Проводники, полупроводники и диэлектрики в электрическом поле

Что это такое

Электрическое поле — это особое векторная характеристика, которая действует на все обладающие электрозарядом частицы, находящиеся в ее радиусе действия. Это электрополе входит в состав электромагнитного, то есть для него характерно отсутствие визуальной составляющей. Это значит, что ЭП нельзя увидеть глазами и оно может быть зафиксировано только в результате воздействия за заряженные частицы.


Напряженность и потенциал ЭП

Важно! На последнее реагируют все заряженные электрочастицы и тела, обладающие другими (противоположными) полюсами. Электрополе — особая форма состояния материи, которое проявляется в ускорении электрочастиц и определенных тел, которые обладают электро зарядом

К особенностям электрополя относятся:

Электрополе — особая форма состояния материи, которое проявляется в ускорении электрочастиц и определенных тел, которые обладают электро зарядом. К особенностям электрополя относятся:

  • Оно действует только при наличии электро заряда;
  • Оно не имеет определенных четких границ;
  • ЭП обладает определенной величиной воздействия;
  • Его определить только по результату его воздействия.


Принцип суперпозиции Характеристика ЭП неразрывно связана с зарядами. Они находятся в определенной электрочастице или теле. Преобразование ЭП происходит в двух случаях:

  • При появлении вокруг него электрозарядов;
  • При перемещении волн электромагнитной природы, которые способствуют изменению электрополя.


Работа сил ЭП Электрополе влияет на неподвижные относительно наблюдателя объекты в виде электро заряженных частиц или тел. В конечном итоге они получают силовое влияние. Пример воздействия ЭП можно наблюдать и в бытовой ситуации. Для этого достаточно создать электрозаряд достаточной мощности. Книги по теоретической физике предлагают для этого простейший эксперимент, когда диэлектрик натирается о шерстяное изделие. Получить электрополе вполне можно просто, взяв пластиковую шариковую ручку и потерев ее о волосы или шерсть. На ее поверхности образуется заряд, который приводит к появлению электрополя. Как следствие ручка притягивает мелкие электрочастицы в виде волос или бумаги. Если ее преподнести к мелко разорванным кусочкам бумаги, то они будут притягиваться к ней. Такой же результат можно достигнуть и при использовании пластмассовой расчески.

Вам это будет интересно Особенности мощности постоянного тока


Манипуляции с магнитными свойствами ЭП на основе железной крошки

Также примером появления электрополя в быту является образование мелких световых вспышек при снятии одежды из синтетических материалов. В результате нахождения на теле диэлектрические волокна накапливают вокруг себя различные электрозаряды. При снятии такого предмета одежды с тела ЭП подвергается различным силам воздействия, которое приводит к образованию вспышек. Особенно это характерно для зимней одежды, в частности свитеров и шарфов, которые сделаны из синтетических материалов.

Сделал открытие и впервые подтвердил наличие электрополя Майкл Фарадей — английский физик и экспериментатор. Именно он внес в физику понятие «поля» и установил основы его концепции, его физическую реальность.

Важно! Фарадей ввел понятие ЭП при исследовании диамагнетизма и парамагнетизма, когда он обнаружил небольшое отталкивание специальным магнитом ряда веществ. Напряженность электростатического поля


Напряженность электростатического поля

Зависимость сопротивления проводника от частоты тока

При воздействии электрического тока индукция магнитного поля происходит внутри прямолинейного проводника и в окружающем его пространстве. Магнитные линии образуют концентрические окружности.


Распределение переменного тока по сечению

Что такое электрическое сопротивление

Если проводник с током условно разбить на несколько параллельных друг другу нитей тока, то можно установить, что, чем ближе токовая нить находится к оси проводника, тем больший замыкающийся внутри магнитный поток её охватывает. Индуктивность нити и индуктивное сопротивление находятся в пропорциональной зависимости от магнитного потока, с нею связанного.

В связи с этим в нитях с переменным током, находящихся внутри проводящего вещества, возникает большее индуктивное сопротивление, чем в нитях, находящихся снаружи. Образуется неравномерность тока по сечению, возрастающая от оси к поверхности проводника, чем и объясняется увеличение сопротивления проводников переменному току. Это явление называется поверхностным эффектом.

Из-за неравномерного распределения плотности тока происходит увеличение сопротивления проводника. При небольшой частоте в 50 Гц и малом сечении медного провода явление поверхностного эффекта почти незаметно. При значительном увеличении частоты и сечения проводника из железа это явление будет более активным.

Обратите внимание! Чем выше частота тока в цепи, тем ближе к поверхности проводника находятся электрические заряды, и тем больше возрастает его сопротивление

Презентация на тему Проводники и диэлектрики По электрическим свойствам уровню подвижности заряженных частиц вещества деление проводники диэлектрики полупроводники. Транскрипт

2

Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники

3

Проводники и диэлектрики все металлы Имеются заряженные частицы (заряды частиц = свободные заряды) Способные перемещаться внутри проводника под действием электрического поля Проводники Диэлектрики Состоят из нейтральных в целом атомов или молекул Заряженные частицы связаны друг с другом и не могут перемещаться под действием поля по всему объему тела

4

Проводники и диэлектрики Свободные заряды – заряженные частицы одного знака, способные перемещаться под действием электрического поля Не могут возникнуть, если энергия связи электрона со своим атомом велика по сравнению с энергией взаимодействия с соседними атомами вещества СВЯЗАННЫЕ ЗАРЯДЫ

5

Проводники и диэлектрики — вещество, в котором свободные заряды могут перемещаться по всему объему ПРОВОДНИК металлы растворы солей, кислот, щелочей Влажный воздух плазма Тело человека

6

Проводники В металлах носители свободных зарядов = электроны При образовании металла из нейтральных атомов атомы взаимодействуют друг с другом электроны внешних оболочек атомов полностью утрачивают связи со своими атомами и становятся собственностью всего проводника в целом положительные ионы окружены отрицательно заряженным газом из электронов (взаимодействие кулоновское)

7

Проводники электрические заряды неподвижны! поле внутри проводника = 0 в проводнике – свободные заряды существовал бы электрический ток E 0 иначе НЕТ ТОКА – НЕТ И ПОЛЯ!!!

8

Проводники заряженный незаряженный, помещенный во внешнее электрическое поле ПРОВОДНИК ВНУТРИ E = 0 (поле отсутствует)

9

Проводники уничтожение электростатического поля в проводнике Электрическое поле Проводящий шар Сначала возникнет электрический ток, так как поле внутри шара вызывает перемещение электронов Части шара заряжаются по-разному: Левая – отрицательно; Правая – положительно (явление электростатической индукции) Эти заряды на поверхности проводника создают электрическое поле, которое накладывается на внешнее поле и компенсирует его

10

Проводники уничтожение электростатического поля в проводнике Линии электростатического поля вне проводника перпендикулярны его поверхности – иначе по поверхности бы протекал электрический ток

11

Диэлектрики — вещество, содержащее только связанные заряды

12

Диэлектрики — вещество, содержащее только связанные заряды ДИЭЛЕКТРИК

13

Диэлектрики — разноименные заряды, входящие в состав атомов (или молекул), которые не могут перемещаться под действием электрического поля независимо друг от друга СВЯЗАННЫЕ ЗАРЯДЫ

14

Диэлектрики полностью отсутствуют!!! СВОБОДНЫЕ ЗАРЯДЫ диэлектрик практически не проводит электрический ток ХОРОШИЙ ИЗОЛЯТОР!!!

15

Диэлектрики ГАЗЫ ДИЭЛЕКТРИКИ НЕКОТОРЫЕ ЖИДКОСТИ НЕКОТОРЫЕ ТВЕРДЫЕ ТЕЛА дистиллированная вода, бензол Стекло, фарфор, слюда

16

Диэлектрики в соответствии со структурой их молекул ДИЭЛЕКТРИКИ деление полярные неполярные

17

Диэлектрики (полярные)

18

Диэлектрики (неполярные) В неполярных диэлектриках электростатическое поле сначала поляризует молекулы, растягивая в разные стороны положительные и отрицательные заряды, а затем поворачивает их оси вдоль напряженности поля

19

Диэлектрики — процесс ориентации диполей или появление под действием внешнего электрического поля ориентированных по полю диполей ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКА

20

Диэлектрики — число, показывающее, во сколько раз напряженность электростатического поля в однородном диэлектрике меньше, чем напряженность в вакууме ОТНОСИТЕЛЬНАЯ ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ СРЕДЫ

21

Диэлектрики Уменьшение напряженности электростатического поля в диэлектрике приводит к тому, что сила взаимодействия точечных зарядов q 1 и q 2, находящихся в диэлектрике на расстоянии r друг от друга, уменьшается в ε раз:

22

Полупроводники — вещество, в котором количество свободных зарядов зависит от внешних условий (температура, напряженность электрического поля) ПОЛУПРОВОДНИК

Действие электрического поля на электрические заряды

Электрическое поле – это особая форма материи, существующая вокруг электрически заряженных тел.

Впервые понятие электрического поля было введено Фарадеем. Он объяснял взаимодействие зарядов следующим образом: каждый заряд создает вокруг себя электрическое поле, которое с некоторой силой действует на другой заряд.

Свойства электрического поля заключаются в том, что оно:

  • материально;
  • создается зарядом;
  • обнаруживается по действию на заряд;
  • непрерывно распределено в пространстве;
  • ослабевает с увеличением расстояния от заряда.

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу.

Силу, с которой электрическое поле действует на заряд, можно рассчитать по формуле:

где ​\( \vec{E} \)​ – напряженность электрического поля, ​\( q \)​ – заряд.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов механики с учетом закона Кулона и вытекающих из него следствий.

Алгоритм решения задач о точечных зарядах и системах, сводящихся к ним:

  • сделать рисунок; указать силы, действующие на точечный заряд, помещенный в электрическое поле;
  • записать для заряда условие равновесия или основное уравнение динамики материальной точки;
  • выразить силы электрического взаимодействия через заряды и поля и подставить эти выражения в исходное уравнение;
  • если при взаимодействии заряженных тел между ними происходит перераспределение зарядов, к составленному уравнению добавить уравнение закона сохранения зарядов;
  • записать математически все вспомогательные условия;
  • решить полученную систему уравнений относительно неизвестной величины;
  • проверить решение

Природа явления

Глазами электрическое поле увидеть невозможно: его можно обнаружить по его действию на заряженные тела. При этом такое воздействие не требует прямого касания носителей потенциала, но имеет силовую природу. Так, наэлектризованные волосы будут тянуться к другим предметам.

Наблюдение за электрическими полями показывает, что они работают аналогично гравитационным. Описывается это законом Кулона, который в общем виде выглядит так:

F = q₁ q₂ / 4 π ε ε₀ r ²,

где q₁ и q₂ – величины зарядов в кулонах, ε – диэлектрическая проницаемость среды, ε₀ – электрическая постоянная, равная 8,854*10⁻¹² Ф/м, r — расстояние между зарядами в метрах, а F — сила, с которой заряды взаимодействуют, в ньютонах.

Таким образом, чем дальше от центра, тем меньше будет ощущаться воздействие поля.

Отобразить поле графически можно в виде силовых линий. Их расположение будет зависеть от геометрических характеристик носителя. Различают два вида полей:

  1. Однородное, когда силовые линии расположены параллельно друг другу. Идеальный случай — это бесконечные параллельные заряженные пластины.
  2. Неоднородное, частный случай которого — поле вокруг точечного или сферического заряда; его силовые линии расходятся радиально от центра, если он положительный, и к центру, если отрицательный.

Таковы основные свойства электрического поля. Чтобы ознакомиться с его характеристиками, стоит рассмотреть простейший вариант — электростатическое, которое формируется постоянными и неподвижными зарядами. Для удобства они будут точечными, чтобы их контуры не усложняли расчеты. Пробный заряд, который тоже будет фигурировать в дальнейшем, тоже будет точечным и бесконечно малым.

https://youtube.com/watch?v=kD-6e7fgvmY

§ 5. Проводники и диэлектрики в электрическом поле

Как нам уже известно, проводник представляет собой тело, которое содержит большое число свободных электронов, заряды которых компенсируются положительными зарядами ядер атомов. Если металлический проводник поместить в электрическое поле (рис. 12), то под влиянием сил поля свободные электроны проводника придут в движение в сторону, противоположную направлению сил поля. В результате этого на одной стороне проводника возникает избыточный отрицательный заряд, а на другой стороне проводника — избыточный положительный заряд.

Рис. 12. Проводник в электрическом поле

Разделение зарядов в проводнике под влиянием внешнего электрического поля называется электризацией через влияние, или электростатической индукцией, а заряды на проводнике — индуцированными зарядами.

Индуцированные заряды проводника создают добавочное электрическое поле, направление которого противоположно внешнему полю.

Результирующее электрическое поле внутри проводника уменьшается, а вместе с ним уменьшаются силы, действующие на перераспределение зарядов. Движение зарядов в проводнике прекратится, когда напряженность поля, вызванного индуцированными зарядами проводника εп, станет равной напряженности внешнего поля εвн, а результирующая напряженность поля внутри проводника будет равна нулю.

Как было указано выше, диэлектрик отличается от проводника отсутствием свободных электронов (точнее, весьма малым количеством свободных электронов). Электроны атомов диэлектрика прочно связаны с ядром атома.

Диэлектрик, внесенный в электрическое поле, так же как и проводник, электризуется через влияние. Однако между электризацией проводника и диэлектрика имеется существенная разница. Если в проводнике под влиянием сил электрического поля свободные электроны передвигаются по всему объему проводника, то в диэлектрике свободного перемещения электрических зарядов произойти не может. Но в пределах каждой молекулы диэлектрика возникает смещение положительного заряда вдоль направления электрического поля и отрицательного заряда в обратном направлении. В результате на поверхности диэлектрика возникнут электрические заряды.

Рассматриваемое явление называется поляризацией диэлектрика.

Различают диэлектрики двух классов. У диэлектриков первого класса молекула в нейтральном состоянии имеет положительный и отрицательный заряды, настолько близко расположенные один к другому, что действие их взаимно компенсируется. Под влиянием электрического поля положительные и отрицательные заряды в пределах молекулы несколько смещаются один относительно другого, образуя диполь* (рис. 13).

* ()

Рис. 13. Электрические заряды молекул диэлектрика: а — без внешнего поля, б — при наличии поля

У диэлектриков второго класса молекулы и в отсутствие электрического поля образуют диполи. Такие диэлектрики называются полярными. К ним относятся вода, аммиак, эфир, ацетон и т. д. У таких диэлектриков при отсутствии электрического поля диполи в пространстве расположены хаотически, и вследствие этого результирующее электрическое поле вокруг полярного диэлектрика равно нулю. Под действием внешнего электрического поля молекулы (а стало быть, и диполи) стремятся повернуться так, чтобы их оси совпали с направлением внешнего поля. С устранением электрического поля поляризация диэлектрика исчезает. Таким образом, поляризация представляет собой упругое смещение электрических зарядов в веществе диэлектрика.

При некоторой определенной величине напряженности электрического поля смещение зарядов достигает предельной величины, после чего происходит разрушение — пробой диэлектрика, в результате которого диэлектрик теряет свои изолирующие свойства и становится токопроводящим.

Напряженность электрического поля, при которой наступает пробой диэлектрика, называется пробивной напряженностью εпр. Напряженность поля, допускаемая при работе диэлектрика εдоп, должна быть меньше пробивной напряженности. Отношение

называется запасом прочности.

Приведем значения пробивной напряженности (в кв/мм) для некоторых диэлектриков:

Сверхпроводимость

Свойство материала обладать нулевым электрическим сопротивлением при температуре ниже определенного значения получило название сверхпроводимости.

У некоторых проводящих веществ эта способность возникает при холодной температуре, близкой к химическому состоянию жидкого гелия.

В 1986 году произошло открытие веществ с высокотемпературной сверхпроводимостью. Например, керамика из кислорода, бария, меди, лантана не проводит ток в обычных условиях, а вследствие нагревания становится сверхпроводником.

На практике используют вещества, пропускающие электрический ток при 58 градусах Кельвина и более, то есть при температуре выше точки кипения азота.

Чаще всего находят применение твердые высокотемпературные сверхпроводники. Жидкие и газообразные используют реже. Все эти материалы необходимы для изготовления современных электротехнических устройств различной мощности.

Свойства электрического поля

Напряженность поля заряда

Кулоновский закон дает возможность последовательно ввести понятие напряженности. Это отношение силы, с какой один заряд притягивает (отталкивает) другой заряд, к его величине:

Обозначения:

  • F – сила взаимодействия, Н;
  • q – заряд, Кл
  • E – напряженность, единица измерения – Н/Кл.

Силовой эту характеристику называют потому, что в определение входит сила F.

Изображают векторы в виде отрезков со стрелками, указывающих направление. Для наглядного изображения распределения напряженности одного заряда, системы из нескольких зарядов используют линии напряженности.

Это такие воображаемые линии, которые:

  • выходят из положительных зарядов, входят в отрицательные;
  • они не замкнуты;
  • в каждой точке линии вектор напряженности направлен вдоль касательной.

Получить детальную картину распределения линий напряженности нескольких зарядов помогает компьютерное моделирование. При этом считают, что заряды неподвижны; такое поле называют электростатическим.

Потенциал поля неподвижного заряда

Электрическое поле имеет энергию. При передвижении в нем заряда из одного положения в другое выполняется работа. Она не зависит от пути перемещения, поэтому поле статичных зарядов – потенциальное поле, имеющее потенциальную энергию. По определению работа – это произведение силы на перемещение.

Из формулы напряженности получают:

E = F/Q Electric Fields Chapter 21

Тогда работа по перемещению заряда из одной точки в другую A=F*S, где F – сила, S – перемещение. S=d2-d1 (d – расстояние).

Подставляя выражения для силы, перемещения, получают:

Произведение Eqd обозначают Wp и называют потенциальной энергией электростатического поля:

В определение потенциальной энергии Wp входит расстояние d, зависящее от выбора системы отсчета; оно не абсолютно, а относительно. Поэтому потенциальная энергия поля заряда – величина относительная. Значение имеет ее изменение ΔWp, равное работе кулоновской силы по изменению положения заряда.

Отношение потенциальной энергии поля заряда к его величине называют потенциалом:

  • Wp – потенциальная энергия, измеряют в джоулях (Дж);
  • q – заряд, Кл;
  • φ(фи) – потенциал, измеряют в Дж/Кл.

Поскольку в формулу для потенциала входит потенциальная энергия Wp, а она относительна (зависит от выбора системы отсчета), то и потенциал – тоже величина относительная.

По этой же причине потенциал – энергетическая характеристика электрического поля. Значение имеет его изменение или разность потенциалов:

Напряжение

Разность потенциалов называют напряжением, обозначают U:

Измеряют напряжение в вольтах (В). 1 В – такое напряжение, при котором для перемещения заряда 1 Кл требуется работа 1 Дж.

На практике используют:

  • дольные единицы: милливольт (мВ), микровольт (мкВ);
  • кратные: киловольт (кВ), мегавольт (МВ).

В определение понятия напряжения входит работа, но совершают эту работу не силы кулоновского взаимодействия, а так называемые сторонние силы. Они могут быть механического, теплового, химического, магнитного происхождения.

Между напряженностью поля заряда и разностью потенциалов существует простая взаимосвязь:

Благодаря ей устанавливают еще одну единицу напряженности: В/м.

Напряженность поля 1 В/м означает, что между двумя точками в этом поле, расстояние между которыми 1 м, разность потенциалов составляет 1 В.

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [].

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.


Рис. 1. Определение понятия «электрическое поле»

Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

  • реагирует на присутствие заряженных частиц;
  • взаимодействует с магнитными полями;
  • является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
  • поддаётся определению только по результатам наблюдения за проявлением действия.

Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в электростатическом поле действуют такие же силы, как и в электрическом.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Проводники в электростатическом поле

Проводниками являются металлы, электролиты (растворы, проводящие ток) плазма. В металлах носителями зарядов являются свободные электроны, в электролитах – положительные и отрицательные ионы, в плазме – свободные электроны и ионы.

У большинства металлов практически каждый атом теряет электрон и становится положительным ионом. Например, у меди в 1 м3 свободных электронов 1029. Свободные электроны в металлах находятся в непрерывном беспорядочном движении. Скорость такого движения примерно равна 105 м/с (100 км/с).

Не смотря на наличие внутри тела зарядов (свободных электронов и ионов), электрического поля внутри проводника нет. Отдельные заряженные частицы создают микроскопические поля. Но эти поля внутри проводника в среднем компенсируют друг друга (рис. 1).

Если бы это условие не выполнялось, то свободные заряды, под действием кулоновских сил, пришли бы в движение. Они двигались бы до тех пор, пока действующая на них сила не обратилась бы в нуль.

Рис. 1 Поместим незаряженный проводник, например, металл, в однородное электростатическое поле с напряженностью \(~\vec E_0\). На свободные электроны начинают действовать электрические силы \(\vec F\), под действием которых электроны приходят в движение (рис. 2). Продолжая беспорядочное движение, электроны начинают смещаться в сторону действия силы (скорость смещения порядка 0,1 мм/с).

Рис. 2

На одной поверхности проводника образуется область с недостатком электронов, на противоположной – с избытком электронов. Это приводит к появлению еще одного электрического поля с напряженностью \( \vec E_{np}\) (рис. 3).

Рис. 3

Общая напряженность \( \vec E\) электрического будет равна

\( \vec E = \vec E_0 + \vec E_{np}, \;\; E = E_0 — E_{np}.\)

Электрическая сила \(F\), действующая на свободные электроны с зарядом q

: \(F = q \cdot E.\) По мере смещения электронов, заряд на поверхности увеличивается. Это приводит к увеличению напряженности \(E_{np}\) и уменьшению общей напряженности \(E\) (т.к. \(E = E_0 — E_{np}\)). И в какой-то момент напряженность \(E_{np}\) становится равной напряженности внешнего поля \(E_0\), т.е. \(E_{np} = E_0\), и общая напряженность поля внутри проводника становится равной нулю.

Электрическая сила \(F\) в этот момент также становится равной нулю, электроны перестают смещаться, но беспорядочное движение не прекращается. На поверхности проводника остаются электрические заряды.

Явление возникновения электрических зарядов на поверхности проводника под воздействием электрического поля называется электростатической индукцией

, а возникшие заряды –индуцированными .

Доля электронов, которые оказались на поверхности, очень мала. Например, если к медной пластинке толщиной в 1 см приложить напряжение в 1000 В, то эта доля составляет 10–10 % от всех свободных электронов.

Каким бы способом ни был заряжен проводник, внутри него поле отсутствует. Это позволяет использовать заземленные полые проводники со сплошными или сетчатыми стенками для электростатической защиты

от внешних электростатических полей. Так, например, для защиты военных складов, служащих для хранения взрывчатых веществ, от удара молнии их окружают заземленной проволочной сетью.

Впервые явление электростатической защиты было обнаружено М.Фарадеем в 1836 году. Он провел интересный опыт. Большая деревянная клетка была оклеена тонкими листами олова, изолирована от земли и сильно заряжена. В клетке находился сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что при приближении к клетке тел, соединенных с землей, проскакивали искры, внутри клетки электрическое поле не обнаруживалось.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: