Почему вечный двигатель невозможен?
Доброго времени суток. Человечество одержимо идеей создания вечного двигателя уже несколько веков. Первые прототипы вечных двигателей упоминаются уже в 12 веке, а именно в Индии. В стихотворениях Бхаскары описываются колёса, с прикрепленными внутри него сосудами, наполовину заполненными ртутью-они то и были первыми прототипами двигателя. Сегодня же проектировщики не отступают от подобной модели и вносят различные улучшения, но пока что тщетно. Давайте пробежимся по нескольким пунктам, из которых станет очевидно, почему создание вечного двигателя невозможно.
Принцип работы вечного двигателя.
В теории должно выглядеть так. В статичном положение колесу сообщают энергию, крутанув его по часовой или против, а, опускающееся по направлению вращения, грузики должны добавлять энергию к скорости вращения и компенсировать массу грузов, идущих за ними.
Принцип магнитных двигателей почти такой же. На стенде, на котором закреплена конструкция, находится магнит, обращенный к двигателю одним полюсом, а закреплённые по окружности магниты поочередно обращены разными полюсами. Получается, что при запуске мотора первый магнит, например северным полюсом, притягивается к постаменту, на котором установлен магнит с южным полюсом и колесо приходит в движение, когда первый магнит, установленный на окружности, приближается к постаменту и достигает критической точки, в которой магниты должны притянуться и остановить механизм, в дело вступает следующий магнит, установленный на колесе, а его полюс будет таким же, как у магнита на стенде и он должен вытолкнуть первый магнит из зоны притяжения и так далее по цепочке.
Вроде бы всё логично, но почему же не удается достичь результата в подобном эксперименте?
- Первый закон термодинамики гласит: энергия не появляется из ниоткуда и не может исчезнуть в никуда, она лишь переходит из одного состояния в другое.Механическая энергия переходит в теплоту и наоборот, всё что мы можем, только генерировать её. А вечный двигатель должен выделять энергии больше, чем ему её сообщили и иметь КПД больше 100%.Например, бензиновые двигатели имеют КПД в 20-25% полезной работы, из 10 литров бензина, которые требуются для преодоления 100 км пути, лишь 2-3 литра уходят на полезную работу, остальное топливо уходит на механических и тепловых потерь.
- У второго закона термодинамики несколько формулировок, а самая понятная, на мой взгляд, звучит так: теплота не может сама по себе переходить от менее нагретого тела к более нагретому без затрат из вне. В процессе работы двигателя происходит трение и поверхности нагреваются, тем самым мы теряем часть энергии, чтобы установка не нагревалась её нужно охлаждать, а это ведёт к дополнительным расходам.
А что если создать долго работающий двигатель с максимальным КПД ?
Для создания подобного механизма, которое сможет отдать столько же, сколько в него вложили, нужно соблюсти несколько пунктов.
- Двигатель не должен иметь трущихся частей. Так как при трении будет происходить нагревание, нужно исключить из его конструкции любое трение, чтобы избежать механических и тепловых потерь.
- Двигатель должен работать в вакууме. Из школьного курса физики мы знаем, что вакуум-безвоздушное пространство. Поэтому двигатель должен работать в нём, так как в безвоздушном пространстве нечему замедлить его движение.
Источник
Основные направления развития контроллеров и преобразователей частоты Danfoss для СДПМ
Синхронные электродвигатели с постоянными магнитами превосходят машины постоянного тока по возможности и точности управления. Они позволяют реализовать множество схем и алгоритмов. Ведущие производители электротехники для приводов, в том числе, компания Danfoss разработали несколько линеек контроллеров и преобразователей частоты для электродвигателей такого типа. Ведутся дальнейшие разработки в следующих направлениях:
Компания Danfoss может предложить технические решения управления синхронными двигателями с постоянными магнитами, отвечающими современным требованиям к электроприводу.
Источник
В чем преимущества и минусы работающих двигателей на магнитной энергии
Преимуществами магнитных двигателей является их полная автономия, стопроцентная экономия топлива, уникальная возможность из средств, находящихся под руками, организовать в любом требуемом месте установку. Также явным плюсом выглядит то, что мощный прибор, изготовленный на магнитах может обеспечивать жилое помещение энергией, а также такой фактор, как возможность гравитационному мотору работать до тех пор, пока он не износится. При этом даже перед физической кончиной он способен выдавать максимум энергии.
Однако у него имеются и определенные недостатки:
- доказано, что магнитное поле весьма негативно воздействует на здоровье, особенно этим отличается реактивный движок;
- хотя имеются положительные результаты экспериментов, большинство моделей совсем не функционируют в естественных условиях;
- приобретение готового устройства еще не гарантирует, что оно будет успешно подключено;
- когда появится желание купить магнитный поршневой или импульсный двигатель, стоит быть настроенным на то, что он будет иметь слишком завышенную стоимость.
Электрический двигатель постоянного тока (принцип работы синхронного электродвигателя)
Под синхронными электрическими двигателями понимают устройства постоянного тока. Принцип работы такого устройства можно кратко описать 4 пунктами:
- к обмотке статора (ее еще называют индукторной или обмоткой возбуждения) подается постоянный ток;
- проходя через обмотку, ток образует постоянное магнитное поле возбуждения (используется постоянный магнит);
- к роторной обмотке тоже подается постоянный ток, на который воздействует поле статора, обеспечивая возникновение крутящего момента;
- под действием вращательной силы, ротор поворачивается на 90 градусов.
Это один цикл. После поворота обмотка якоря снова подпадает под влияние статорного магнитного поля, и ротор снова совершает поворот.
Для непрерывной работы электродвигателя полюса постоянного роторного магнита должны сменять друг друга без остановки. Смена происходит, когда полюс пересекает «нейтраль» (ее еще называют магнитной нейтралью). Чтобы ее (смену полюсов) обеспечить, кольцо коллектора разделяют на сектора диэлектрическими ламелями, к которым поочередено присоединяются края роторных обмоток.
Токосъемные щетки, которые представляют собой графитовые стержни с высокой проводимостью и низким коэффициентом трения при скольжении, необходимы для присоединения коллектора к сети. В качестве магнитов могут применяться физически существующие материалы с высокими магнитными свойствами. Но часто из-за их массы в электродвигателях постоянного тока увеличенной мощности магниты заменяют несколькими металлическими штифтами/стержнями. При этом:
- у каждого стержня формируется собственная обмотка из проводника, который подключается к шине питания («+» и «-»);
- включение одноименных полюсов осуществляется последовательно;
- количество пар полюсов – 1 или 4;
- число щеток коллектора должно соответствовать этому количеству пар.
У синхронных электрических двигателей высокой мощности, обслуживаемых постоянным током, есть ряд конструктивных нюансов, ряд из которых проявляется в динамике (во время функционирования устройства). Среди них – смещение щеток роторного коллектора по отношению к валу на определенный угол против его вращения при изменении нагрузки на двигатель. Это необходимо, чтобы компенсировать эффект, называемый реакцией ротора/якоря и предупреждению торможения вала электродвигателя, которое снижает эффективность работы подключенного к нему оборудования.
Способы подключения синхронного электродвигателя
Преимущество синхронных электродвигателей, обеспечиваемое принципом их работы, – поступательное (плавное) регулирование скорости вращения, это обеспечило их высокую эффективность при работе с тягой – на грузоподъемниках и электромашинах. В современной практике применяют 3 схемы подключения электрических двигателей постоянного тока: с параллельным, последовательным и комбинированным возбуждением.
В первом случае вместе (параллельно) с обмоткой ротора запускается дополнительная регулируемая (обычно) обмотка-реостат. Такой вариант эффективен, когда для нормальной работы машины требуется плавная регулировка скоростей вращательного движения и максимальной стабильности количества оборотов в минуту. Примеры – электродвигатели кранов, промышленных станков и линий.
При последовательном подключении вспомогательная роторная обмотка в цепь процессов возбуждения ротора включается последовательно. Это обеспечивает возможность резкого увеличения усилия электрического двигателя в определенные моменты (на старте движения состава, например).
Классификация МПТ по способу питания обмоток индуктора и якоря
По данному признаку МПТ делятся на 4 вида.
С независимым возбуждением
Обмотки индуктора и якоря не имеют электрического соединения. У генераторов этого типа обмотку возбуждения питает сеть постоянного тока, аккумулятор или специально предназначенный для этого генератор — возбудитель. Мощность последнего — несколько сотых мощности основного генератора.
Область применения генераторов с независимым возбуждением:
- системы значительной мощности, где напряжение на обмотке возбуждения существенно отличается от генерируемого;
- системы регулирования скорости вращения двигателей, запитанных от генераторов.
У двигателей с независимым возбуждением запитана и якорная обмотка. В основном это также агрегаты большой мощности.
Независимость обмотки индуктора позволяет удобнее и экономичнее регулировать ток возбуждения. Еще одна особенность таких моторов — постоянство магнитного потока возбуждения при любой нагрузке на валу.
С параллельным возбуждением
Обмотки индуктора и якоря соединены в одну цепь параллельно друг другу. Генераторы этого типа обычно применяются для средних мощностей. При параллельном соединении генерируемое устройством напряжение подается на обмотку возбуждения. При соединении в одну цепь обмоток индуктора и якоря говорят о генераторе с самовозбуждением.
По своим характеристикам они идентичны моторам с независимым возбуждением и обладают следующими особенностями:
- при изменении нагрузки частота вращения практически не трансформируется: замедление составляет не более 8% при переводе от холостого хода к номинальной нагрузке;
- можно с минимальными потерями регулировать частоту вращения, причем в широких пределах — 2-кратно, а у специально сконструированных моторов и 6-кратно.
Индуктор вращающегося двигателя с параллельным возбуждением нельзя отсоединять от цепи якоря, даже если он уже отключен. Это приведет к наведению значительной ЭДС в обмотке возбуждения с последующим выходом мотора из строя. Находящийся рядом персонал может получить травму.
С последовательным возбуждением
Обмотки соединены в цепь последовательно друг другу. Через обмотку возбуждения течет ток якоря. Генераторы этого типа почти не применяются, поскольку процесс самовозбуждения происходит достаточно бурно и устройство не способно обеспечить необходимое большинству потребителей постоянство напряжения. Их используют только в специальных установках.
Схема последовательного возбуждения
Двигатели этого типа широко применяют в качестве тяговых (электровозы, троллейбусы, краны и пр.): по сравнению с аналогами параллельного возбуждения, при нагрузке они дают более высокий момент с одновременным уменьшением скорости вращения. Пусковой момент также высок.
Запуск двигателя с нагрузкой ниже 25% номинальной, а тем более на холостом ходу, недопустим: частота вращения окажется чересчур высокой, и агрегат выйдет из строя.
С параллельно-последовательным (смешанным) возбуждением
Существует два вида схемы:
- основная обмотка индуктора включена параллельно с якорной, вспомогательная — последовательно;
- основная обмотка индуктора включена последовательно с якорной, вспомогательная — параллельно.
Схемы систем возбуждения МПТ
Подключение параллельной обмотки до последовательной называют «коротким шунтом», за последовательной — «длинным шунтом». Генераторы этого типа применяются крайне редко.
Двигатели сочетают в себе достоинства аналогов с параллельным и последовательным возбуждением: способны работать на холостом ходу и при этом развивают значительное тяговое усилие. Но и они сегодня почти не применяются.
Как собрать двигатель самостоятельно
Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.
Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.
В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.
Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.
Приводы были установлены так, чтобы валы вращались аналогично друг другу. В случае если на систему попробовать воздействовать пальцем или каким-то другим предметом, тогда она остановится.
Расчет электромагнита
Чтобы провести примерный расчёт электрического магнита, необходимо задать тяговое усилие, которое требуется для мотора. Допустим, требуется произвести расчёт электрического магнита с тяговым усилием 100 Н (10 кг). Теперь после этого можно рассчитать параметры конструкции электромагнита, если зазор его составляет 10-20 мм. Тяговая сила, которая развивается электромагнитом, считается так:
- Перемножаются индукция в воздушном зазоре и площадь полюса. Индукция измеряется в Теслах, площадь – в квадратных метрах.
- Полученное значение необходимо разделить на значение магнитной проницаемости воздуха. Оно равно 1,256 х 10^-6 Гн/м.
Если задать индукцию 1,1 Тл, то можно вычислить площадь сечения магнитопровода:
- Тяговая сила умножается на магнитную проницаемость воздуха.
- Полученное значение необходимо разделить на квадрат индукции в зазоре.
Для трансформаторной стали, которая используется в магнитопроводах, индукция в среднем равна 1,1 Тл. Используя кривую намагничивания низкоуглеродистой стали, можно определить среднее значение напряженности магнитного поля. Если правильно сконструировать электрический магнит, то вы достигнете максимальной силы потока. Причём электропотребление обмотки будет минимальным.
Двигатель Москвина
Бестопливный двигатель Москвина представляет собой механическое устройство, которое преобразует энергию наружной консервативной силы в кинетическую энергию, которая вращает рабочий вал, без потребления электроэнергии или какого-либо вида топлива. Такие устройства являют собой фактически вечные двигатели, работающие бесконечно долго до тех пор, пока прилагается усилие к рычагам, а детали не изнашиваются в процессе преобразования свободной энергии. В процессе работы бестопливного двигателя образуется бесплатная свободная энергия, потребление которой при подключении генератора является законным.
Новые бестопливные двигатели представляют собой универсальные и экологически чистые приводы для различных механизмов и устройств, которые работают без вредных выбросов в окружающую среду и атмосферу.
Изобретение в Китае безтопливного двигателя сподвигло учёных-скептиков на проведение экспертизы по существу. Несмотря на то, что многие аналогичные запатентованные изобретения находятся под сомнением по причине того, что их работоспособность в силу определённых причин не была проверена, модель бестопливного двигателя полностью работоспособна. Образец устройства позволил получить свободную энергию.
Принцип работы
В основе работы синхронного электродвигателя лежит взаимодействие магнитного потока, генерируемого рабочими обмотками с постоянным магнитным потоком. Наиболее распространенной моделью синхронной электрической машины является вариант с рабочей обмоткой на статоре и обмоткой возбуждения на роторе.
Рис. 2. Принцип действия синхронного электродвигателя
Как видите на рисунке 2 выше, в обмотку статора подается трехфазное напряжение из сети, которое формирует переменное магнитное поле. На обмотки ротора электродвигателя подано постоянное напряжение, которое индуцирует такой же постоянный магнитный поток у полюсов. Для наглядности рассмотрим процесс на упрощенной модели синхронного агрегата (рисунок 3).
Рис. 3. Принцип формирования потоков в синхронной электрической машине
При подаче питания на фазные витки статора электродвигателя первый пик амплитуды тока и ЭДС взаимоиндукции приходиться на фазу A, затем B и фазу C.
На графике показана периодичность чередования кривых в зависимости от времени:
Оборот поля статора происходит в течении периода, а за счет того, что ротор обладает собственным электромагнитным усилием постоянным во времени, то он синхронно следует за движением переменного магнитного поля, вращаясь вокруг заданной оси. В результате такого вращения происходит синхронное движение ротора вслед за сменой амплитуды ЭДС в витках рабочих обмоток, за счет этого явления электродвигатель и получил название синхронного. Наличие отдельного питания отразилось и на схематическом обозначении таких электрических машин (рисунок 4) в соответствии с ГОСТ 2.722-68.
Рис. 4. Схематическое обозначение синхронного электродвигателя
Создатели бестопливных генераторов
Специальное оборудование к автомобильным двигателям, которое позволяет машинам передвигаться только на воде без использования углеводородных добавок. Подобными приставками сегодня оснащаются многие российские автомобили. Использование подобного оборудования позволяет автомобилистам сэкономить на бензине и снизить количество вредных выбросов в атмосферу. Для создания приставки Бакаеву понадобилось открыть новый тип расщепления, который и использовался в его изобретении.
Болотов — учёный XX века — разработал автомобильный двигатель, которому для запуска требуется буквально одна капля топлива. Конструкция такого двигателя не подразумевает цилиндров, коленчатого вала и любых других трущихся деталей — они заменены двумя дисками на подшипниках с небольшими зазорами между ними. Топливом является обычный воздух, который расщепляется на азот и кислород на высоких оборотах. Азот под воздействием температуры в 90оС сгорает в кислороде, что позволяет двигателю развить мощность в 300 лошадиных сил. Русские учёные, помимо схемы бестопливного двигателя, разработали и предложили модификации многих других двигателей, для функционирования которых требуются принципиально новые источники энергии — к примеру, энергия вакуума.
Краткий обзор известных конструкций
Среди большого количества конструкций магнитных двигателей можно выделить следующие:
- Двигатели магнитного типа Калинина. Конструкция полностью неработоспособна, так как не доведен до ума механизм пружинного компенсатора.
- Магнитно-механический мотор конструкции Дудышева. Если произвести грамотную доводку, то такие двигатели могут работать практически вечно.
- «Перендев» — электромагнитные моторы, выполненные по классической схеме. На роторе устанавливается компенсатор, но он не способен работать без коммутации при прохождении мёртвой точки. А чтобы ротор проходил мертвую точку удержания, можно выполнить коммутацию двумя вариантами — с помощью электромагнита и механического устройства. Такая конструкция не может претендовать на звание «вечный двигатель». Да и у простого асинхронного двигателя электромагнитный момент окажется значительно выше.
- Электромагнитные двигатели конструкции Минато. Выполненный по классической схеме, представляет собой обычный электромагнитный мотор, у которого очень высокий коэффициент полезного действия. С учётом того, что конструкция не может достичь КПД в 100 %, она не работает как «вечный двигатель».
- Моторы Джонсона являются аналогами «Перендев», но у них меньше энергетика.
- Мотор-генераторы Шкондина представляют собой конструкцию, которая работает при помощи силы магнитного отталкивания. Компенсаторы в моторах не используются. Не способны работать в режиме «вечного двигателя», коэффициент полезного действия не более 80 %. Конструкция очень сложная, так как в ней присутствуют коллектор и щеточный узел.
- Наиболее совершенным механизмом является мотор-генератор конструкции Адамса. Это очень известная конструкция, работает по такому же принципу, как и мотор Шкондина. Вот только в отличие от последнего, отталкивание происходит от торца электромагнита. Конструкция устройства намного проще, нежели у Шкондина. Коэффициент полезного действия может составлять 100 %, но в том случае, если производить коммутацию обмотки электромагнита при помощи короткого импульса с высокой интенсивностью от конденсатора. В режиме «вечного двигателя» работать не может.
- Электромагнитный двигатель обратимого типа. Магнитный ротор находится снаружи, внутри установлен статор из электромагнитов. Коэффициент полезного действия приближается к 100 %, так как магнитопровод разомкнут. Такой электромагнитный соленоидный двигатель способен работать в двух режимах – мотора и генератора.
Устройство и принцип действия электродвигателя постоянного тока
В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.
В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.
Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.
Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.
В двигателях большой мощности физически существующих магнитов не используют из-за их большого веса. Для создания постоянного магнитного поля статора используется несколько металлических стержней, каждый из которых имеет собственную обмотку из проводника, подключенного к плюсовой или минусовой питающей шине. Одноименные полюса включаются последовательно друг другу.
Количество пар полюсов на корпусе двигателя может быть равно одной или четырем. Число токосъемных щеток на коллекторе якоря должно ему соответствовать.
Электродвигатели большой мощности имеют ряд конструктивных хитростей. Например, после запуска двигателя и с изменением нагрузки на него, узел токосъемных щеток сдвигается на определенный угол против вращения вала. Так компенсируется эффект «реакции якоря», ведущий к торможению вала и снижению эффективности электрической машины.
Также существует три схемы подключения двигателя постоянного тока:
- с параллельным возбуждением;
- последовательным;
- смешанным.
Параллельное возбуждение – это когда параллельно обмотке якоря включается еще одна независимая, обычно регулируемая (реостат). Такой способ подключения позволяет очень плавно регулировать скорость вращения и достигать ее максимальной стабильности. Его используют для питания электродвигателей станков и кранового оборудования.
Последовательная – в цепь питания якоря дополнительная обмотка включена последовательно. Такой тип подключения используется для того, чтобы в нужный момент резко нарастить вращающее усилие двигателя. Например, при трогании с места железнодорожных составов.
Двигатели постоянного тока имеют возможность плавной регулировки частоты вращения, поэтому их применяют в качестве тяговых на электротранспорте и грузоподъемном оборудовании.
Принцип действия гравитационного устройства
В процессе вращения двигатель будет подвержен , сопротивлению воздуха и влиянию других факторов. В качестве примера рассматривается конструкция, состоящая из герметичных S-образных элементов. Каждый из них наполняется водой и воздухом в пропорции 1:1. При каждом цикле вращения данной конструкции, из гравитационного поля будут поступать небольшое количество энергии.
Если суммарное количество энергии, поступившее от каждого элемента за весь цикл, превысит затраты двигателя на преодоление трения и других факторов, то устройством постепенно начнут набираться обороты. Это будет происходить до тех пор, пока под действием центробежных сил не перестанут проявляться гравитационные эффекты. Таким образом, гравитационный двигатель изначально требует хорошей раскрутки, как и другие движущие устройства. Типичным примером служит автомобильный двигатель внутреннего сгорания, который заводился разными способами: вначале — специальной рукояткой, а в современных условиях — стартером. В данном случае от количества S-образных элементов зависит мощность гравитационного двигателя.
Работа водяного двигателя происходит по определенной схеме. Вначале его нужно хорошо раскрутить в направлении часовой стрелки. После этого участок с водой будет находиться в горизонтальном положении, а вода перетечет из одного колена в другое. Участок, освобожденный от воды, начнет ускоренное вращение.
В это же время вода совершает перемещение в горизонтальном направлении, пересекая силовые линии гравитационного поля. Следовательно, не совершая никакой работы, заполнит пустой участок трубы, который под действием силы тяжести начнет двигаться вниз. Таким образом, за счет постоянного перелива двигатель будет вращаться. Управление движением осуществляется за счет момента инерции, заложенного в S-образной трубе.
В результате вращения двигатель постепенно достигает определенной скорости, после чего энергия, полученная частями, отдается в нагрузку. Кроме подключения к какому-либо полезному устройству, она затрачивается на преодоление сопротивления воздуха и силы трения. Достигнув определенной скорости вращения, двигатель начнет работу в режиме автоматических колебаний. Гравитация будет препятствовать снижению скорости вращения, и она же будет ее ограничивать за счет сосредоточения воды в наружном конце трубы, из-за чего существенно понижается гравитационный эффект.
Для того чтобы улучшить динамические свойства двигателя, на обоих концах вращающегося элемента следует разместить герметичные эластичные емкости, наполненные небольшим количеством воздуха. В процессе вращения они будут выполнять по отношению к воде функцию своеобразной пружины.
Режимы работы
Большинство электрических машин обладают обратимой функцией, не составляют исключения и синхронные агрегаты. Их также можно использовать в качестве электрического привода или в качестве генератора, вырабатывающего электроэнергию. Оба режима отличаются способом воздействия на электрическую машину – подачу напряжения на рабочие обмотки или приведение в движение ротора за счет механического усилия.
Генераторный режим
Для производства электроэнергии в сеть используются именно синхронные генераторы. В большинстве случаев для этой цели используются электрические машины с фазными обмотками на статоре, что существенно упрощает процесс съема мощности и дальнейшей передачи ее в сеть. Физически генерация происходит при воздействии электромагнитного поля обмотки возбуждения синхронного генератора с обмотками статора. Силовые линии поочередно пересекают фазные витки и наводят в них ЭДС взаимоиндукции, в результате чего на клеммных выводах возникает напряжение.
Частота получаемого напряжения напрямую зависит от скорости вращения вала и вычисляется по формуле:
где n – скорость вращения вала, измеряемая в оборотах за минуту, p – количество пар полюсов.
Синхронный компенсатор
В виду физических особенностей синхронного электродвигателя при холостом ходе аппарата он потребляет из сети реактивную мощность, что позволяет существенно улучшить cosφ системы, практически приближая его к 1.На практике режим синхронного компенсатора используется как для улучшения коэффициента мощности, так и для стабилизации параметров напряжения сети.
Двигательный режим
В синхронной машине двигательный режим осуществляется при подаче рабочего трехфазного напряжения на обмотки якоря. После чего электромагнитное поле якоря начинает толкать магнитное поле ротора, и вал приходит во вращение. Однако на практике двигательный режим осуществляется не так просто, так как мощные агрегаты не могут самостоятельно набрать необходимый ресурс скорости. Поэтому во время запуска используют специальные методы и схемы подключения.
Принцип работы синхронного двигателя
Принцип действия синхронного электродвигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора. Концепция вращающегося магнитного поля статора синхронного электродвигателя такая же, как и у трехфазного асинхронного электродвигателя.
Принцип работы синхронного двигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора.
Магнитное поле ротора, взаимодействуя с синхронным переменным током обмоток статора, согласно закону Ампера, создает крутящий момент, заставляя ротор вращаться (подробнее).
Постоянные магниты, расположенные на роторе СДПМ, создают постоянное магнитное поле. При синхронной скорости вращения ротора с полем статора, полюса ротора сцепляются с вращающимся магнитным полем статора. В связи с этим СДПМ не может сам запуститься при подключении его напрямую к сети трехфазного тока (частота тока в сети 50Гц).
Принцип работы синхронного двигателя
Принцип действия синхронного электродвигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора. Концепция вращающегося магнитного поля статора синхронного электродвигателя такая же, как и у трехфазного асинхронного электродвигателя.
Принцип работы синхронного двигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора.
Магнитное поле ротора, взаимодействуя с синхронным переменным током обмоток статора, согласно закону Ампера, создает крутящий момент, заставляя ротор вращаться (подробнее).
Постоянные магниты, расположенные на роторе СДПМ, создают постоянное магнитное поле. При синхронной скорости вращения ротора с полем статора, полюса ротора сцепляются с вращающимся магнитным полем статора. В связи с этим СДПМ не может сам запуститься при подключении его напрямую к сети трехфазного тока (частота тока в сети 50Гц).
Особенности синхронного реактивного электродвигателя
Преимущества:
Простая и надежная конструкция ротора
:ротор имеет простую конструкцию, состоящую из тонколистовой электротехнической стали, без магнитов и короткозамкнутой обмотки.
Низкий нагрев
:так как в роторе отсутствуют токи, он не нагревается во время работы, увеличивая срок службы электродвигателя.
Нет магнитов
:снижается конечная цена электродвигателя, так как при производстве не используются редко земельные металлы. При отсутствии магнитных сил упрощается содержание и техническое обслуживание электродвигателя.
Низкий момент инерции ротора
:так как на роторе отсутствует обмотка и магниты, ниже, что позволяет электродвигателю быстрее набирать обороты и экономить электроэнергию.
Возможность регулирования скорости
: в виду того, что синхронный реактивный электродвигатель для своей работы требует частотный преобразователь, имеется возможность управления скоростью вращения реактивного двигателя в широком диапазоне скоростей.
Недостатки:
Частотное управление
:для работы требуется частотный преобразователь.
Низкий коэффициент мощности
:из-за того, что магнитный поток создается только за счет реактивного тока. Решается за счет использования частотного преобразователя с коррекцией мощности.