Использование электрического освещения в России
Ещё со школьной скамьи люди помнят историю появления электрических лампочек в России. Первый опыт в создании этих приборов был проведён русским учёным Яблочковым. Их устройство было основано на возникновении искры между двумя каолиновыми электродами.
В 1874 г. Яблочков впервые представил прибор освещения с использованием электрической дуги. Этот год можно считать отправной точкой, когда впервые появилось световое электричество в России. Впоследствии свечи Яблочкова использовались как дуговые прожектора на паровозах.
До появления ламп накаливания Эдисона угольные свечи Яблочкова ещё долго использовались как единственный источник электрического освещения в России.
Дизайн
Строительство лейденской банки.
Типичный дизайн состоит из стекло банка с проводящей оловянной фольгой, покрывающей внутреннюю и внешнюю поверхности. Покрытия из фольги не доходят до горловины банки, чтобы предотвратить искрение заряда между фольгами. Металлический стержень электрод выступает через непроводящую пробку в горловине банки, электрически соединенную каким-либо образом (обычно это подвесная цепь) с внутренней фольгой, чтобы позволить ей заряжаться. Банку заряжают электростатический генератор, или другой источник электрического заряда, подключенный к внутреннему электроду, в то время как внешняя фольга заземленный. На внутренней и внешней поверхностях емкости хранятся равные, но противоположные заряды.
Изначально устройство представляло собой стеклянную бутылку, частично наполненную водой, с закрывающей ее металлической проволокой, проходящей через пробку. Роль внешней пластины обеспечивается рукой экспериментатора. Скоро Джон Бевис обнаружил (в 1747 г.), что внешнюю поверхность кувшина можно покрыть металлической фольгой, а также обнаружил, что он может достичь того же эффекта, используя стеклянную пластину с металлической фольгой с обеих сторон. Эти разработки вдохновили Уильям Ватсон в том же году сделать кувшин с внутренней и внешней облицовкой из металлической фольги, исключив необходимость использования воды.
Ранние экспериментаторы (такие как Бенджамин Уилсон в 1746 г.) сообщил, что чем тоньше диэлектрик и чем больше поверхность, тем больший заряд может накапливаться.
Дальнейшие разработки в области электростатики показали, что диэлектрический материал не важен, но увеличил емкость хранения (емкость) и предотвращает образование дуги между пластинами. Две пластины, разделенные небольшим расстоянием, также действуют как конденсатор, даже в вакуум.
Лейденская банка как сделать в домашних условиях
Вообщем тема такая — лейденская банка это простейший конденсатор (проводник|изоляция|проводник) это такая штука которая накапливает энергию, в нашем случае статическое электричество. Делать мы её будем из фольги, электролита(солёная вода) и пластиковой бутылки. На фото наже показан внешний вид, бутылку снаружи обворачиваем фольгой, дно тоже, а внутрь до уровня воды наливаем солёную воду в которую опускаем палочку из фольги.Фольга и электролит будут проводниками, а стенка бутылки изолятором. Теперь держась одной рукой за внешнюю обкладку из фольги, расчесываемся и каждый раз касаемся пластмасовой расчёской (хотя бы раз 20) до палочки в солёной воде. Вот и всё! Теперь на внешней обкладке у нас недостаток электронов и она заряжена положительно, а в электролите (палочке из фольги) у нас избыток электронов и она заряжена отрицательно. Теперь можно разрядить нашу лейденскую бутылку. Для этого касаемся палочкой из воды внешней обкладки бутылки, будет характерная молния. Для пробития 1 миллиметра воздуха нужно 1000Вольт, вот и рассчитывайте по длине своей молнии сколько вы «начесали» напряжения. Чтобы ни у кого не было иллюзий таким напряжением убить нельзя, ибо слишком маленькая сила тока. Эффектнее будет если вы схватите одной рукой внешнюю обкладку, а пальцем другой руки коснётесь палочки из электролита ;).
Кажись у Alex Gyver была похожая идея, впрочем мы оба повоторили эксперемент Питера ван Машенбурга, в разных формах
Развитие электричества в России и ГОЭЛРО
Распространению электрической энергии в России способствовало создание Особого отдела Русского технического общества. В его состав вошли ученые Яблочков, Лодыгин и Чиколев.
Стараниями общества было организовано электрическое освещение улиц Москвы и Санкт-Петербурга. В Петербурге дуговыми лампами освещали Большой театр и Михайловский Манеж. В Москве обеспечили электрическое освещение площади перед Храмом Христа Спасителя.
По причине высокой стоимости и отсутствия рядом электростанций электрическое освещение в основном применялось в производственных зданиях, магазинах и общественных местах. В жилых домах оно считалось редкостью.
Несмотря на то что в стране отсутствовала государственная поддержка, до 1914 г. темпы роста применения электрической энергии были очень высокими. К сожалению, после начала Первой Мировой войны темпы электрификации значительно снизились, а после Революции и Гражданской войны электроэнергетика пришла в полнейший упадок.
В 1920 г. создается комиссия ГОЭРЛО, целью которой являлась разработка плана по электрификации страны. Под председательством Кржижановского к работе привлекли больше 200 человек.
План был перевыполнен к 1931 г. Количество выработанной электроэнергии в 7 раз превысило объемы дореволюционной выработки. Число введенных в работу электростанций составило 40 штук.
Конструкция лейденской банки
Лейденская банка стала напоминать закрутки. Заменили винную бутылку. Поверх плотно накручивали металлическую крышку, входящую в электрод. Банки стали объединять батареями (показано рисунком), ставили в ящик. Мушенбрук заметил: без присмотра прибор быстро теряет заряд.
Лейденские банки Маркони
Лейденские банки использовала техника по простой причине. Давали сильный сигнал, позволяющий функционировать телеграфу. Зарядить прибор можно было вручную, неплохая альтернатива. Определение покажется странным, раньше приборами телеграфной связи оборудовали корабли. Моряки избегают шуток. Представленное изображение демонстрирует продукцию фирмы Маркони, оборудование стояло на затонувшем Титанике.
Лейденская банка или простейший конденсатор своими руками
Добрый день! Сегодня я бы хотел вам показать, как сделать лейденскую банку, простейшее устройство, в котором можно хранить электрический заряд.Статическое электричество это всего лишь недостаток или избыток электронов на поверхности предмета.Один из путей образования статического электричества — контакт двух разнородных предметов. Многие еще со школы помнят эксперимент с эбонитовой палочкой. Если потереть ее шерстью то часть электронов перебежит на палочку и шерсть останется заряжена положительно, а палочка из-за переизбытка электронов — отрицательно и сможет притягивать легкие предметы.В быту такая ситуация возникает например при расчесывании волос расческой. Можно даже слышать, как трещат электростатические разряды. Кстати, а знаете ли вы, что такие щелчки имеют напряжение в несколько тысяч вольт? Получается что с помощью обычной расчески можно получить просто огромное напряжение. Только вот заряд который может удержать расческа очень и очень мал. Заряд с расчески можно накопить в другом месте. Например в Лейденской банке . Лейденская банка является по сути простейшим конденсатором.( два проводника разделенные изолятором.Приступим к изготовлениюМатериалыКлассическая лейденская банка обычно делается из стеклянной банки, но у нее слишком толстые стенки, и заряд накапливается не особо большой. Поэтому мы будем использовать пластиковую банку с тонкими стенками. В качестве проводника будем использовать пищевую фольгу, или фольгу от шоколадки.Шаг 1Банку нужно покрыть ровным слоем фольги примерно на две трети в высоту, включая само донышко. Избегайте больших складок и разрывов.Шаг 2Теперь тоже самое нужно сделать изнутри, до той же высоты, что и внешняя обкладка. Шаг 3В центре банки закрепите приемник из фольги, который должен касаться фольги внутри банки. Верхнюю часть нужно вывести из банки наружу. Если вам лень возиться с оклейкой внутренней части банки,то можно просто налить туда соляного раствора ровно до того уровня, до которого фольга наклеена снаружи.( приемник должен одним концом касаться водыИтак, теперь у нас есть куда накапливать заряд с расчески. Чтобы сделать это, возьмитесь на наружную обкладку одной рукой и проводите рядом с приемником заряженной расческой другой рукой.Разрядить банку на себя можно взявшись рукой за обкладку и поднеся палец к приемнику. А еще можно сделать вот такой классный разрядник из куска фольги, который даст более ровную и красивую искру.На заметку: на пробой 1мм воздуха нужно напряжение в одну тысячу вольт. Кстати, влажность воздуха критически влияет на длину искры( чем суше у вас в квартире, тем длиннее будет искра)
Ну вот и все!Спасибо за внимание!Оригинальное видео автора:
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .>Лейденская банка
Лейденская банка – прибор, запасающий электрический заряд.
После лейденской банки
Устройства использовались свыше полутораста лет с большим успехом. При помощи лейденской банки построен первый колебательный контур. Поскольку везде использовался постоянный ток, потребности изобретать не было. Довольствовались гальваническими элементами, лейденскими банками. Позже появились аккумуляторы, разновидность электрохимического источника тока.
Забавно, серьезные предпосылки появления первых конденсаторов в сегодняшнем виде создал опять-таки Никола Тесла. Много написано о сербе, не перечесть заслуг. Ученый начал для моделирования устройств использовать колебательные цепи. Знаменитая башня Вондерклифф – резонансный электрический контур впечатляющих размеров.
В конце XIX века стали появляться на свет конденсаторы различного толка.
Математическое выражение емкости
Находятся люди, ненавидящие исторические экскурсы, веселые анекдоты, приведенные ниже, подробное изложение. Посещают интернет, выуживая формулу электроемкости лейденской банки, хотят немедленно видеть. Пожалуйста:
C = q/U, q – накапливаемый лейденской банкой заряд, U – разница потенциалов между выводами. Иное выражение позволяет выразить электроемкость конденсатора площадью обкладок, расстоянием меж ними:
электроемкость конденсатора повышается ростом площади, уменьшением зазора. ε – диэлектрическая проницаемость вещества между обкладками, ε(0) – электрическая постоянная, равная 8,85 пФ/м.
По указанным причинам наибольшей электроемкостью обладают электролитические конденсаторы оксидного типа. Обкладки расположены впритык.
Конструкция лейденской банки
Лейденская банка стала напоминать закрутки. Заменили винную бутылку. Поверх плотно накручивали металлическую крышку, входящую в электрод. Банки стали объединять батареями (показано рисунком), ставили в ящик. Мушенбрук заметил: без присмотра прибор быстро теряет заряд.
Лейденские банки Маркони
Лейденские банки использовала техника по простой причине. Давали сильный сигнал, позволяющий функционировать телеграфу. Зарядить прибор можно было вручную, неплохая альтернатива. Определение покажется странным, раньше приборами телеграфной связи оборудовали корабли. Моряки избегают шуток. Представленное изображение демонстрирует продукцию фирмы Маркони, оборудование стояло на затонувшем Титанике.
Конструкция лейденской банки
Лейденская банка стала напоминать закрутки. Заменили винную бутылку. Поверх плотно накручивали металлическую крышку, входящую в электрод. Банки стали объединять батареями (показано рисунком), ставили в ящик. Мушенбрук заметил: без присмотра прибор быстро теряет заряд.
Лейденские банки Маркони
Лейденские банки использовала техника по простой причине. Давали сильный сигнал, позволяющий функционировать телеграфу. Зарядить прибор можно было вручную, неплохая альтернатива. Определение покажется странным, раньше приборами телеграфной связи оборудовали корабли. Моряки избегают шуток. Представленное изображение демонстрирует продукцию фирмы Маркони, оборудование стояло на затонувшем Титанике.
Хранение заряда
«Рассекаемая» лейденская банка, 1876 г.
Измерительная лейденская банка
Первоначально считалось, что заряд хранился в воде в ранних лейденских кувшинах. В 1700-х годах американский государственный деятель и ученый Бенджамин Франклин провел обширные исследования как заполненных водой, так и фольгированных лейденских кувшинов, что привело его к выводу, что заряд хранился в стакане, а не в воде. Популярный эксперимент Франклина, который, кажется, демонстрирует это, включает в себя разборку банки после того, как она была заряжена, и демонстрация того, что на металлических пластинах может быть обнаружен небольшой заряд, и, следовательно, он должен быть в диэлектрике . Первый задокументированный случай этой демонстрации содержится в письме Франклина 1749 года. Франклин разработал «расслаиваемую» лейденскую банку (справа) , которая широко использовалась на демонстрациях. Сосуд сделан из стеклянной чашки, помещенной между двумя довольно плотно прилегающими металлическими чашками
Когда сосуд заряжают высоким напряжением и осторожно разбирают, обнаруживается, что со всеми частями можно свободно обращаться, не разряжая сосуд. Если детали будут повторно собраны, от них все равно может появиться большая искра
Эта демонстрация, по-видимому, предполагает, что конденсаторы хранят свой заряд внутри своего диэлектрика. Этой теории преподавали на протяжении 1800-х годов. Однако это явление представляет собой особый эффект, вызванный высоким напряжением на лейденской банке. В разъединяемой лейденской банке заряд переносится на поверхность стеклянной чашки за счет коронного разряда, когда банка разбирается; это источник остаточного заряда после повторной сборки банки. Работа с чашкой в разобранном виде не обеспечивает достаточного контакта для удаления всего поверхностного заряда. Сода стекла является гигроскопичной и образует частично проводящее покрытие на своей поверхности, которая удерживает заряд. Адденбрук (1922) обнаружил, что в отсекаемом сосуде, сделанном из парафинового воска или стекла, обожженного для удаления влаги, заряд остается на металлических пластинах. Зеленый (1944) подтвердил эти результаты и наблюдал перенос заряда короны.
Исследование взаимодействия заряженных тел. Открытие закона Кулона
Франц Ульрих Теодор Эпинус впервые применил математические расчеты для характеристики взаимодействия заряженных тел. Он задолго до Кулона высказал предположение о том, что силы взаимодействия электрических и магнитных зарядов изменяются обратно пропорционально квадратам расстояния между ними.
Вслед за ним английский ученый Генри Кавендиш (1731—1810 гг.) в своей статье (1771 г.) указывал на то, что притяжение двух электрических зарядов обратно пропорционально расстоянию в степени
меньше третьей.
Наибольших успехов сумел достичь французский военный инженер Шарль Огюстен Кулон (1736—1806 гг.). В течение нескольких лет он проводил эксперименты с помощью прибора, который вначале был предназначен для изучения законов закручивания шелковых и волосяных нитей, а также металлических проволок. В 1785 г. Ш. Кулон установил, что «сила кручения пропорциональна углу закручивания». Он решил использовать этот прибор для измерения «малых электрических и магнитных сил». Прибор позволял измерять «мельчайшие степени силы», и Ш. Кулон назвал его «крутильными весами».
В результате многочисленных экспериментов он установил, что сила взаимодействия наэлектризованных тел пропорциональна «количеству электричества» (этот термин был им впервые введен в науку) заряженных тел и обратно пропорциональна квадрату расстояния между ними. При этом в любой точке поверхности сила направлена перпендикулярно к этой поверхности. Так был открыт Ш. Кулоном знаменитый закон, носящий его имя.
Ш. Кулон аналитически и экспериментально доказал, что электричество распространяется по поверхности проводника, а также равномерно распределяется по поверхности изолированной проводящей сферы.
Исследования Ш. Кулона способствовали применению математического анализа в теории электричества и магнетизма, распространению математического понятия потенциала (ранее введенного в
механику) на электрическое и магнитное поля.
Конденсатор – возникновение названия, его значение
Первым это обозначение ввел Александро Вольта в 1792 г., которое происходило от итальянского «condensatore». Указывало на возможность устройства сохранять большую плотность электрического заряда, чем изолированный проводник. Но оно не использовалось вплоть до 1920-х годов. Приборы в то время называли «конденсорами», хотя значение до сих пор используется в нескольких странах.
Слово «ёмкость», применяющееся для обозначения номинала конденсаторов, считается данью прошлому, поскольку изначально элемент являлся банкой, обладающей некоторым объемом. А как известно из курса современно физики, чем больше площадь, тем выше хранимый заряд.
Ссылки
Исправить статью согласно стилистическим правилам Википедии.
Wikimedia Foundation . 2010 .
- Рудольф Агрикола
- Хадис
Смотреть что такое «Лейденская банка» в других словарях:
ЛЕЙДЕНСКАЯ БАНКА — (по имени города Лейдена, где была изобретена). Прибор, служащий для скопления большого количества электричества электрическ. конденсатор. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЛЕЙДЕНСКАЯ БАНКА по имени… … Словарь иностранных слов русского языка
ЛЕЙДЕНСКАЯ БАНКА — ЛЕЙДЕНСКАЯ БАНКА, первое в истории и простейшее устройство для накопления СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА. Перво начально это был электрический КОНДЕНСАТОР, созданный в 1745 г. в г. Лейдене (Голландия). Лейденская банка состоит из стеклянного сосуда,… … Научно-технический энциклопедический словарь
ЛЕЙДЕНСКАЯ БАНКА — ЛЕЙДЕНСКАЯ БАНКА, один из весьма распространенных электрических конденсаторов. Представляет собой стеклянную банку, изнутри, и снаружи оклеенную станиолем. Внутренняя обклейка непосредственно соединяется с металлическим стержнем, заканчивающимся… … Большая медицинская энциклопедия
лейденская банка — — Тематики электротехника, основные понятия EN Leyden jar … Справочник технического переводчика
лейденская банка — Leideno stiklinė statusas T sritis fizika atitikmenys: angl. Leyden jar vok. Leydener Flasche, f rus. лейденская банка, f pranc. bouteille de Leyde, f … Fizikos terminų žodynas
Лейденская банка — один из видов электрических конденсаторов (см.); называется иногда банкою Клейста. Этот конденсатор имеет форму банки, т. е. цилиндра с более или менее широким горлом или же просто цилиндра, обыкновенно стеклянного. Банка обклеена листовым оловом … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Лейденская банка — название электрического конденсатора, по форме внешне похожего на банку, название по городу Лейден (Голландия), месту создания: ஐ . после чего отправились пировать; и пока полные до краев лейденские банки ходили меж ними, друзья настолько … Мир Лема — словарь и путеводитель
лейденская банка — Старинный прибор, предшественник современных электрических конденсаторов … Словарь многих выражений
лейденская — банка [ Словарь иностранных слов русского языка
БАНКА — (польск. banka, уменьш. от bania горшок). 1) цилиндрический, сверху открытый сосуд. 2) рожки, которыми вытягивают кровь из насечек на теле. 3) пространство между двумя орудиями в деке корабля; предназначается для жилья матросов. 4) на гребном… … Словарь иностранных слов русского языка
ИСТОРИЯ ПОЯВЛЕНИЯ ЭЛЕКТРИЧЕСТВА В МИРЕ, В РОССИИ
Современная жизнь немыслима без радио и телевидения, телефонов и телеграфа, всевозможных осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока. В конце XIX века по миру, в том числе России, прокатилась волна открытий, связанных с электричеством. Пошла цепная реакция, когда одно открытие открывало дорогу для последующих открытий на многие десятилетия вперёд.
Основы научно-технической революции, так изменившей мир, начался с гальванического элемента — первой батарейки, химического источника тока (вольтова столба). Этим чрезвычайно важным изобретением итальянский учёный А.Вольта встретил новый 1800 год. Вольтов столб позволил вести систематическое изучение электрических токов и находить им практическое применение.
В XIX веке электротехника выделилась из физики в самостоятельную науку. Над закладкой её фундамента трудилась целая плеяда ученых и изобретателей. Датчанин Х. Эрстед, француз А. Ампер, немцы Г. Ом и Г. Герц, англичане М. Фарадей и Д. Максвел, американцы Д. Генри и Т. Эдисон – эти имена мы встречаем в учебниках физики, на приборах, т.к. в честь некоторых из них названы единицы электрических величин.
XIX век щедро одарил человечество изобретениями и открытиями в области технических средств коммуникации.
В 1832 году член-корреспондент Петербургской Академии наук Павел Львович Шиллинг в присутствии императора продемонстрировал работу изобретённого им электромагнитного телеграфа, чем положил начало проводной связи.
В 1876 году Александр Белл изобрёл телефон.
В 1859 году братья Луи и Огюст Люмьеры дали первый киносеанс в Париже, а Александр Степанович Попов в Петербурге публично демонстрировал передачу и приём электрических сигналов по радио.
В 1867 году Зеноб Грамм (Бельгия) построил надёжный и удобный в эксплуатации электромашинный генератор, позволяющий получать дешевую электроэнергию, и химические источники отошли на второй план.
Электротехник Александр Николаевич Лодыгин (1847-1923) изобрел угольную лампу накаливания.
из Музея истории Мосэнерго.
В 1878 году на улицах Парижа впервые вспыхнул ослепительный “русский свет” – дуговые лампы конструкции Павла Николаевича Яблочкова. Электротехник П.Н. Яблочков (1847-1894) изобрел дуговую лампу без регулятора – так называемую электрическую свечу. Яблочков, также, сконструировал линию электропередачи, рассчитанную на длительную эксплуатацию, для электрического освещения улиц.
Электрическая свеча П.Н. Яблочкова, применялась при освещении улиц Москвы, 1867 год. Макет из Музея истории Мосэнерго.
30 января 1880 года был официально создан электротехнический отдел Русского технического общества, который именовался как «шестой отдел». На первом собрании заместителем председателя единогласно был избран Павел Яблочков. Действительными членами стали: В.Н. Чиколев, А.Н. Лодыгин, Д.А. Лачинов, Н.П. Булыгин, Ф.А. Пироцкий и др. Шестой отдел стал главным центом электротехнической мысли России.
На нашем сайте выложен альбом «Участников Первого Всероссийского технического съезда 1899-1900 года».
Альбом предоставлен Музею родственниками А. Спицына.
Теория атмосферного электричества М.В. Ломоносова
По утверждению М.В. Ломоносова атмосферное электричество возникает в результате трения пылинок и других взвешенных частичек воздуха с капельками воды, происходящего при вертикальных перемещениях воздушных потоков. Он указывал, что существуют вертикальные восходящие и нисходящие потоки воздуха, которые «не токмо гремящей на воздухе электрической силы, но и многих других явлений в атмосфере и вне оной суть источник и начало».
Процесс электризации М.В. Ломоносов объяснял так: поток теплого воздуха, устремляющийся вверх (восходящий поток), увлекает за собой различные «жирные и горючие пары» и другие примеси, находящиеся в воздухе. Частицы этих паров М.В. Ломоносов называл «шаричками». Эти «шарички», по его мнению, имеют свойства, близкие к свойствам твердого тела, и не могут поэтому смешиваться с частичками воды (каплями дождя), встречающимися на их пути. В результате трения между «шаричками» и капельками воды возникают электрические заряды как на тех, так и на других. М.В. Ломоносов писал: «… жирные шарички горючих паров, которые ради разной природы с водяными слиться не могут и ради безмерной малости к свойствам твердого тела подходят, скорым встречным движением сражаются, трутся, электрическую силу рождают, которая, распространяясь по облаку, весь оный занимает».
Изобретение лейденской банки — новая страница в летописи электричества
После того, как было установлено разделение тел на проводники и непроводники, а опыты с электростатическими машинами получили широчайшее распространение, совершенно естественной была попытка «накопить» электрические заряды в каком-то стеклянном сосуде, который мог их сохранить. Среди многих физиков, занявшихся подобными экспериментами, наибольшую известность получил голландский профессор из г. Лейдена Мусхенбрук (Мушенбрек) (1692—1761 гг.).
Зная, что стекло не проводит электричества, он (в 1745 г.) взял стеклянную банку (колбу), наполненную водой, опустил в нее медную проволоку, висевшую на кондукторе электрической машины, и, взяв банку в правую руку, попросил своего помощника вращать шар машины. При этом он правильно предположил, что заряды, поступавшие с кондуктора, будут накапливаться в стеклянной банке.
После того, как по его мнению, в банке накопилось достаточное количество зарядов, он решил левой рукой отсоединить медную проволоку. При этом он ощутил сильный удар, ему показалось, что «пришел конец». В письме Реомюру в Париж (в 1746 г.) он писал, что этот «новый и страшный опыт советую самим никак не повторять» и что «даже ради короны Франции он не согласится подвергнуться столь ужасному сотрясению».
Так была изобретена лейденская банка (по имени г. Лейдена), а вскоре и первый простейший конденсатор, одно из распространеннейших электротехнических устройств.
Опыт Мусхенбрука произвел подлинную сенсацию не только среди физиков, но и многих любителей, интересовавшихся электрическими опытами.
Независимо от Мусхенбрука в том же 1745 г. к созданию лейденской банки пришел и немецкий ученый Э.Г. Клейст. Опыты с лейденской банкой стали производить физики разных стран, а в 1746—1747 гг. первые теории лейденской банки разработали знаменитый американский ученый Б. Франклин и хранитель физического кабинета англичанин В. Уатсон. Небезынтересна отметить, что Уатсон стремился определить скорость распространения электричества, «заставив» его «пробежать» 12 000 футов.
Одним из важнейших последствий изобретения лейденской банки явилось установление влияния электрических разрядов на организм человека, что привело к зарождению электромедицины это было первое сравнительно широкое практическое применена электричества, сыгравшее большую роль в углублении изучении электрических явлений.
Опыт Мусхенбрука был повторен в присутствии французского короля аббатом Нолле. Он образовал цепь из 180 гвардейцев взявшихся за руки, причем первый держал банку в руке, а последний прикасался к проволоке, извлекая искру. «Удар почувствовался всеми в один момент; было курьезно видеть разнообразие жестов и слышать мгновенный вскрик десятков людей». От этой цепи солдат и произошел термин «электрическая цепь».
Постепенно конструкция лейденской банки совершенствовалась: воду заменили дробью, а затем наружная поверхность покрывалась тонкими свинцовыми пластинами; позднее внутреннюю и наружную поверхности стали покрывать оловянной фольгой, и банка приобрела современный вид.
При проведении исследований с банкой было установлено (в 1746 г. англичанином Б. Вильсоном), что количество электричества, собираемое в банке, пропорционально размеру обкладок и обратно пропорционально толщине изоляционного стоя. В 70-х гг. XVIII в. металлические пластины стали разделять не стеклом, а воздушным промежутком — так, появился простейший конденсатор.
Веселовский О. Н. Шнейберг А. Я «Очерки по истории электротехники»
Вторая версия
Гораздо более правдоподобной выглядит вторая версия, согласно которой все тот же ученый проводил эксперименты целенаправленно и случайности тут не было.
Так вот Мушенбрук, зная о непроводимости стекла (диэлектрик), во время эксперимента держался рукой за внешнюю стенку банки, а после того как машина перестала работать прикоснулся второй рукой до электрода, все время находившегося в воде.
Таким образом, была замкнута цепь, а весь накопленный заряд прошел через экспериментатора.
В 1746 году в очередном письме своему другу и коллеге Реомюру он так опишет свои ощущения от эксперимента:
«Этот новый и безусловно страшный опыт повторять никому не советую. И даже ради короны Франции на повторный опыт не пойду».
Так как серия опытов проводилась в городе Лейден, впоследствии изобретенный таким образом прибор стал именоваться Лейденская банка. Это название дал Жан-Антуан Нолле, который занимался активной продажей изделия богатеям того времени, которые увлекались электричеством.
Как это часто бывает, независимо друг от друга ученые проводят аналогичные эксперименты.