Магнитное поле и его характеристики

Свойства однородного магнитного поля

Его магнитные линии параллельны, находятся на одинаковом расстоянии и имеют одинаковую постоянную густоту. Примером однородного поля является соленоид – длинная, прямая, плотно намотанная виток к витку, катушка.

Сила

Cила, возникающая между двумя движущимися в одном направлении заряженными телами, и притягивающая их друг к другу, называется магнитная. Если эти тела движутся в разных направлениях, магнитная сила заставляет их отталкиваться между собой.

Магнитная сила, воздействующая на движущийся заряд, называется силой Лоренца. Она не меняет величину скорости, изменяя только направление, так как перпендикулярна вектору скорости частицы:

F = q*(E + v*B),

F – сила;

q – электрический заряд;

E – внешнее электрическое поле;

v – скорость;

B – магнитное поле.

Измеряется в Н – ньютонах.

Индукция

Силу магнитного поля характеризует вектор магнитной индукции В (аналогично вектору напряженности Е электрического поля). Он определяет силы, действующие на движущиеся заряды в магнитном поле. Положительным является направление магнитной стрелки, свободно установленной в магнитном поле, от южного полюса к северному.

Электромагнитную индукцию описал знаменитый английский физик М. Фарадей в 1831 году. Суть открытого им явления – меняющийся во времени магнитный поток, воздействуя на замкнутый проводящий контур, создает в контуре электрический ток:

  • Ф = В*S*cos a,
  • Ф – магнитный поток;
  • В – модуль вектора магнитной индукции;
  • S – площадь контура;
  • А – угол между вектором В и n – нормалью к плоскости контура.
  • Измеряется в веберах (Вб).

Магнитный поток в 1 Вб создан магнитным полем с индукцией 1 Тл.

Направление

В магнитном поле, создаваемом проводником с током, магнитные стрелки разместятся в виде концентрических окружностей вдоль линий магнитного поля. Направление магнитных линий всегда связано с направлением электрического тока.

Существует правило буравчика (правило правой руки), которое это объясняет – если вкручивать правый буравчик по направлению тока, то направление движения ручки буравчика показывает направление магнитных линий.

Энергия тока

Энергия магнитного поля показывает, какую работу совершил электрический ток в проводнике, создав это магнитное поле. Энергия магнитного поля равна половине произведения индуктивности цепи на квадрат силы тока.

Формула ее расчета очень похожа на формулу расчета кинетической энергии – кинетическая энергия прямо пропорциональна массе движущегося предмета и квадрату скорости его движения.

Явление взаимодействия двух магнитов.

Явление магнитного поля, которое мы можем встретить в повседневной жизни, получило название взаимодействие двух магнитов. Оно выражается в отталкивании друг от друга одинаковых полюсов и притяжении противоположных полюсов. С формальной точки зрения описать взаимодействия между двумя магнитами как взаимодействие двух монополей, является достаточно полезной, реализуемой и удобной идеей. В то же время, детальный анализ свидетельствует, что в действительности это не совсем верное описание явления. Основным вопросом, остающимся без ответа в рамках такой модели, является, почему монополя не могут быть разделены. Собственно, экспериментально доказано, что любое изолированное тело не имеет магнитный заряд. Также эту модель невозможно применить к магнитному полю, созданному макроскопическим током.

С нашей точки зрения, правильно считать, что сила, действующая на магнитный диполь, находящийся в неоднородном поле, стремится развернуть его таким образом, чтобы магнитный момент диполя имел одинаковое с магнитным полем направление. Однако нет магнитов, которые подвержены воздействию суммарной силы со стороны однородного магнитного поля тока
. Сила, которая действует на магнитный диполь с магнитным моментом m
выражается следующей формулой:

.

Действующая на магнит сила со стороны неоднородного магнитного поля, выражается суммой всех сил, которые определяются данной формулой, и воздействующих на элементарные диполи, которые составляют магнит.

В чем разница между электрическим полем и магнитным полем?

Оба рассматриваемых понятия считаются силовыми. Это означает, что в каждой точке пространства, в которой действует поле, на заряд влияет конкретная сила. В другой точке ее значение будет отличаться. Электромагнитное поле оказывает воздействие на заряженные тела и частицы. При этом оно действует на все заряды, тогда как магнитное поле – исключительно на движущиеся.

Существуют вещества, которые взаимодействуют с магнитным полем, но не включают движущиеся заряды. К ним, в частности, относятся ферромагнетики. Этим понятие отличается от электрического поля, поскольку аналогичных веществ для него не существует. У магнитов, естественных или намагниченных тел существует 2 полюса. Их называют южным и северным.

Мнение эксперта Карнаух Екатерина Владимировна Закончила Национальный университет кораблестроения, специальность «Экономика предприятия» Обычные электрические заряды считаются сравнительно однородными. Они не включают полюсов. При этом для таких зарядов характерно 2 типа – положительные и отрицательные. Знак оказывает воздействие на направление кулоновской силы. Как следствие, это влияет на взаимодействие двух заряженных частиц. Знак не будет оказывать влияния на взаимодействие других заряженных частиц с магнитным полем. Он только поменяет местами полюса.

Отличается и графическое изображение рассматриваемых физических явлений. Линии напряженности электрического поля обладают началом и концом. Их можно визуализировать. В качестве примера стоит привести кристаллы хинина в масле. Линии индукции замкнуты. Их тоже можно визуализировать. Примером этого служат металлические опилки.

Отдельно стоит упомянуть электромагнитное поле, которое обладает характеристиками как электрического, так и магнитного поля. Это означает, что оно способно в определенных условиях поворачивать стрелку компаса и перемещать электрически заряженные частицы. Обе составляющие имеют тесную взаимосвязь друг с другом. Каждая из них отличается своим энергетическим запасом. Именно он влияет на энергию всего электромагнитного поля.

Мнение эксперта Карнаух Екатерина Владимировна Закончила Национальный университет кораблестроения, специальность «Экономика предприятия» Возникновение электромагнитного поля возможно при любом, даже небольшом изменении тока в проводниках. При этом оно оказывает влияние на прилегающие зоны пространства, передает им собственную энергию. В результате в этих местах тоже появляется электромагнитное поле.

Когда ЭМИ наносит вред здоровью

Слабое электромагнитное излучение с низкой мощностью/напряженностью и высокой частотой опасно для человека тем, что его интенсивность совпадает с частотой его биополя. Из-за этого получается резонанс  и системы, органы начинают работать неправильно, что провоцирует развитие различных заболеваний, особенно в тех звеньях организма, которые до этого уже были чем-то ослаблены.

Также ЭМИ обладает способностью накапливаться в организме, в этом его наибольшая опасность для здоровья. Такие накопления постепенно ухудшают состояние здоровья, понижается:

  • иммунитет,
  • стрессоустойчивость,
  • сексуальная активность,
  • выносливость,
  • работоспособность.

Опасность заключается в том, что приписать эти симптомы можно к большому количеству заболеваний. При этом в наших больницах врачи пока не спешат серьезно воспринимать влияние электромагнитного излучения на организм человека, поэтому и вероятность правильного диагноза очень невелика.

Опасность ЭМИ невидима и сложно измерима, проще рассмотреть бактерии под микроскопом, чем увидеть взаимосвязь источника излучения и плохого самочувствия. Самое разрушительное действие интенсивное ЭМИ оказывает на кровеносную, иммунную, половую системы, мозг, глаза, желудочно-кишечный тракт. Также у человека может возникнуть радиоволновая болезнь. Давайте поговорим обо всем этом поподробнее.

Явление взаимодействия двух магнитов.

Явление магнитного поля, которое мы можем встретить в повседневной жизни, получило название взаимодействие двух магнитов. Оно выражается в отталкивании друг от друга одинаковых полюсов и притяжении противоположных полюсов. С формальной точки зрения описать взаимодействия между двумя магнитами как взаимодействие двух монополей, является достаточно полезной, реализуемой и удобной идеей. В то же время, детальный анализ свидетельствует, что в действительности это не совсем верное описание явления. Основным вопросом, остающимся без ответа в рамках такой модели, является, почему монополя не могут быть разделены. Собственно, экспериментально доказано, что любое изолированное тело не имеет магнитный заряд. Также эту модель невозможно применить к магнитному полю, созданному макроскопическим током.

С нашей точки зрения, правильно считать, что сила, действующая на магнитный диполь, находящийся в неоднородном поле, стремится развернуть его таким образом, чтобы магнитный момент диполя имел одинаковое с магнитным полем направление. Однако нет магнитов, которые подвержены воздействию суммарной силы со стороны однородного магнитного поля тока
. Сила, которая действует на магнитный диполь с магнитным моментом m
выражается следующей формулой:

.

Действующая на магнит сила со стороны неоднородного магнитного поля, выражается суммой всех сил, которые определяются данной формулой, и воздействующих на элементарные диполи, которые составляют магнит.

Воздействие на психику

Известный психиатр университета в США Келли Познер выявил связь между вспышками на солнце и депрессией. Происходит сбой в суточных биоритмах человека, в итоге меньше вырабатывается меланин, который отвечает за цикличность биологических ритмов. Нарушается сон, человек находится в состоянии постоянного стресса. Отсюда депрессия и суицидальные наклонности. Психика очень чутко реагирует на низкочастотные колебания, появляется чувство паники, это замечено перед приближением землетрясения. Особенно остро на это реагируют неуравновешенные люди, трудоголики и начальники.

Как действуют электромагнитные волны?

Ученые до середины 20-го века не принимали во внимание электромагнитное облучение, считая, что его кванты излучают меньше энергии, чем тепловое движение молекул, и совершенно безопасны для животного и растительного мира. Сегодня электромагнитные волны (ЭМВ) стали проблемой всего человечества, поскольку их неблагоприятное воздействие проявляется как на клеточном, так на организменном уровне. Механизм их воздействия до сих пор не изучен до конца, особенно это касается малоинтенсивных излучений

Считается, что проходя через тело, ЭМВ возбуждают электроны в веществах и активизируют биохимические процессы в организме человека. Например, волны частотой 850 МГц увеличивают активность молекул воды в 11 раз!

Механизм их воздействия до сих пор не изучен до конца, особенно это касается малоинтенсивных излучений. Считается, что проходя через тело, ЭМВ возбуждают электроны в веществах и активизируют биохимические процессы в организме человека. Например, волны частотой 850 МГц увеличивают активность молекул воды в 11 раз!

Из-за этого повышается температура тела, молекулы ионизируются и вызывают вторичные, более слабые электромагнитные излучения в живых тканях. Поскольку каждый орган работает на определенной частоте: сердце – 700 Гц, мозг во сне – 10 Гц, во время бодрствования – 50 Гц, источник электромагнитных волн, работающий на другой или аналогичной частоте, может нарушить нормальное функционирование органа и привести к развитию заболевания.

Магнитная индукция

Магнитная индукция (МИ) — силовое определение МП. Это векторная величина.

Одной из главных характеристик МП является векторный потенциал.

Формула индукции магнитного поля измеряется через вектор магнитной индукции (В).

В=Fmax/I*l ,

где Fmax — наибольшая сила, воздействующая от МП на проводнике; I — сила тока в проводнике; l — длина.

Вектор МИ имеет единицы измерения — теслы (Тл).

Направление вектора МИ — это направление от южного полюса к северному магнитной стрелки, установленной в МП.

Линия МИ — несуществующая прямая, где в любом месте вектор МИ направлен к ней по касательной.

Свойства магнитной линии:

  • постоянность;
  • замкнутость;
  • ориентированность.

Чем больше магнитных линий, тем сильнее МП.

Если рассматривать МП в свободном пространстве (без окружающей его среды), то используют понятие не вектор МИ, а вектор напряженности (Н), равный разности вектора МИ и вектор намагниченности (М).

Н = В — М

Если полей более одного, то вектор МИ определяется по принципу суперпозиции: МИ основного поля, которое состоит из многих источников, можно найти через сумму МИ всех полей, входящих в состав МП.

Подробнее о то, как создать электромагнит

Довольно легко построить электромагнит. Все, что вам нужно сделать, это обернуть несколько витков изолированных медных проводов вокруг железного сердечника. Если вы присоедините батарею к проводу, электрический ток начнет течь, и железный сердечник станет намагниченным. Когда аккумулятор отсоединен, железный сердечник потеряет свой магнетизм. Выполните следующие шаги, если хотите построить электромагнит, описанный в нашем эксперименте « Магниты и электромагниты» :

Шаг 1 – Соберите материалы

Чтобы построить электромагнит, описанный в нашем эксперименте « Магниты и электромагниты» , вам понадобятся:

Один железный гвоздь длиной 15 сантиметров. Три метра изолированного многожильного медного провода. Одна или несколько батареек D-cell.

Шаг 2 – Удалите часть изоляции

Медная проволока должна быть выставлена ​​так, чтобы батарея могла хорошо подключиться к электросети. Используйте пару проводов для удаления нескольких сантиметров изоляции с каждого конца провода.

Шаг 3 – Оберните провод вокруг гвоздя

Аккуратно оберните провод вокруг гвоздя. Чем больше проволоки вы обернете вокруг гвоздя, тем сильнее будет ваш электромагнит. Убедитесь, что вы оставили достаточно разматываемого провода, чтобы вы могли прикрепить аккумулятор.

Провод обернут вокруг гвоздя, чтобы создать электромагнит.

Когда вы обматываете провод вокруг гвоздя, убедитесь, что вы делаете это в одном направлении. Вам нужно это сделать, потому что направление магнитного поля зависит от направления создаваемого им электрического тока. Движение электрических зарядов создает магнитное поле. Если бы вы могли видеть магнитное поле вокруг провода, на котором протекает электричество, это было бы похоже на серию кругов вокруг провода. Если электрический ток течет прямо к вам, созданное им магнитное поле крутится вокруг провода против часовой стрелки. Если направление электрического тока отменяется, магнитное поле также меняет направление и направляет провод по часовой стрелке. Если вы оберните часть провода вокруг гвоздя в одном направлении, а часть провода – в другом направлении,

Магнитное поле вокруг токопроводящей проволоки.

Шаг 4 – Подключите аккумулятор

Прикрепите один конец провода к положительной клемме аккумулятора, а другой конец провода – к отрицательной клемме аккумулятора. Если все пошло хорошо, ваш электромагнит теперь работает!

Не беспокойтесь о том, какой конец провода вы прикрепляете к положительной клемме аккумулятора, а какой – к отрицательной клемме. Ваш магнит будет работать так же хорошо, как и в любом случае. Что изменит полярность вашего магнита. Один конец вашего магнита будет его северным полюсом, а другой конец будет его южным полюсом. Реверсируя способ подсоединения аккумулятора, вы можете перевернуть полюсы вашего электромагнита.

Советы по усилению вашего электромагнита

Чем больше оборотов провода у вашего магнита, тем лучше. Имейте в виду, что чем дальше провод от ядра, тем менее эффективным он будет.

Чем больше тока проходит через провод, тем лучше

Внимание! Слишком много тока может быть опасным! Когда электричество проходит через провод, часть электрической энергии преобразуется в тепло. Чем больше ток течет через провод, тем больше тепла генерируется

Если вы удвоите ток, проходящий через провод, генерируемое тепло увеличится в 4 раза ! Если вы утроите ток, проходящий через провод, вырабатываемая теплота увеличится в 9 раз ! Вещи могут быстро стать слишком горячими для обработки.

Попробуйте экспериментировать с разными ядрами. Более толстая сердцевина может создать более мощный магнит. Просто убедитесь, что материал, который вы выберете, может быть намагничен. Вы можете проверить свое ядро ​​с помощью постоянного магнита. Если постоянный магнит не притягивается к вашему ядру, он не станет хорошим электромагнитом. Например, алюминиевый стержень не является хорошим выбором для сердечника вашего магнита.

Электромагнитная индукция.

В случае изменения во времени потока вектора магнитной индукции через замкнутый контур, в этом контуре формируется ЭДС электромагнитной индукции. Если контур неподвижен, она порождается вихревым электрическим полем, которое возникает в результате изменения магнитного поля со временем. Когда магнитное поле не изменяется со временем и нет изменений потока из-за движения контура-проводника, то ЭДС порождается силой Лоренца.

Хорошо известно широкое применение магнитного поля в быту, на производстве и в научных исследованиях. Достаточно назвать такие устройства, как генераторы переменного тока, электродвигатели, реле, ускорители элементарных частиц и различные датчики. Рассмотрим подробнее, что собой представляет магнитное поле и как оно образуется.

Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:

Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.

Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Магнитный поток

Магнитный поток – это скалярная величина, которая характеризует влияние магнитной индукции на данный металлический контур.

Магнитная индукция определяется количеством силовых линий, пересекающих 1 см2 металлического сечения.

Магнитометры, используемые для его измерения, называются теслометрами.

После прекращения движения электронов в катушке сердечник, если он сделан из мягкого железа, теряет свои магнитные свойства. Если он изготовлен из стали, он может некоторое время сохранять свои магнитные свойства.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентирован по магнитному меридиану Земли. Конец, указывающий на север, называется северным полюсом (N), а противоположный конец – южным полюсом (S). Поднося два магнита ближе, мы замечаем, что одноименные полюса отталкиваются друг от друга, а противоположные – притягиваются (рис. 1).

Если мы разделим полюса, разрезав постоянный магнит на две части, мы обнаружим, что каждая из них также будет иметь по два полюса, то есть это будет постоянный магнит (рис. 2). Оба полюса – север и юг – неотделимы друг от друга, равны.

Магнитное поле, создаваемое Землей или постоянными магнитами, представлено, как электрическое поле, магнитными силовыми линиями. Изображение силовых линий магнитного поля магнита можно получить, положив поверх него лист бумаги, на который ровным слоем насыпают железные опилки. Попадая в магнитное поле, опилки намагничиваются: у каждого из них есть северный и южный полюс. Противоположные полюса имеют тенденцию сближаться, но этому препятствует трение опилок о бумагу. Если вы коснетесь бумаги пальцем, трение уменьшится, и опилки будут притягиваться друг к другу, образуя цепочки, которые представляют собой силовые линии магнитного поля.

На рис. 3 показано положение в поле прямого магнита из опилок и маленькие магнитные стрелки, указывающие направление силовых линий магнитного поля. Это направление принимается за направление северного полюса магнитной стрелки.

Равнорезонаторный магнетрон

Это мощная вакуумная трубка, генерирующая микроволны, основываясь на контакте электронов и магнитного поля. Все они представлены горячим катодом в высоким отрицательным потенциалом, которые формируется из-за высоковольтного источника постоянного тока. Катод вставлен в центр изолированной круглой камеры. Постоянный магнит организовывает магнитное поле. По окружности расставлены цилиндрические полости, открытые вдоль длины и объединяющие пространство общей полости. Когда электроны проходят мимо, то создают резонансное высокочастотное радиополе, что приводит к группировке электронов.

Резонансная частота определяется размерами полостей. Магнетрон – автоматические колебательный прибор, которому из внешних элементов нужен лишь источник питания. Используется в радаре, нагревании (микроволновая печь) и освещении.

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​\( q \)​ – заряд частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( \alpha \)​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​\( B_\perp \)​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно. В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​\( m \)​ – масса частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( q \)​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы

Если вектор скорости направлен под углом ​\( \alpha \)​ (0° < \( \alpha \) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.

В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, ​\( \vec{v}_2 \)​, параллелен вектору \( \vec{B} \), а другой, \( \vec{v}_1 \), – перпендикулярен ему. Вектор \( \vec{v}_1 \) не меняется ни по модулю, ни по направлению. Вектор \( \vec{v}_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \( \vec{v}_1 \). Частица будет двигаться по окружности. Период обращения частицы по окружности – ​\( T \)​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec{B} \). Частица движется по винтовой линии с шагом ​\( h=v_2T \)​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

История открытия МП

Изучение МП началось в XIII веке француз Петр Перегрин заметил на плоскости магнита МП с помощью стальных игл. Петр установил, что линии МП перекрещиваются и образуют две точки, которые он назвал полюсами.

Ученый Эстерд в 1819 году увидел движущуюся стрелку компаса рядом с проводником тока. В связи с этим он сделал вывод, что есть какая-то связь между МП и электрическим полем.

И только через пять лет Ампер смог описать взаимосвязь магнита с проводником (их действующую друг на друга силу). Так появился закон Ампера.

И по прошествии 33 лет Максвел объединил и математически описал все полученные ранее знания.

Ла-Ринконада, Перу

Золотодобытчики в окрестностях Ла-Ринконада, Перу.

В этом рабочем городке, кажется, нет никаких условий для жизни. Просто невозможно себе представить, как живут люди, не имеющие элементарных благ, проточной воды или канализации. К тому же мусор из Ла-Ринконада никто не вывозит и его не утилизируют, а просто складывают. Здесь столбик термометра редко поднимается выше 0 градусов по Цельсию, а воздух настолько разрежен, что порой сбивается дыхание, а силы словно улетучиваются из организма. Но при этом за последние годы количество жителей в городе Ла-Ринконада увеличилось вдвое.

А всё потому, что в его окрестностях расположены шахты по добыче золотой руды. Именно они, кстати, и представляют наибольшую опасность, так как при обработке золотосодержащей руды выделяются очень опасные пары ртути. Но разве может всё это остановить человека, желающего быстро разбогатеть? Многие готовы рискнуть и здоровьем, и даже жизнью.

Индукционные датчики магнитного поля

Датчики этого типа относятся к генераторному типу
датчиков. Конструкции и назначения таких датчиков различна. Они могут
использоваться для определения параметров переменных и стационарных магнитных
полей. В данном обзоре рассмотрен принцип работы датчика, работающего в
постоянном магнитном поле.

Принцип работы индукционных датчиков базируется на
способности переменного магнитного поля индуцировать в проводнике электрический
ток. При этом ЭДС индукции, появляющаяся в проводнике, пропорциональна скорости
изменения магнитного потока через него.

Но
в стационарном поле магнитный поток не изменяется. Поэтому для измерения
параметров стационарного магнитного поля применяются датчики с катушкой
индуктивности, вращающейся с постоянной скоростью. В этом случае магнитный
поток будет изменяться с определенной периодичностью. Напряжение на зажимах
катушки будет определяться скоростью изменения потока (числом оборотов  катушки) и количеством витков катушки.

По
известным данным легко вычисляется величина магнитной индукции однородного магнитного поля.

Конструкция
датчика показана на рисунке. Он состоит из проводника в качестве которого может
выступать катушка индуктивности, расположенной на валу электродвигателя. Съем
напряжения с вращающейся катушки осуществляется с помощью щеток. Выходное
напряжение на выводах катушки представляет переменное напряжение, величина
которого тем больше, чем больше частота вращения катушки индуктивности и чем
больше магнитная индукция поля.

Свойства магнитного поля

Свойствами магнитного поля в настоящее время принято считать:

  • Его появление обусловлено только движением заряженных тел или частиц;
  • Способность его обнаружения по воздействию на заряженные тела и частицы;
  • Материальность магнитного поля (пусть человек его и не ощущает);
  • Способность обнаружения поля через его действие на магнитную стрелку.

Ключевое преимущество и важное свойство магнитного поля – его относительность. Так если этот критерий оставить в заряженном теле неподалеку от принятой заранее системы отсчета и рядом поместить магнитную стрелку компаса, то та станет указывать в северном направлении

При этом стрелка не «видит» других полей, кроме магнитного поля Земли.

При приведении заряженного тела в движение вокруг него появляется магнитное поле, на которое стрелка обязательно отреагирует поворотом.

Все источники магнитного поля принято делить на следующие составляющие:

  • Электрическое пространство, которое со временем изменяется;
  • Подвижные и постоянные заряды;
  • А также заряженные током магниты – электромагниты.

Стоит заметить, что движущийся электрический заряд обладает куда большей магнитной энергией, нежели постоянный магнит.

Учеными были установлены причины, по которым физическое тело получает те или иные магнитные свойства. Как гласит современная теория, любое вещество внутри себя имеет микроскопические электротоки. Они возникают из-за постоянного движения заряженных электронов по своим квантовым орбитам вокруг ядра атома.

Человек не может своими органами чувств зафиксировать наличие или отсутствие магнитного поля вокруг вещества. Это сделать можно лишь специальными приборами.

Магнитное поле принято делить на постоянное и переменное. Первый вид поля наблюдается лишь в случае наличия неизменного электрического поля. Коэффициент данной пропорциональности принято называть индуктивностью основного проводника. Что показывает потенциал элемента формировать потокосцепление во время трансформации электричества в силу тока внутри контура магнитного потока.

Все выше сказанное и помогает нам понять, что же собой представляет и чем характеризуется такое физическое явление, как магнитное поле.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: