.
В случае, когда указанные способы отстройки дифзащиты неприменимы из-за недостатков, используют трансформаторы тока с быстронасыщаемым магнитопроводом, которые не реагирует на быстротечные колебания подмагничивающего тока.
Для правильной работы измерительных схемы необходимо чтобы фаза втекающих и вытекающих токов совпадала.
Для компенсации фазового сдвига обмотки токовых трансформаторов включаются по такой же схеме, как и защищаемый трансформатор. В случае использования схемы соединения обмоток «треугольник»/«звезда», трансформаторы тока включаются по обратной схеме – на входе «звезда», на выходе – «треугольник».
На линии, соединяющие трансформаторы тока с исполнительными цепями автоматики, возможны влияния помех, приводящих к ложным срабатываниям защиты. Для предотвращения этого измерительные цепи должны быть надежно экранированы. Зачастую дифзащиту устанавливают на отдельно расположенных трансформаторах для исключения влияния помех от смежных устройств энергетики.
Коэффициенты трансформации измерительных цепей должны обеспечивать равенство токов на входе и на выходе. На практике это условие недостижимо, потому трансформаторы токов выпускаются со стандартными напряжениями. Для этого в измерительные цепи вводят согласующие трансформаторы и автотрансформаторы.
Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Защита бытовых сетей (УЗО)
Защита от перенапряжения в частном доме
Работа устройств с дифзащитой, устанавливаемых на вводах в административные и жилые здания, ничем существенно не отличается от уже рассмотренного ранее принципа действия для трансформаторов и двигателей. В них также имеется чувствительный элемент, реагирующий на дисбаланс втекающего и вытекающего тока и реагирующий при его появлении отключением потребителя от питающей линии.
Устройства этого класса, используемые в обозначенных выше целях, получили название УЗО (смотрите рисунок ниже).
Защита линии с УЗО
Причиной возникновения дисбаланса токов в бытовых условиях могут быть следующие факторы:
- Прикосновение человека или животного к оголенным токовым носителям (проводам) или к оказавшемуся под опасным потенциалом корпусу оборудования;
- Разрушение изоляции электропроводки с угрозой КЗ;
- Повышенная влажность в обслуживаемом помещении (в ванной, например);
- Повреждение кабелей бытовых электроприборов с образованием утечки на землю.
Обратите внимание! В тех случаях, когда система узо срабатывает без наличия нарушений в работе потребителя (без нагрузки токами утечки), следует считать, что этот прибор неисправен и подлежит ремонту. Особенностью функционирования систем УЗО является реагирование на микроскопические токи утечки (мкА), фиксируемые при появлении малейшей «подозрительной» пассивной или емкостной связи с землёй
При этом такая система срабатывает практически мгновенно, обеспечивая стопроцентную защиту человека от поражения электричеством
Особенностью функционирования систем УЗО является реагирование на микроскопические токи утечки (мкА), фиксируемые при появлении малейшей «подозрительной» пассивной или емкостной связи с землёй. При этом такая система срабатывает практически мгновенно, обеспечивая стопроцентную защиту человека от поражения электричеством.
В электротехнике принимается за правило, что обеспечить эффективную дифференциальную защиту с помощью УЗО удаётся лишь при использовании трехуровневой схемы. Это означает, что в защищаемую линию последовательно включается несколько устройств, рассчитанных на три уровня значений токов утечки: 100-300, 30 и 10 мА, соответственно.
Важно! Такая токовая защита, работающая по дифференциальному принципу, может быть эффективной даже на объектах, где в составе проводки шина заземления отсутствует. Ещё одной особенностью этого устройства является необходимость периодически (не реже раза в месяц) проверять его работоспособность, для чего на нём имеется специальная кнопка под названиями «Тест» или «Проверка»
В проверочную схему, помимо контрольной кнопки, входит ограничительный резистор, через который во время тестирования пропускается определённый ток, соответствующий аварийной ситуации
Ещё одной особенностью этого устройства является необходимость периодически (не реже раза в месяц) проверять его работоспособность, для чего на нём имеется специальная кнопка под названиями «Тест» или «Проверка». В проверочную схему, помимо контрольной кнопки, входит ограничительный резистор, через который во время тестирования пропускается определённый ток, соответствующий аварийной ситуации.
Дифференциальная защита шин — Энциклопедия релейной защиты и автоматики
Материал из Энциклопедия релейной защиты и автоматики
ДЗШ является быстродействующей защитой с абсолютной селективностью, которая охватывает все элементы РУ, присоединенные к секции шин, и действует без замедления при всех видах коротких замыканий (КЗ) на отключение выключателей этих элементов с пуском их УРОВ и запретом их АПВ при неуспешном АПВ шин. По своему принципу действия ДЗШ не срабатывает ложно при внешних КЗ и качаниях.
Современные ДЗШ предусматриваются с дополнительным торможением для отстройки от токов небаланса установившегося и переходного режимов при длительном внешнем КЗ с большой апериодической составляющей.
ДЗШ подключается к отдельным вторичным обмоткам трансформаторов тока (ТТ) таким образом, что бы ее зона действия максимально перекрывалась с зонами действия защит присоединений:
- защиты присоединений подключаются к вторичным обмоткам ТТ, расположенными максимально близко к шинам;
- ДЗШ подключается к вторичным обмоткам ТТ, расположенными максимально удаленно от шин в сторону присоединений.
В ДЗШ предусмотрен контроль исправности токовых цепей с действием на сигнализацию и автоматическую блокировку защиты при неисправности. Предусматривается возможность:
- оперативной деблокировки защиты;
- оперативного вывода блокировки защиты при неисправности токовых цепей.
В современных терминалах ДЗШ предусматривается программное выравнивание токов плеч и установка промежуточных ТТ не требуется.
ДЗШ имеет в своем составе:
- пусковой токовый орган;
- чувствительный токовый орган (ЧТО).
Пусковой орган имеет большую (относительно ЧТО) по величине уставку тока срабатывания и предназначен для отключения секции шин при КЗ на шинах.
ЧТО нормально из работы выведен и вводится в работу в следующих режимах:
- при оперативное опробовании секции шин напряжением от одного из присоединений в случае неуспешного АПВ шин – вводится оперативно;
- при автоопробовании секции шин напряжением действием АПВ шин – вводится автоматически;
- в случае отказа выключателя одного из присоединений при действии ДЗШ — вводится автоматически на время, достаточное для нормального срабатывания УРОВ.
В этих режимах к месту КЗ на шинах протекает ток только одного присоединения, и его величина может быть недостаточна для срабатывания пускового органа, а в случае отказа выключателя одного из присоединений – для удерживания пускового органа в сработанном положении для действия УРОВ.
После работы ДЗШ может применятся АПВ шин.
Здесь хотелось бы видеть: Добавить раздел с выбором параметров |
Разновидности защит и их суть
Все защиты для трансформаторов должны обладать достаточным быстродействием, чтобы вовремя отключить опасный режим. Так как при возникновении сверхбольших электрических величин он запросто приведет к разрушению изоляции, отпуску металла, возгораниям и прочим неприятным последствиям.
Для предотвращения перегрузок выполняется установка того или иного вида защиты на трансформатор. Какая именно защита используется на понижающих подстанциях, в оборудовании распределительных устройств, определяется местными условиями и особенностями режима работы.
Продольная дифференциальная защита
Область применения дифференциальной токовой защиты охватывает как сам силовой трансформатор, так и окружающие его присоединения вплоть до измерителей токовой нагрузки. Нормальным режимом работы каждого трансформатора считается равномерное перераспределение нагрузки между всеми тремя фазами, когда электрический ток в каждой из них получается приблизительно одинаковым.
Продольные дифференциальные защиты осуществляют сравнение токовой нагрузки во всех фазах. Так как ток примерно одинаков, то их геометрическая сумма должна равняться нулю. В результате сравнения получается, что токовая составляющая отсутствует или слишком мала для реакции. Но, как только произойдет замыкание одной фазы или сразу между несколькими, токи в них перестанут компенсировать друг друга, и их сумма будет отличаться от нуля, сработает дифференциальная отсечка.
Рис. 3. Пример дифференциальной защиты
Релейная
Для предотвращения повреждения трансформаторов применяется достаточно большое количество релейных защит. Однако отдельного внимания заслуживает реле контроля уровня масла. Этот вид предусматривает контроль за состоянием изоляционной среды. Конструктивно реле представляет собой поплавок с контактами, который удерживается выше контактов цепи срабатывания.
Если аварийный режим приведет к утечке масла и последующему снижению менее нормы, после которой может произойти пробой, произойдет отключение. Может располагаться в основном баке или иметь резервную релейную защиту в расширителе, которая предварительно даст сигнал о начале процесса.
Тепловая
Основой для тепловой защиты в трансформаторах служит классическая термопара. Место ее расположения определяется типом устройства, его мощностью и габаритами, так как перегрев может привести к нарушению изоляционных свойств, привести к термическому расширению масла.
К наиболее эффективным местам размещения относятся:
- в верхней части бака;
- у высоковольтных вводов;
- в обмотках.
Имеет две ступени – первая производит включение резервных вентиляторов или других средств охлаждения. Вторая, если первой не удалось сбросить перегрев ниже предельного значения, производит отключение трансформатора.
Токовая отсечка
Данный вид защиты применяется для отключения повреждения, которое могло возникнуть внутри трансформатора. Она размещается со стороны вводов защищаемого трансформатора, однако воздействие охватывает все обмотки, с которых может быть подано напряжение. Особенностью ее применения является схема питания, которая используется в соответствующей линии.
Так для трехфазных цепей с изолированной нейтралью токовая отсечка должна устанавливаться в двух фазах. А при использовании цепей с глухозаземленной нейтралью защита должна применяться в каждом фазном присоединении. При отключении трансформатора полностью отсутствует какая-либо выдержка времени.
Недостатком отсечки является срабатывание исключительно на токи большой величины. Поэтому некоторые межфазные КЗ, межвитковых или КЗ на землю в цепи с изолированной нейтралью могут остаться незамеченными. На практике это один из самых простых способов, отключающих трансформатор в аварийном режиме.
Газовая защита
Газовое реле, как вид защиты, нашло широкое применение в маслонаполненных трансформаторах, где роль диэлектрика, разделяющего токоведущие элементы и заземленную конструкцию корпуса, выполняет трансформаторное масло. В нормальном режиме работы понижающие трансформаторы не воздействуют на жидкий диэлектрик, и масло пребывает в постоянном физическом состоянии.
Но, в случае возникновения межвитковых замыканий, контакта проводников со сталью или других ситуаций внутри бака горение дуги или разогрев металла приводит к локальному закипанию масла. От этого места и начинается выделение газов, которые поднимаются в верхнюю точку емкости.
Принцип действия дифференциальной защиты
Действие данной защиты базируется на сравнивании токов, которые приходят в участок нуждающийся в защите, и выходят из него. Для такого сравнения величины силы тока применяются трансформаторы тока, так как только за счёт них есть возможность измерять большие его величины. Лучше всего это видно на примере простейшей схемы, приведённой ниже.
В схеме трансформаторы тока обозначены ТА1 и ТА2. Вторичные цепи их соединяются с реле тока КА. Таким образом, получается, что обмотка главного реле защиты получает разницу токовых значений от двух трансформаторов, и при нормальном рабочем процессе она будет равна нулевому значению, а значит реле КА останется не втянутым. Однако если в цепи, которая защищается, происходит межфазное короткое замыкание (к. з.), то на обмотку реле поступит уже значение равное сумме нескольких токов, это и приведёт в движение подвижную часть электромеханического реле, которая, в свою очередь, замкнёт контакты и подаст сигнал на отключение оборудования от источника электрической энергии. Однако это всё в теории, а в практике всегда через катушку реле будет протекать некий небольшой ток небаланса, который при расчёте катушки необходимо учесть.
Вот несколько причин возникновения этого отрицательного явления:
- ТТ (трансформаторы тока) могут иметь характеристики значительно отличающие их друг от друга. Чтобы снизить эти показатели применяются более точные трансформаторы, изготовленные попарно специально для этого вида защиты;
- За счёт тока намагничивания, возникающего в обмотке защищаемого трансформатора в момент его включения из режима холостого хода, в рабочий режим с наличием нагрузки. Для того чтоб избежать ложного срабатывания реле КА нужно подобрать ток срабатывания реле побольше чем, самое большое значение тока намагничивания, которые может произвести защищаемый объект, в данном случае трансформатор;
- За счёт различного соединения обмоток (звезда-треугольник и наоборот). Для этого нужно выбрать число витков трансформаторов тока, участвующих в дифзащите, таким образом, чтобы они компенсировали эти неблагоприятные величины.
Ток небаланса в дифференциальной защите, возникающий при эксплуатации — это отрицательное явление, с которым нужно бороться и которое нужно обязательно учесть при расчёте данного защитного электрооборудования.
Параметры
При установке дифавтомата следует учитывать три основных параметра:
- Напряжение питающей сети и количество фаз – 220В или 380В, 1 фаза или 3.
- Ток срабатывания. Данный параметр аналогичен таковому у автомата защиты.
- Ток утечки. Здесь все аналогично УЗО.
Есть еще несколько параметров, с которым знакомы не все:
- Номинальная отключающая способность. Ток короткого замыкания, который способно выдержать устройство без нарушения работоспособности.
- Время срабатывания дифференциальной защиты.
- Класс токоограничения. Показывает время гашения электрической дуги при коротком замыкании.
- Тип электромагнитного расцепителя, от которого зависит превышение тока срабатывания по сравнению с номинальным.
Тип электромагнитного расцепителя
Электромагнитный расцепитель в дифавтомате предназначен для мгновенного размыкания цепи при превышении номинального тока в указанное количество раз. Распространены следующие типы:
- В – ток срабатывания превышает номинальный в 3-5 раз.
- С – ток срабатывания превышает номинальный в 5-10 раз.
- D – ток срабатывания превышает номинальный в 10-20 раз.
Ток утечки (отключающий дифференциальный ток) и его класс
Порог чувствительности дифференциального трансформатора определяет ток утечки, который вызывает срабатывание защиты. Наибольшее распространение получили дифференциальные трансформаторы с чувствительностью 10 и 30 мА.
Кроме числового значения тока утечки, важное значение имеет форма. В соответствии с этим различают такие классы устройств защиты:
АС – контролируется синусоидальный ток утечки.
А – кроме синусоидального, учитывается пульсирующий постоянный, что важно при защите цифрового электронного оборудования.
В – к перечисленным токам добавляется сглаженный постоянный.
S – выдержка времени на отключение – 200-300 мс.
G – выдержка времени – 60-80 мс.
Номинальная отключающая способность и класс токоограничения
Данный параметр характеризует ток короткого замыкания, который в состоянии выдержать контактная группа автомата защиты без повреждения в течении времени отключения. Чем выше значение параметра, тем больше вероятность того, что после устранения повреждения в сети дифавтомат останется работоспособным. Типовой ряд значений таков:
- 3000 А;
- 4500 А – вместе с первым значением сегодня практически не используется;
- 6000 А – часто используемое значение;
- 10000 А – подходит к местам с близким расположением к питающей подстанции, но имеет высокую стоимость.
Класс токоограничения характеризует скорость отключения при протекании критического тока. Время выключения (скорость) включает время гашения дуги между размыкающими контактами. Меньшее время, то есть более высокая скорость выключения, гарантирует большую безопасность. Существует три класса: с первого по третий.
Электронный или электромеханический
По внутреннему оснащению различают электромеханические и электронные устройства. Электромеханические дифавтоматы считаются более надежными и не требуют для работы внешнего питания.
Электронные устройства имеют более стабильные параметры, но для нормальной работы требуется наличие стабильного питания на входе.
Принцип работы селективного типа
В разветвленных электрических сетях применяется двухуровневая система защиты.
На первом уровне устанавливается дифференциальный автомат, который контролирует линию нагрузки полностью. На втором – дифавтоматы контролируют каждую выделенную цепь по отдельности.
Чтобы предотвратить одновременное срабатывание устройств защиты обоих уровней, первый дифавтомат должен обладать селективностью, которая определяется временем задержки на отключение. Для этих целей используют автоматы классов S или G.