Типы плавких предохранителей
По назначению и конструкции плавкие предохранители бывают следующих типов:
- Вилочные (в основном применяются для защиты электропроводки и приборов в автомобилях);
- С слаботочными вставками для защиты электроприборов с током потребления до 6 ампер;
- Пробковые (устанавливаются в щитках жилых домов, рассчитаны на ток защиты до 63 ампер);
- Ножевые (применяются в промышленности для защиты сетей при токе потребления до 1250 ампер);
- Газогенерирующие;
- Кварцевые.
Рассмотренная в статье технология ремонта предназначена для восстановления вилочных, со слаботочными вставками, пробковых и ножевого типа предохранителей.
Трубчатые плавкие предохранители
Предохранитель трубчатой конструкции представляет собой стеклянную или керамическую трубочку, закрытую с торцов металлическими колпачками, которые соединены между собой проволокой калиброванной по диаметру, проходящей внутри трубочки. Внешний вид трубчатых плавких предохранителей Вы видите на фотографии.
К колпачкам проволока приваривается точечной сваркой или припаивается припоем. В предохранителях, рассчитанных на очень большие токи, часто полость внутри трубочки заполняют кварцевым песком.
Автомобильные плавкие предохранители
Предохранители в автомобилях выходят из строя очень редко. Обычно только в случаях, когда отказывает оборудование. Чаще всего при перегорании лампочек у фар. Дело в том, что когда обрывается нить накаливания у лампочки, образуется Вольтова дуга, нить при этом сгорает и становится короче, сопротивление резко уменьшается и величина тока многократно увеличивается.
Бывает, плавкий предохранитель в автомобиле сгорает и при заклинивании стеклоочистителей. Реже при коротких замыканиях в электропроводке. На фотографии Вы видите широко применяемые автомобильные плавкие предохранители ножевого (вилочного) типа. Под каждым предохранителем приведен ток его защиты в амперах.
Перегоревший предохранитель в авто положено заменять предохранителем такого же номинала, но можно его и отремонтировать, заменив перегоревший в предохранителе провод медным соответствующего диаметра. Напряжение бортовой сети автомобиля значения не имеет. Главное – соответствие тока защиты. Если трудно определить номинал сгоревшего авто предохранителя, то можно воспользоваться цветовой маркировкой.
Самодельная плавкая встака из проводника ,выбор по сечению
Ни в коем случае нельзя принимать самостоятельное изготовление плавких вставок ЗА НОРМУ. Установку подобных изделий можно рассматривать как ВРЕМЕННУЮ МЕРУ.
Диаметры МЕДНОГО провода для плавкой вставки предохранителя
Диаметр, мм | Ток , А | Диаметр, мм | Ток , А |
Ø 0,05 мм | 0,6 А | Ø 0,71 мм | 47,8 А |
Ø 0,063 мм | 1,25 А | Ø 0,75 мм | 52 А |
Ø 0,071мм | 1,5 А | Ø 0,8 мм | 57,2 А |
Ø 0,08 мм | 1,8 А | Ø 0,85 мм | 62,7 А |
Ø 0,09 мм | 2,1 А | Ø 0,9 мм | 68,3 А |
Ø 0,1 мм | 2,5 А | Ø 0,95 мм | 68,6 А |
Ø 0,112 мм | 3 А | Ø 1,0 мм | 80 А |
Ø 0,124 мм | 3,5 А | Ø 1,06 мм | 87,3 А |
Ø 0,14 мм | 4,2 А | Ø 1,12 мм | 94,8 А |
Ø 0,16 мм | 5,1 А | Ø 1,18 мм | 102,5 А |
Ø 0,17 мм | 5,6 А | Ø 1,25 мм | 111,8 А |
Ø 0,18 мм | 6,1 А | Ø 1,32 мм | 121,3 А |
Ø 0,2 мм | 7,1 А | Ø 1,4 мм | 132,5 А |
Ø 0,224 мм | 8,4 А | Ø 1,45 мм | 139,7 А |
Ø 0,25 мм | 10 А | Ø 1,50 мм | 147 А |
Ø 0,28 мм | 11,8 А | Ø 1,6 мм | 161,9 А |
Ø 0,315 мм | 14,1 А | Ø 1,7 мм | 177,3 А |
Ø 0,335 мм | 15,5 А | Ø 1,8 мм | 193,2 А |
Ø 0,355 мм | 16,9 А | Ø 1,9 мм | 209,5 А |
Ø 0,4 мм | 20,2 А | Ø 2,0 мм | 226,2 А |
Ø 0,45 мм | 24,1 А | Ø 2,12 мм | 247 А |
Ø 0,5 мм | 28,2 А | Ø 2,24 мм | 268,2 А |
Ø 0,56 мм | 33,5 А | Ø 2,36 мм | 290 А |
Ø 0,63 мм | 40 А | Ø 2,5 мм | 316,2 А |
Ø 0,67 мм | 43,7 А |
Для ремонта предохранителей на ток защиты от 0.25 до 50А
Ток защиты предохранителя, Ампер | 0,25 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 7.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 | 50.0 | |
Диаметр проволочки, мм | Медной | 0.01 | 0.02 | 0.04 | 0.07 | 0.10 | 0.18 | 0.20 | 0.25 | 0.32 | 0.39 | 0.46 | 0.52 | 0.58 | 0.63 | 0.68 | 0.73 |
Алюминиевой | — | — | 0.07 | 0.10 | 0.14 | 0.19 | 0.25 | 0.30 | 0.40 | 0.48 | 0.56 | 0.64 | 0.70 | 0.77 | 0.83 | 0.89 | |
Стальной | — | — | 0.32 | 0.20 | 0.25 | 0.35 | 0.45 | 0.55 | 0.72 | 0.87 | 1.00 | 1.15 | 1.26 | 1.38 | 1.50 | 1.60 | |
Оловянной | — | — | 0.18 | 0.28 | 0.38 | 0.53 | 0.66 | 0.85 | 1.02 | 1.33 | 1.56 | 1.77 | 1.95 | 2.14 | 2.30 | 2.45 |
Для ремонта предохранителей на ток защиты от 60 до 300А
Ток защиты предохранителя, Ампер | 60 | 70 | 80 | 90 | 100 | 120 | 160 | 180 | 200 | 225 | 250 | 275 | 300 | |
Диаметр проволочки, мм | Медной | 0.82 | 0.91 | 1.00 | 1.08 | 1.15 | 1.31 | 1.57 | 1.72 | 1.84 | 1.99 | 1.14 | 2.20 | 2.40 |
Алюминиевой | 1.00 | 1.10 | 1.22 | 1.32 | 1.42 | 1.60 | 1.94 | 2.10 | 2.25 | 2.45 | 2.60 | 2.80 | 2.95 | |
Стальной | 1.80 | 2.00 | 2.20 | 2.38 | 2.55 | 2.85 | 3.20 | 3.70 | 4.05 | 4.40 | 4.70 | 5.0 | 5.30 | |
Оловянной | 2.80 | 3.10 | 3.40 | 3.65 | 3.90 | 4.45 | 4.90 | 5.80 | 6.20 | 6.75 | 7.25 | 7.70 | 8.20 |
Комплектные РУ
Комплектные РУ составляются из полностью или частично закрытых шкафов или блоков с встроенными в них аппаратами, устройствами защиты и автоматики, поставляемых в собранном или полностью подготовленном для сборки виде. Комплектные РУ выпускаются для внутренней (КРУ) и для наружной (КРУН) установки. Комплектные РУ 6 — 20 кВ в наибольшей степени отвечают требованиям индустриализации энергетического строительства. Поэтому они становятся самой распространенной формой исполнения РУ. В последние годы получает широкое распространение новый тип комплектных РУ — герметичных, в которых все токоведущие элементы и аппараты (сборные шины, выключатели, разъединители, трансформаторы тока и напряжения) расположены внутри герметичной оболочки, заполненной сжатым высокопрочным газом (элегазом). Такие РУ полностью изготавливаются на заводе в виде отдельных ячеек, набор которых может изменяться в зависимости от схемы подстанции. В настоящее время в России освоен серийный выпуск ячеек ГРУ на напряжение 110 и 220 кВ и серийный выпуск ГРУ на напряжение 330, 500, 750 и 1150 кВ. Герметичные РУ предполагается использовать прежде всего в крупных городах с целью экономии площади и объема. Так, ГРУ 110 и 220 кВ могут быть размещены в подвальных помещениях жилых зданий. Целесообразно использование ГРУ на гидроэлектростанциях, где, как правило, недостаточно места для размещения ОРУ, а также в районах со сложными климатическими, метеорологическими и сейсмическими условиями и в районах с сильным загрязнением атмосферы. Прогрессивное направление развития аппаратостроения — создание комплексов аппаратов — получило развитие и при создании аппаратных комплексов на генераторное напряжение. В единый комплекс объединяются все три аппарата, включаемые в рассечку токопровода от генератора до трансформатора: выключатель, разъединитель и ТТ. Такое объединение аппаратов приводит к существенному уменьшению объема, занимаемого аппаратами, повышает их технико-экономические характеристики, в том числе надежность их работы.
Выбор предохранителей для защиты силовых трансформаторов
Основные условия выбора плавких предохранителей силовых трансформаторов является следующие параметры.
Номинальное напряжение предохранителей и их плавких вставок должно быть равно номинальному напряжению сети:
Плавкие предохранители в СССР выпускались на номинальные напряжения, соответствующие ГОСТ 721—77, в том числе на 6; 10; 20; 35; 110 кВ. Номинальное напряжение указывается в наименовании предохранителя, например ПК-6, ПК-10, ПСН-10, ПСН-35 и т. п.
Установка предохранителя, предназначенного для сети более низкого напряжения, т. е. создание условия Uном пр < Uном. с не допускается во избежание к.з. из-за перекрытия изоляции предохранителя. Наряду с этим не допускается без специального указания завода-изготовителя применение предохранителя в сетях с меньшим номинальным напряжением из-за опасности возникновения перенапряжений при отключении к. з.
Номинальный ток отключения выбранного предохранителя должен быть равен или больше максимального значения тока к. з. в месте установки предохранителя:
Применительно к силовым трансформаторам ток /к. макс рассчитывается для трехфазного к. з. на выводах высшего напряжения трансформатора, т. е. там, где установлены плавкие предохранители. При этом режим питающей системы принимается максимальным, что соответствует наименьшему сопротивлению питающей системы до места подключения рассматриваемого трансформатора. Следует учитывать также подпитку места к. з. электродвигателями, включенными на той же секции, что и рассматриваемый трансформатор.
Номинальные токи отключения указаны в ГОСТ и заводских информация.
Предохранители напряжением свыше 1000 В выпускаются с номинальным током отключения от 2,5 до 40 кА (ГОСТ 2213—70). (Прежнее наименование номинального тока отключения — предельно отключаемый ток.)
Выбор плавких предохранителей 10 кВ для защиты трансформаторов
- По номинальному напряжению: т. е. номинальное напряжение предохранителя Уном.пр должно соответствовать номинальному напряжению сети: Uном = Uном.с
- По номинальному току отключения: Iо.ном >= Iк.макс т. е. номинальный ток отключения предохранителя по его паспортным данным должен быть больше или равен максимальному значению тока к. з. в месте установки предохранителя. При расчетах токов к. з. следует учитывать подпитку места к. з. электродвигателями.
- По номинальному току. Номинальный ток предохранителя равен номинальному току заменяемого элемента. Заменяемым, элементом предохранителя с мелкозернистым наполнителем, например типа ПК, считается патрон (один или несколько) с кварцевым песком, плавким.1 элементом, указателем срабатывания или ударным устройством, собранный в заводских условиях.
Номинальный ток предохранителей, защищающих силовые трансформаторы на сторонах 10 и 0,4 кВ, выбирается по таблице
Рекомендуемые значения номинальных токов плавких вставок 1ном вс предохранителей для трехфазных силовых трансформаторов
6/0,4 и 10/0,4 кВ
Номинальный ток, А | ||||||
Мощность трансформатора, кВ* А | трансформатора на стороне | плавкой вставки на стороне | ||||
0,4 кВ | 6 кВ | 10 кВ | 0,4 кВ | 6 кВ | 10 кВ | |
25 | 36 | 2,40 | 1,44 | 40 | 8 | 5 |
40 | 58 | 3,83 | 2,30 | 60 | 10 | 8 |
63 | 91 | 6,05 | 3,64 | 100 | 16 | 10 |
100 | 145 | 9,60 | 5,80 | 150 | 20 | 16 |
160 | 231 | 15,4 | 9,25 | 250 | 32 | 20 |
250 | 360 | 24,0 | 14,40 | 400 | 50 | 40 |
400 | 580 | 38,3 | 23,10 | 600 | 80 | 50 |
630 | 910 | 60,5 | 36,4 | 1000 | 160 | 80 |
Примечание Предполагается, что на стороне 0,4 кВ применены предохранители типа ПН-2, на стороне 6 кВ—типа ПК-6, на стороне 10 кВ—типа ПК-10.
Предохранители для защиты трансформатора напряжения по стороне ВН
Трансформаторы напряжения 110 кВ и выше защищают только по стороне низкого напряжения автоматами или предохранителями. Для трансформаторов напряжения 6, 10 и 35 кВ расчет тока для плавкой вставки не производится.
Предохранитель для защиты трансформатора напряжения по стороне ВН выбирается только по классу напряжения. Для каждого класса напряжения выпускают специальные предохранители типа ПКН (ПН) – 6, 10, 35 (в зависимости от класса напряжения), они применяются исключительно для защиты трансформаторов напряжения.
Недостатки защиты трансформаторов на предохранителях
Защита предохранителями конструктивно осуществляется наиболее просто, но имеет недостатки — нестабильность параметров защиты, что может привести к недопустимому увеличению времени срабатывания защиты при некоторых видах внутренних повреждений силовых трансформаторов. При защите предохранителями возникают сложности согласования защит смежных участков сети.
Читать так же:
- Основные виды релейных защит трансформаторов
- Газовая зашита силового трансформатора
- Принцип действия дифференциальной защиты трансформатора
Самостоятельная замена
Если перестала работать фара, какой-либо электроблок, дворники и другие электроустройства, автовладельцу необходимо проверить блок предохранителей и при необходимости выполнить замену перегоревших реле. Такая замена не представляет сложности и занимает от силы 15−20 секунд.
Необходимо лишь правильно подобрать номинальную мощность заменяемых предохранителей, что позволит обеспечить в последующем отсутствие каких-либо проблем в работе электрооборудования и гарантирует защиту электроцепи от перенапряжений и замыканий.
Если предохранитель перегорает несколько раз подряд, то следует искать в электроцепи имеющиеся неисправности. Эксплуатировать такой автомобиль не рекомендуется.
Автовладельцу необходимо будет заранее побеспокоиться о наличии в бардачке нескольких запасных реле с различным номиналом. Приобретать их следует от проверенных производителей, так как предохранители плохого качества с трудом входят в посадочные гнезда в установочном блоке и не дают должную защиту электросети, не обесточивая цепь даже при критических нагрузках.
Разновидности предохранителей
Различные предохранители
Одноразовый предохранитель
Файл:Elecchrical Fushe (aka).jpg
Плавкий предохранитель для маломощных приборов
В электрической цепи плавкий предохранитель является слабым участком электрической цепи, сгорающий в аварийном режиме, тем самым разрывая цепь и предотвращая последующее разрушение высокой температурой. Плавкие предохранители делятся на следующие типы:
- слаботочные вставки (для защиты небольших электроприборов до 6 ампер)
- вилочные (для защиты электрических цепей автомобилей) миниатюрные
- обычные вилочные
пробковые (встречаются в жилом секторе, до 63 ампер)
- DIAZED (самые распространённые в СССР)
NEOZED
ножевые (до 1250 ампер)
- 000 (до 100 ампер)
00 (до 160 ампер)
0 (до 250 ампер)
1 (до 355 ампер)
2 (до 500 ампер)
3 (до 800 ампер)
4а (до 1250 ампер)
кварцевые
газогенерирующие
Так же плавкие предохранители различаются по характеристике срабатывания относительно номинального тока. . Из-за инертности срабатывания плавких предохранителей, в профессиональной среде электриков они довольно часто используются в качестве селективной защиты в паре с автоматическими выключателями. Селективности между самими плавкими вставками добиваются соотношением 1:1,6 , время-токовая характеристика плавких предохранителей устанавливается зависимостью соответственно I²t ; ПУЭ регулирует защиту воздушных проводящих линий таким образом, чтобы предохранитель срабатывал за 15 секунд (ток короткого замыкания в конце линии должен быть равен трём номинальным токам предохранителя). Существенной величиной является время, за которое происходит разрушение проводника при превышении установленного тока. С целью уменьшения этого времени некоторые плавкие предохранители содержат пружину предварительного натяжения. Эта пружина также разводит концы разрушенного проводника, предотвращая возникновение дуги.
Конструкция плавкого предохранителя
- плавкую вставку — элемент содержащий разрывную часть электрической цепи (например проволоку, перегорающую при превышении определённого уровня тока)
- механизм крепления плавкой вставки к контактам, обеспечивающим включение предохранителя в электрическую цепь и монтаж предохранителя в целом.
Исполнительный механизм плавкого предохранителя
Плавкие вставки (в керамическом корпусе) предохранителя
Плавкая вставка предохранителя обычно представляет собой стеклянную или фарфоровую оболочку, на основаниях которой располагаются контакты, а внутри находится тонкий проводник из относительно легкоплавкого металла. Определённой силе тока срабатывания соответствует определённое поперечное сечение проводника. Если сила тока в цепи превысит максимально допустимое значение, то легкоплавкий проводник перегревается и расплавляется, защищая цепь со всеми её элементами от перегрева и возгорания .
Советуем изучить — Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики
Плавкие вставки используемых в домашнем хозяйстве пробковых предохранителей имеют следующую маркировку (DIN 18015-1):
Наибольшее распространение получили кварцевые и газогенерирующие предохранители.
В кварцевых предохранителях (ПК) патрон заполнен кварцевым песком, и дуга гасится путем удлинения, дробления и соприкосновения с твердым диэлектриком.
В газогенерирующих предохранителях для гашения дуги используются твердые газогенерирующие материалы (фибра, винипласт и др.). Газогенерирующие предохранители выполняются с выхлопом и без выхлопа газа из патрона при срабатывании. Предохранители с выхлопом газа из патрона называют также стреляющими (ПСН-10 и ПС-35), поскольку срабатывание их сопровождается звуком, похожим на оружейный выстрел. Предохранители напряжением выше 1 кВ выполняются как для внутренней, так и для наружной установки.
Плавкие вставки. Как выбрать и расчет тока. Работа и применение
Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.
Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.
На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).
Повторно использовать плавкие вставки можно, но осторожно…
Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.
Принцип работы
В качестве защитного элемента в плавком предохранителе применяется, т. н. плавкая вставка, которая находится внутри патрона, заполненного дугогасящей средой, интенсивно поглощающей тепло (кварцевым песком), либо без заполнения, иногда в предохранителях используется автогазовый принцип, при термическом действие дуги приводит к выделению дугогасящих газов из конструкционных элементов патрона (например, при действии дуги фибровый корпус предохранителя выделяет газы). Плавкую вставку выполняют у мощных предохранителей в пластины с вырезами, уменьшающими площадь сечения вставки, при этом в номинальном режиме избыточная теплота из зауженных мест благодаря теплопроводности успевает распространиться на широкие части и вся вставка имеют практически одинаковую температуру. При перегрузках теплота не успевает полностью перераспределиться по всему объёму вставки и происходит её плавление в самом горячем месте. При коротком замыкании процесс идёт настолько интенсивно, что перераспределения теплоты практически не происходит и вставка перегорает в нескольких суженных местах.
Для более быстрого срабатывания предохранителя (в быстродействующих предохранителях) используют специальные конструкции (придают плавкой вставке специальную форму), в которых отключение цепи в предохранителе при больших токах происходит не посредством плавления вставки, а её разрывом электродинамическими силами (иногда для ускорения срабатывания плавкая вставка дополнительно нагружается усилием натянутой пружины). Для ускорения плавления вставки также применяют явление металлургического эффекта, данное решение применяют обычно в предохранителях со вставками из ряда параллельных проволок.
В некоторых конструкциях предохранителей используются вставки с переменным сечением проволок: разное время перегорания отдельных участков приводит к снижению перенапряжений при срабатывании предохранителя.
Важной характеристикой всякой защиты по току, в т. ч. и предохранителя является время-токовая характеристика, описываемая обычно в виде графика, по оси абсцисс откладывается ток, чаще всего в относительных единицах (за единицу принимается номинальный ток плавкой вставки), а по ординате — время срабатывания
При этом надо иметь в виду, что характеристика каждого экземпляра предохранителя (даже из одной партии) имеет свою время-токовую характеристику, что указывается в каталоге на каждый тип предохранителя как «зона разброса характеристик», которая гарантируется производителем.
и предохранителя является время-токовая характеристика, описываемая обычно в виде графика, по оси абсцисс откладывается ток, чаще всего в относительных единицах (за единицу принимается номинальный ток плавкой вставки), а по ординате — время срабатывания. При этом надо иметь в виду, что характеристика каждого экземпляра предохранителя (даже из одной партии) имеет свою время-токовую характеристику, что указывается в каталоге на каждый тип предохранителя как «зона разброса характеристик», которая гарантируется производителем.
При этом надо иметь в виду разницу между номинальным током предохранителя и номинальным током плавкой вставки:
- номинальный ток предохранителя — это ток, на который рассчитан патрон предохранителя
- номинальный ток плавкой вставки — это ток, на который рассчитана плавкая вставка.
В данный размер патрон предохранителя может быть установлено несколько вставок на разные номинальные токи, при этом самая наибольшая в номинальном ряду равна обычно номинальному току патрона.
Некоторые типы предохранителей имеют индикатор срабатывания в виде подпружиненного штифта, при перегорании плавкой вставки указательный штифт выбрасывается пружиной из корпуса предохранителя, показывая срабатывание предохранителя. Иногда данный штифт нажимает на специальный сигнальный контакт, подавая сигнал о перегорании предохранителя по цепям телемеханики.
ВЫБОР ПЛАВКИХ ПРЕДОХРАНИТЕЛЕЙ, АВТОМАТОВ И СЕЧЕНИЯ ПРОВОДОВ И КАБЕЛЕЙ ПО ДОПУСТИМОМУ НАГРЕВУ
При коротком замыкании или значительной перегрузке электрическая проводка должна быть автоматически отключена, в противном случае может воспламениться изоляция проводов, что приведет к пожару. Для автоматического отключения проводки при превышении установленных значений силы тока предназначены аппараты защиты. В сельском хозяйстве для этой цели часто применяют плавкие предохранители, устройство которых чрезвычайно просто (см. гл. 9). В фарфоровом корпусе помещены проводники небольшого сечения — плавкие вставки, включаемые последовательно в каждый фазный провод линии. Если ток линии возрастает сверх допустимого, то плавкая вставка перегорит, отключив цепь раньше, чем температура защищаемых ею проводов станет недопустимо высокой.
В сельских сетях низкого напряжения для внутренней установки применяют предохранители двух типов: пробочные и трубчатые. Их номинальные токи в амперах нормированы по следующей шкале: 4, 6, 15, 20, 25, 35, 50, 60, 80, 100, 125, 160, 200, 225, 260, 300.
Предохранители устанавливают во всех местах, где сечение проводника по направлению к местам потребления энергии уменьшается, а также на вводах в здания и головных участках сети. Чтобы при аварии перегорел только ближайший к месту повреждения предохранитель, номинальный ток плавкой вставки каждого последующего от источника питания предохранителя должен быть по крайней мере на одну ступень меньше, чем предыдущего.
Плавкий предохранитель обычного типа представляет собой весьма несовершенный аппарат. Продолжительность перегорания его плавкой вставки зависит от тока перегрузки. При токах, в 2,5 раза превышающих номинальный, новая плавкая вставка перегорает сравнительно быстро (через 8. 10 с). Токи, большие номинального в 1,5 раза, вставка выдерживает не менее 1 ч, а в 1,2. 1,3 раза — неопределенно продолжительное время. Уменьшить эти величины и выполнить новую плавкую вставку так, чтобы она перегорела при меньших перегрузках, нельзя. Дело в том, что со временем плавкая вставка окисляется, стареет и перегорает при токах, меньших, чем новая, и может перегореть при номинальном токе или даже при значениях тока, меньших номинального.
Пусковой ток короткозамкнутых асинхронных двигателей, применяющихся для привода сельскохозяйственных потребителей, в 5. 7 раз превышает номинальный. Продолжительность пуска таких двигателей достигает 5. 10 с и более. Если выбрать плавкую вставку по номинальному току двигателя, то при пуске она мгновенно перегорит. Поэтому приходится превышать номинальный ток плавкой вставки, что приводит к увеличению сечения соответствующих ей проводов.
При защите проводов и кабелей плавкими предохранителями (кроме кабелей, проложенных в земле) расчет электрической сети начинают с выбора плавкой вставки. Ее выбирают по следующим правилам.
Для предохранителей обычного типа, защищающих ответвления к короткозамкнутым асинхронным двигателям с нормальными условиями работы (редкие пуски, продолжительность разбега 5. 10с), а = 2,5. При защите двигателей с тяжелыми условиями работы (частые пуски, продолжительность разбега до 40 с) а = 1,6. 2,0.
Максимальный ток в цепи с одним двигателем равен его пусковому току. В каталогах обычно приводят кратность пускового тока двигателя к. Тогда максимальный ток в цепи
Очевидно, что для потребителей с небольшими пусковыми токами (асинхронные двигатели с фазным ротором) почти всегда большее значение тока плавкой вставки можно получить по правилу 1 из выражения (5.25).
Для потребителей, пусковой ток которых практически равен рабочему (осветительные установки, тепловые потребители), ток плавкой вставки, определенный по правилу 1, также всегда больше тока, найденного по правилу 2.
Определив номинальный ток плавкой вставки, выбирают соответствующее ему сечение провода в зависимости от того, будет он защищен плавкой вставкой только от коротких замыканий или также и от перегрузок. По правилам устройства электроустановок от перегрузок нужно защищать осветительные сети в жилых и общественных зданиях, торговых и служебно-бытовых помещениях промышленных предприятий, а также в пожаро- и взрывоопасных зонах. Сети любого назначения, выполненные проводами с горючей оболочкой, при открытой прокладке необходимо также защищать от перегрузок. Это относится к сетям любого типа во взрывоопасных помещениях. В перечисленных случаях необходимо выбрать такое сечение, чтобы было соблюдено следующее соотношение:
Выбрав сечение провода, его также проверяют по формуле (5.31).
Тепло, а не ток
Предохранитель срабатывает не непосредственно по току; скорее, ток создает тепло, а тепло отключает предохранитель
Это на самом деле довольно важное различие, поскольку это означает, что на работу плавкого предохранителя влияет температура окружающей среды и временны́е характеристики тока
Указанный номинальный ток предохранителя относится только к определенной температуре окружающей среды (обычно или, может быть, всегда, это 25°C), и, следовательно, вам необходимо учесть это при выборе предохранителя, если вы разрабатываете устройство, которое будет работать на открытом воздухе, скажем, в Антарктиде или Долине Смерти. На следующем рисунке показано, как температура окружающей среды влияет на фактический номинальный ток относительно указанного номинального тока при 25°C для трех типов предохранителей.
Относительное изменение номинального тока плавких предохранителей в зависимости от температуры окружающей среды
Что касается временны́х характеристик тока, проходящего через плавкий предохранитель, всё, что мы знаем, это то, что эффект тепла накапливается с течением времени (мгновенное касание горячей сковороды – ничто по сравнению с ее поднятием и осознанием того, насколько горячо, когда вы находитесь на полпути между плитой и обеденным столом). Следовательно, номинал тока предохранителя является упрощением его реального поведения. Мы не можем ожидать, что плавкий предохранитель будет реагировать на высокоамплитудные переходные процессы, поскольку кратковременность высокой рассеиваемой мощности не увеличивает температуру до значения, достаточного для отключения.
На следующем графике показаны временны́е характеристики для группы плавких предохранителей, изготовленных Panasonic. Номинальный ток находится вверху, а кривая представляет собой время, необходимое для отключения плавкого предохранителя в зависимости от величины тока, протекающего через предохранитель.
Временные характеристики плавких предохранителей
Как вы можете видеть, амплитуды тока при переходных процессах должны быть намного выше, чем номинальный ток. Например, вам нужно 3 ампера, чтобы отключить предохранитель на 0,5 ампера, если продолжительность перегрузки по току составляет всего 1 миллисекунду.
Термическое напряжение предохранителя (плавкой вставки)
Короткое замыкание вызывает выделение значительного количества энергии. Патрон предохранителя ограничивает эту энергию до гораздо более низкого значения, обычно известного как ограниченное тепловое напряжение, выражаемое в A2s. Почему необходимо ограничивать тепловую нагрузку? Если энергия, выделяемая при коротком замыкании, не ограничена, это может быстро привести к полному или частичному разрушению оборудования. Термическое напряжение определяется двумя основными параметрами: Cos ϕ: чем ниже, тем больше энергия Напряжение: чем выше напряжение, тем больше энергия Патроны с предохранителями значительно ограничивают эту энергию.
Например, для среднеквадратичного асимметричного короткого замыкания 10 кА при 230 В cos ϕ = 0,1 могло бы развиться, если бы картриджа не было, на нескольких волнах тока. Только для первой волны термическое напряжение может достигать 4 000 000 А2. При тех же условиях неисправности картридж на 100 А gG ограничит тепловое напряжение до 78 000 А2, то есть 1,95% от значения только на первой волне ожидаемого тока.
Разница между термическими напряжениями перед дуговым и дуговым разрядом Предохранитель прерывает короткое замыкание в два этапа: до дуги и затем до дуги. Скажем пару слов о каждом этапе: Термическое напряжение перед дуговым разрядом соответствует минимальной энергии, необходимой для того, чтобы плавкий элемент картриджа начал плавиться
Важно знать это тепловое напряжение, чтобы определить селективность при коротком замыкании между несколькими последовательно включенными системами защиты. Термическое напряжение дуги соответствует энергии, ограниченной между концом предварительного дугового разряда и полным разрывом
Сумма термических напряжений дугового разряда и предварительного дугового разряда дает общее термическое напряжение.