Электромагнитная индукция: феномен возникающий в индуцированном поле

Теория

Закон индукции Фарадея и закон Ленца

Соленоид

Продольное сечение соленоида при протекании через него постоянного электрического тока. Показаны силовые линии магнитного поля, их направление показано стрелками. Магнитный поток соответствует «плотности силовых линий». Таким образом, магнитный поток наиболее плотный в середине соленоида и самый слабый за его пределами.

Закон индукции Фарадея использует магнитный поток Φ B через область пространства, заключенную в проволочную петлю. Магнитный поток определяется поверхностным интегралом :

ΦBзнак равно∫ΣB⋅dА ,{\ Displaystyle \ Phi _ {\ mathrm {B}} = \ int \ limits _ {\ Sigma} \ mathbf {B} \ cdot d \ mathbf {A} \,}

где d A — элемент поверхности Σ, заключенной в проволочную петлю, B — магнитное поле. Скалярное произведение B · d A соответствует бесконечно малого количества магнитного потока. Проще говоря, магнитный поток через проволочную петлю пропорционален количеству силовых линий магнитного поля, которые проходят через петлю.

Когда поток через поверхность изменяется, закон индукции Фарадея гласит, что проволочная петля приобретает электродвижущую силу (ЭДС). Наиболее распространенный вариант этого закона гласит , что индуцированная электродвижущая сила в любой замкнутой цепи равна скорости изменения этого магнитного потока , охваченной цепью:

Eзнак равно-dΦBdт {\ displaystyle {\ mathcal {E}} = — {{d \ Phi _ {\ mathrm {B}}} \ over dt} \},

где — ЭДС, а Φ Bмагнитный поток . Направление электродвижущей силы задается законом Ленца, который гласит, что индуцированный ток будет течь в направлении, которое будет противодействовать вызвавшему его изменению. Это связано с отрицательным знаком в предыдущем уравнении. Чтобы увеличить генерируемую ЭДС, общий подход состоит в том, чтобы использовать потокосцепление , создавая туго намотанную катушку провода , состоящую из N идентичных витков, каждый с одинаковым магнитным потоком, проходящим через них. Результирующая ЭДС в N раз больше, чем у одного провода.
E{\ displaystyle {\ mathcal {E}}}

Eзнак равно-NdΦBdт{\ displaystyle {\ mathcal {E}} = — N {{d \ Phi _ {\ mathrm {B}}} \ over dt}}

Генерация ЭДС за счет изменения магнитного потока через поверхность проволочной петли может быть достигнута несколькими способами:

  1. магнитное поле B изменяется (например, переменное магнитное поле или перемещение проволочной петли к стержневому магниту, где поле B сильнее),
  2. проволочная петля деформируется и поверхность Σ изменяется,
  3. ориентация поверхности d A изменяется (например, вращение проволочной петли в фиксированное магнитное поле),
  4. любая комбинация вышеперечисленного

Уравнение Максвелла – Фарадея

В общем, связь между ЭДС в проволочной петле, охватывающей поверхность Σ, и электрическим полем E в проводе определяется выражением
E{\ displaystyle {\ mathcal {E}}}

Eзнак равно∮∂ΣE⋅dℓ{\ Displaystyle {\ mathcal {E}} = \ oint _ {\ partial \ Sigma} \ mathbf {E} \ cdot d {\ boldsymbol {\ ell}}}

где d — элемент контура поверхности Σ, объединяя это с определением потока

ΦBзнак равно∫ΣB⋅dА ,{\ Displaystyle \ Phi _ {\ mathrm {B}} = \ int \ limits _ {\ Sigma} \ mathbf {B} \ cdot d \ mathbf {A} \,}

мы можем записать интегральную форму уравнения Максвелла – Фарадея

∮∂ΣE⋅dℓзнак равно-ddт∫ΣB⋅dА{\ displaystyle \ oint _ {\ partial \ Sigma} \ mathbf {E} \ cdot d {\ boldsymbol {\ ell}} = — {\ frac {d} {dt}} {\ int _ {\ Sigma} \ mathbf {B} \ cdot d \ mathbf {A}}}

Это одно из четырех уравнений Максвелла , поэтому оно играет фундаментальную роль в теории классического электромагнетизма .

Закон Фарадея и относительность

Закон Фарадея описывает два разных явления: ЭДС движения, создаваемая магнитной силой на движущемся проводе (см. ), и ЭДС трансформатора, которая создается электрической силой из-за изменяющегося магнитного поля (из-за дифференциальной формы )

Джеймс Клерк Максвелл обратил внимание на отдельные физические явления в 1861 году. Считается, что это уникальный пример в физике того, где такой фундаментальный закон используется для объяснения двух таких разных явлений.

Альберт Эйнштейн заметил, что обе эти ситуации соответствуют относительному движению между проводником и магнитом, и на результат не влияет то, какой из них движется. Это был один из основных путей, которые привели его к развитию специальной теории относительности .

Электродвигатель

Электрогенератор может работать в «обратном направлении» и становиться двигателем. Рассмотрим, например, диск Фарадея. Предположим, что через токопроводящее радиальное плечо протекает постоянный ток от определенного напряжения. Таким образом, согласно закону силы Лоренца, на этот движущийся заряд действует сила в магнитном поле B, которая заставляет диск вращаться в направлении, определяемом правилом левой руки. При отсутствии эффектов, вызывающих диссипативные потери, таких как трение или джоулева тепло, диск будет вращаться с такой скоростью, что d ΦB / dt равно напряжению, вызывающему ток.

Энергия магнитного поля

Совокупность магнитных силовых линий имеет определенный запас энергии. Так как данное явление в контуре обусловлено протеканием по нему электрического тока, то и количество такой энергии зависит от величины затрат источников (генераторов, гальванических элементов) на создание тока. Рассчитывается эта величина (Wмаг.п) по следующей математической формуле:

Wмаг.п= (L×I2)/2.

На заметку. С практической точки зрения, значение данной величины оказывает влияние на мощность электрических агрегатов: электродвигателей, генераторов. Чем больше мощность силовых линий, образуемых обмотками или постоянными магнитами статора и ротора, тем выше крутящий момент и мощность двигателя, больше его КПД.

Электродвижущая сила, наведенная в контуре

Определим э. д. с. наведенную в контуре (рис. 3-15), который движется в неоднородном поле, магнитные линии которого (показаны крестиками) перпендикулярны плоскости контура.

При движении контура в направлении указанном стрелкой, стороны его и не пересекают магнитных линий и, следовательно, в них не наводятся э. д. с. В сторонах и контура наводятся э. д. с. е1и е2направления которых, найденные по правилу правой руки, показаны стрелками.

Рис. 3-15. Движение контура в магнитном поле.

Величины э. д. с.:

e1=∆Ф1 : ∆t и e2 = ∆Ф2 : ∆t

где ∆Ф1 и ∆Ф2— потоки, пересеченные сторонами 1 и контура за время ∆t. Сторона пересекает поток ∆Ф1, который входит в контур, а сторона пересекает ∆Ф2,который выходит за пределы контура. При заданном направлении магнитного потока согласно правилу буравчика направление е2 будет положительным, а е1— отрицательным, следовательно, наведенная в контуре э. д. с.

е = е2 — е1 = (∆Ф2 — ∆Ф1 ): ∆t

Обозначив поток, пронизывающий контур до его движения, через Ф1а по прошествии времени ∆tчерез Ф2(положение контура показано пунктиром), получим:

Ф2 = Ф + ∆Ф— ∆Ф2.

Приращение потока, пронизывающего контур за время ∆t:

∆Ф = Ф2 — Фх =∆Ф1 — ∆Ф2,

или

∆Ф2 — ∆Ф1 = — ∆Ф, а наведенная в контуре э. д. с.

 e = —∆Ф : ∆t

Эта формула дает среднее значение э. д. с. за время At. Для определения величины э. д. с. в произвольный момент времени надо найти приращение потока dФза бесконечно малый промежуток времени dt и написать:

e=dФ : dt

Выражения показывают, что необходимым условием возникновения в контуре э. д. с. является изменение магнитного потока, пронизывающего контур.

Рис. 3-16. Ток, индуктированный в кольце.

Если контур состоит не из одного витка, а из витков, соединенных последовательно, т. е. представляет собой катушку, то индуктированная в ней э. д. с. будет в ɯ раз больше, чем в одном витке, т. е.

е = ɯ(dФ : dt)

Произведение из числа витков на пронизывающий их магнитный поток называется потокосцеплением и обозначается буквой Ψ

Ψ = ɯФ,

следовательно э. д. с.

е = — (dФ : dt) = —(dΨ : dt)

т. е. индуктированная в катушке э. д. с. равна скорости уменьшения потокосцепления.

При движении контура в направлении, указанном на рис. 3-15, приращение магнитного потока контура отрицательно, так как ∆Ф2 > ∆Ф1 и ∆Ф < 0, т. е. поток, пронизывающий контур, уменьшается. Следовательно, согласно э. д. с. будет положительной и направлена по направлению движения часовой стрелки, будет положителен и направлен, так же как и э. д. с, вызванный ею ток в контуре. Этот ток создает магнитный поток, который по правилу буравчика будет иметь то же направление, что и убывающий магнитный поток. Таким образом, убывание потока, пронизывающего контур, приводит к появлению э. д. с. и тока такого направления, который стремится компенсировать уменьшение потока, сцепленного с контуром.

При движении контура в обратном направлении ∆Ф > О и э. д. с. согласно будет, отрицательна и направлена против движения часовой стрелки, будет отрицательным и направлен так же, как и э. д. с, вызванный ею ток, а созданный током магнитный поток будет направлен противоположно возрастающему магнитному потоку контура. Таким образом, возрастание потока контура приводит к появлению э. д. с. и тока, который своим магнитным потоком стремится компенсировать увеличение потока контура.

Из рассмотренного можно сделать вывод: если причиной наведения э. д. с. является изменение магнитного потока, пронизывающего контур, то наведенная э. д. с. будет направлена так, что вызванный ею ток будет препятствовать изменению потока контура.

Это положение было установлено в 1833 г. русским академиком Э. X. Ленцем и называется законом Ленца: направление наведенной э. д. с. таково, что вызванный ею ток противодействует причине появления э. д. с.

На рис. 3-16 изображена катушка с сердечником, над которой расположено металлическое кольцо. При увеличении тока в катушке или при сближении кольца и катушки увеличивается магнитный поток, пронизывающий кольцо, и в нем наводится э. д. с. и проходит ток. Согласно закону Ленца направление магнитного потока, созданного током i в кольце, противоположно направлению потока катушки. Применив правило буравчика, легко определить направление индуктированного тока i.

Статья на тему Электромагнитная индукция

  • ← Предыдущая
  • Следующая →
  • Главная Электротехника

Законы электролиза

Фарадей сформулировал закон электролиза в 30-х годах 19 века. Эти правила применяют для воспроизведения соответствующих технологических процессов на производстве и в домашних условиях. В математическом виде зависимости можно представить следующим образом:

m = (q/F) * (М/V),

где:

  • m – масса вещества, которое осаждается на рабочей пластине в процессе электролиза;
  • q – суммарный заряд;
  • F – постоянная Фарадея = 96, 485,33;
  • M – молярная масса;
  • V – количество элементарных зарядов на единичный ион (валентность).

Первый закон Фарадея для электролиза определяет пропорциональность осажденного вещества затраченной электроэнергии. Из базовой формулы понятно, что для этого случая существенное значение имеет пропущенный заряд (q).

Второй закон Фарадея устанавливает зависимость между количеством осажденного вещества и его свойствами. Для этой части определения подразумевается неизменный расход электроэнергии при электролизе разных материалов.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В катушку, соединённую с гальванометром, вносят магнит. Направление индукционного тока зависит

А. От скорости перемещения магнита. Б. От того, каким полюсом вносят магнит в катушку.

Правильный ответ

1) только А 2) только Б 3) и А, и Б 4) ни А, ни Б

2. В катушку, соединённую с гальванометром, вносят магнит. Сила индукционного тока зависит

А. от скорости перемещения магнита Б. от того, каким полюсом вносят магнит в катушку

1) только А 2) только Б 3) и А, и Б 4) ни А, ни Б

3. Постоянный магнит вносят в катушку, замкнутую на гальванометр (см. рисунок).

Если выносить магнит из катушки с большей скоростью, то показания гальванометра будут примерно соответствовать рисунку

4. Две одинаковые катушки замкнуты на гальванометры. В катушку А вносят полосовой магнит, а из катушки Б вынимают такой же полосовой магнит. В какой катушке гальванометр зафиксирует индукционный ток?

1) только в катушке А 2) только в катушке Б 3) в обеих катушках 4) ни в одной из катушек

5. В первом случае магнит вносят в сплошное эбонитовое кольцо, а во втором случае выносят из сплошного медного кольца (см. рисунок).

Индукционный ток

1) возникает только в эбонитовом кольце 2) возникает только в медном кольце 3) возникает в обоих кольцах 4) не возникает ни в одном из колец

6. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику постоянного тока. В каком из перечисленных опытов гальванометр зафиксирует индукционный ток?

А. В малой катушке выключают электрический ток. Б. Малую катушку вынимают из большой.

1) только в опыте А 2) только в опыте Б 3) в обоих опытах 4) ни в одном из опытов

7. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вынимают из большой катушки. Третью секунду малая катушка находится вне большой катушки. В течение четвертой секунды малую катушку вдвигают в большую. В какой(-ие) промежуток(-ки) времени гальванометр зафиксирует появление индукционного тока?

1) только 0-1 с 2) 1 с-2 с и 3 с-4 с 3) 0-1 с и 2 с-3 с 4) только 1 с-2 с

8. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Оси катушек совпадают. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вращают относительно вертикальной оси по часовой стрелке. Третью секунду малая катушка вновь остаётся в покое. В течение четвёртой секунды малую катушку вращают против часовой стрелки. В какие промежутки времени гальванометр зафиксирует появление индукционного тока в катушке?

1) индукционный ток может возникнуть в любой промежуток времени 2) индукционный ток возникнет в промежутках времени 1-2 с, 3-4 с 3) индукционный ток не возникнет ни в какой промежуток времени 4) индукционный ток возникнет в промежутках времени 0-1 с, 2-3 с

9. К электромагнитным волнам относятся:

A. Волны на поверхности воды. Б. Радиоволны. B. Световые волны.

Укажите правильный ответ.

1) только А 2) только Б 3) только В 4) Б и В

10. Какие из приведённых ниже формул могут быть использованы для определения скорости электромагнитной волны?

A. ​\( v=\lambda\nu \)​ Б. \( v=\frac{\lambda}{\nu} \) В. \( v=\frac{\lambda}{T} \) Г. \( v=\lambda T \)

1) только А 2) только Б 3) А и В 4) В и Г

11. Установите соответствие между названием опыта (в левом столбце таблицы) и явлением, которое в этом опыте наблюдается (в правом столбце таблицы). В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА A) опыты Фарадея Б) опыт Эрстеда B) опыт Ампера

ХАРАКТЕР ИЗМЕНЕНИЯ ЗНАЧЕНИЯ ВЕЛИЧИНЫ 1) действие проводника с током на магнитную стрелку 2) электромагнитная индукция 3) взаимодействие проводников с током

12. Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе их работы.

ТЕХНИЧЕСКИЕ УСТРОЙСТВА A) генератор электрического тока Б) электрический двигатель B) электромагнитное реле

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ 1) взаимодействие постоянных магнитов 2) взаимодействие проводников с током 3) возникновение электрического тока в проводнике при его движении в магнитном поле 4) магнитное действие проводника с током 5) действие магнитного поля на проводник с током

Часть 2

13. На какую частоту нужно настроить радиоприёмник, чтобы слушать радиостанцию, которая передает сигналы па длине волны 2,825 м?

1) 106,2 кГц 2) 106,2 МГц 3) 847,5 кГц 4) 847,5 МГц

Паразитная индукция и тепловые потери

В любом металлическом объекте, движущемся по отношению к статическому магнитному полю, будут возникать индукционные токи, как и в любом неподвижном металлическом предмете по отношению к движущемуся магнитному полю. Эти энергетические потоки в сердечниках трансформаторов нежелательны, из-за них в слое металла течёт электрический ток, который нагревает металл.

В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противится причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей.

Есть ряд методов, используемых для борьбы с этими нежелательными индуктивными эффектами.

  • Электромагниты в электрических двигателях, генераторах и трансформаторах не делают из сплошного металла, а используют тонкие листы жести, называемые «ламинатами». Эти тонкие пластины уменьшают паразитные вихревые токи, как будет описано ниже.
  • Катушки индуктивности в электронике обычно используют магнитные сердечники, чтобы минимизировать паразитный ток. Их делают из смеси металлического порошка со связующим наполнителем, и они имеют различную форму. Связующий материал предотвращает прохождение паразитных токов через порошковый металл.

Расслоение электромагнита

Вихревые токи возникают, когда сплошная масса металла вращается в магнитном поле, так как внешняя часть металла пересекает больше силовых линий, чем внутренняя, следовательно, индуцированная электродвижущая сила неравномерна и стремится создать токи между точками с наибольшим и наименьшим потенциалами. Вихревые токи потребляют значительное количество энергии, и часто приводят к вредному повышению температуры.

На этом примере показаны всего пять ламинатов или пластин для демонстрации расщепление вихревых токов. На практике число пластин или перфорация составляет от 40 до 66 на дюйм, что приводит к снижению потерь на вихревых токах примерно до одного процента. Хотя пластины могут быть отделены друг от друга изоляцией, но поскольку возникающие напряжения чрезвычайно низки, то естественной ржавчины или оксидного покрытия пластин достаточно, чтобы предотвратить ток через пластины.

Это ротор от двигателя постоянного тока диаметром примерно 20 мм, используемого в проигрывателях компакт-дисков

Обратите внимание, для снижения паразитных индуктивных потерь сделано расслоение полюса электромагнита на части.

Паразитные потери в катушках индуктивности

На этой иллюстрации сплошной медный стержень катушки индуктивности во вращающемся якоре просто проходит под кончиком полюса N магнита

Обратите внимание на неравномерное распределение силовых линий через стержень. Магнитное поле имеет большую концентрацию и, следовательно, сильнее на левом краю медного стержня (a, b), тогда как слабее по правому краю (c, d). Поскольку два края стержня будут двигаться с одинаковой скоростью, это различие в напряженности поля через стержень создаст вихри тока внутри медного стержня

Поскольку два края стержня будут двигаться с одинаковой скоростью, это различие в напряженности поля через стержень создаст вихри тока внутри медного стержня.

Это одна из причин, по которой устройства с высоким напряжением, как правило, более эффективны, чем низковольтные устройства. Высоковольтные устройства имеют множество небольших витков провода в двигателях, генераторах и трансформаторах. Эти многочисленные небольшие витки провода в электромагните разбивают вихревые потоки, а в пределах больших, толстых катушек индуктивности низкого напряжения образуется вихревые токи большей величины.

Закон электромагнитной индукции

М. Фарадей провел многочисленные опыты, записывая результаты, и из этих опытных таблиц электромагнитной индукции установил, что ток в проводящем контуре возникает только при изменении магнитного поля, пронизывающего этот контур.

Для количественного описания этого явления используется понятие магнитного потока. Если индукция характеризует силу магнитного поля в точке, то магнитный поток характеризует плотность линий магнитной индукции. Магнитный поток через контур площадью S равен произведению модуля индукции B на площадь S и на косинус угла между вектором индукции и нормалью к контуру:

$$Ф=BScosα$$

Рис. 3. Ф=BScosa.

Явление электромагнитной индукции состоит в том, что при изменении за время Δt магнитного потока через контур на величину ΔФ, в нем возникают сторонние силы, создающие разность потенциалов, называемую ЭДС (электродвижущей силой):

$$ε= -{ΔФ\over Δt}$$

Знак минус в данной формуле электромагнитной индукции означает, что возникающая ЭДС, в соответствии с правилом Э.Ленца, направлена так, чтобы создавать ток, противодействующий создавшей его причине.

Что мы узнали?

Кратко и понятно явление электромагнитной индукции можно описать, как возникновение электрического тока в проводящем контуре при изменении магнитного потока, проходящего через этот контур. При этом возникающий ток направлен так, чтобы противодействовать причине, его создавшей.

  1. /10

    Вопрос 1 из 10

    Покоящиеся электрические заряды в постоянном магнитном поле…

    • начинают двигаться вдоль магнитных линий
    • начинают двигаться против магнитных линий
    • никак не взаимодействуют с магнитным полем
    • начинают двигаться поперек магнитных линий

ЭДС индукции в движущемся проводнике

При движении проводника длиной l

со скоростью \(\vec{\upsilon}\) в постоянном магнитном поле с вектором индукции \(\vec{B}\) в нем возникает ЭДС индукции \(~E_i = B \cdot \upsilon \cdot l \cdot \sin \alpha,\) где α – угол между направлением скорости \(\vec{\upsilon}\) проводника и вектором магнитной индукции \(\vec{B}\).

Причиной появления этой ЭДС является сила Лоренца, действующая на свободные заряды в движущемся проводнике. Поэтому направление индукционного тока в проводнике будет совпадать с направлением составляющей силы Лоренца на этот проводник.

С учетом этого можно сформулировать следующее для определения направления индукционного тока в движущемся проводнике (правило левой руки

):

нужно расположить левую руку так, чтобы вектор магнитной индукции \(\vec{B}\) входил в ладонь, четыре пальца совпадали с направлением скорости \(\vec{\upsilon}\)проводника, тогда отставленный на 90° большой палец укажет направление индукционного тока (рис. 5).

Рис. 5

Если проводник движется вдоль вектора магнитной индукции, то индукционного тока не будет (сила Лоренца равна нулю).

Энергия магнитного поля

Совокупность магнитных силовых линий имеет определенный запас энергии. Так как данное явление в контуре обусловлено протеканием по нему электрического тока, то и количество такой энергии зависит от величины затрат источников (генераторов, гальванических элементов) на создание тока. Рассчитывается эта величина (Wмаг.п) по следующей математической формуле:

Wмаг.п= (L×I2)/2.

На заметку. С практической точки зрения, значение данной величины оказывает влияние на мощность электрических агрегатов: электродвигателей, генераторов. Чем больше мощность силовых линий, образуемых обмотками или постоянными магнитами статора и ротора, тем выше крутящий момент и мощность двигателя, больше его КПД.

Примечания

  1. , с. 208.
  2. Michael Faraday, by L. Pearce Williams, p. 182-3
  3. Michael Faraday, by L. Pearce Williams, p. 191-5
  4. Michael Faraday, by L. Pearce Williams, p. 510
  5. Maxwell, James Clerk (1904), A Treatise on Electricity and Magnetism, Vol. II, Third Edition. Oxford University Press, pp. 178-9 and 189.
  6. В-поле наведенного тока ведет к снижению магнитного потока, в то время как движение цикла имеет тенденцию к увеличению (так как В (х) возрастает по мере цикла движений). Эти противоположные действия — пример принципа Ле Шателье в форме закона Ленца.
  7. K. Simonyi, Theoretische Elektrotechnik, 5th edition, VEB Deutscher Verlag der Wissenschaften, Berlin 1973, equation 20, page 47
  8. В этом примере предполагается, что скорости движения намного меньше скорости света, поэтому корректировкой поля, связанной с преобразованиями Лоренца, можно пренебречь.
  9. Единственным способом определения этого является измерение x от xC в движущемся контуре, скажем ξ = x — xC (t). Тогда за время t движущийся наблюдатель увидит поле B (ξ, t), тогда как неподвижный наблюдатель увидит в той же точке поле B [ ξ + xC (t) ] = B (ξ + xC0 + v t) при xC0 = xC (t = 0).
  10. Images and reference text are from the public domain book: Hawkins Electrical Guide, Volume 1, Chapter 19: Theory of the Armature, pp. 272—273, Copyright 1917 by Theo. Audel & Co., Printed in the United States
  11. Images and reference text are from the public domain book: Hawkins Electrical Guide, Volume 1, Chapter 19: Theory of the Armature, pp. 270—271, Copyright 1917 by Theo. Audel & Co., Printed in the United States
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: