Принцип работы сервопривода

Подключение к «Ардуино»

В стандартную схему подключения сервопривода к Arduino входит плата программируемого контроллера, двигатель и потенциометр, который имеет жесткую связь с рабочим органом мотора и является энкодером. Черный или коричневый провод энкодера соединяется с клеммой GND («земля») на плате контроллера, красный — с клеммой +5 В, желтый или оранжевый — с аналоговой клеммой ШИМ.

После включения системы активируется загрузчик контроллера. При отсутствии ошибок на плате начинает мигать светодиод, показывающий, что контроллер готов к загрузке прикладной программы, иначе называемой скетчем. Он загружается в «Ардуино» из ПК через кабель USB.

Управлять схемой допускается также с помощью джойстика, соединенного с платой контроллера «Ардуино Нано» и серводвижком. К плате манипулятор подключается земляным и плюсовым проводами питания, проводом управления и 2 проводами координат по осям X и Y. Еще один провод необходим для работы кнопки в режиме «нажата»/»отжата».

Достоинства и недостатки

Сервопривод имеет преимущества перед аналогичными устройствами, например, шаговыми двигателями. За счет обратной связи механизм может корректировать положение вала, независимо от нагрузки на ось, что позволяет устанавливать рабочий механизм с высокой точностью.

Основными преимуществами являются:

  • высокая точность позиционирования;
  • с помощью редуктора понижаются обороты и повышается момент;
  • позиционирование рабочего органа можно легко откорректировать, внеся изменение в программу управления;
  • возможность достигать больших ускорений при работе, что делает сервопривод более подходящим к использованию в быстродействующих устройствах, по сравнению с шаговыми двигателями;
  • равномерный момент почти во всем диапазоне скоростей;
  • хорошо переносят перегрузки.

К недостаткам можно отнести:

  • наличие редуктора (особенно критично если в нём пластиковые шестерни или из мягких металлов);
  • износ резистивных дорожек (если для обратной связи при позиционировании используется потенциометр);
  • сложная настройка программы управления, для получения результатов высокой точности;
  • высокая стоимость оборудования (по сравнению с шаговыми двигателями, например);
  • точность зачастую меньше, чем у шаговых двигателей.

Но учтите что все преимущества и недостатки усреднены, могут быть как шаговые двигатели, которые в определенном применении покажут себя лучше сервопривода, так и наоборот.

Устройство и принцип работы сервомоторов

Основным рабочим элементом сервопривода является сильфон. Т.е. такая же деталь, как и в трехходовом клапане. Небольшой по размерам, герметичный цилиндр с эластичным корпусом заполнен веществом, чутко реагирующим на температуру. В зависимости от того, происходит повышение или понижение температуры, происходит соответственно изменение объема вещества. Рисунок – схема наглядно демонстрирует устройство сервомотора, где основным местом занимает сильфон.

Сильфон находится в тесном контакте с электрическим нагревательным элементом. Получая сигнал с термостата, нагревательный элемент включается от сети и включается в работу. Внутри сильфона вещество подогревается и увеличивается в объеме. Таким образом, увеличившийся в размерах цилиндр начинает давить на шток, меняя его положение и перекрывая путь потоку теплоносителя. Оценивая работу сервопривода можно сделать вывод – прибор не оснащен никакими моторами, в нем нет никаких шестерней и передаточных звеньев. Обычная рабочая связь «тепловая энергия и электричество». Отсюда и распространенное название приборов, термоэлектрические регуляторы.

Для того, что бы клапан снова стал открытым, весь процесс повторяется только в обратном направлении. Отсутствие электропитания приводит к тому, что нагревательный элемент перестает работать. Следовательно, вещество внутри цилиндра остывает, уменьшаясь в объеме. Давление на шток уменьшается, он подымается, действуя на клапан, а, следовательно, открывается доступ горячей воды в систему.

Ознакомившись с принципом работы устройства, важно помнить, что для механического действия клапана необходимо определенное время. Несмотря на то, что при поступлении сигнала с термостата, нагревательный элемент начинает нагревать вещество внутри цилиндра

Время, необходимое на изменения физического состояния жидкости, составляет 2-3 минуты, поэтому клапан приводится в действие не сразу.

В отличие от нагрева, остывание жидкости проходит медленнее. На обратный процесс, т.е. на закрытие клапана потребуется уже не 2-3 минуты, а 10-15 минут. При перегреве каждый сервомотор должен автоматически отключаться. Для этого в конструкции предусмотрен механизм аварийного отключения.

Для примера: используемые в работе коллекторной группы сервоприводы не все оснащаются цилиндрами и баллонами с веществом. Ест модели, в которых эту роль играют термоэлементы, напоминающие собой пружину или пластину, которые под действием все того же нагревательного элемента нагреваются. Расширяясь, эти детали воздействуют опять же, на шток, приводя в конечном итоге в рабочее состояние клапан. Определить в каком положении находится клапан, можно по изменению внешнего вида сервопривода. Выдвигающийся элемент сигнализирует о работе прибора. Если этого не происходит, значит, ваш прибор неправильно подключен или система отопления работает с перебоями.

Управление

Для того чтобы серводвигатель мог функционировать в нём используют специальную систему, основанную на G-кодах. Упомянутые коды представлены набором управляющих команд, которые заложены в программе.

Например, в системе ЧПУ сервопривод контактирует с инверторами, способными изменять напряжение, которое соответствует входному, в обмотке электромотора.

Вся система серводвигателя управляется/контролируется блоком управления, из которого поступают различные команды, например, передвижения по оси Х или У. После подачи команды в инверторе создаётся определённое напряжение, питающее привод. Затем серводвигатель начинает своё круговое движение, связанное с главным исполнительным элементом механизма и энкодером.

Энкодер создаёт множество импульсов, которые подсчитываются блоком, осуществляемыми управление устройством. Для каждой позиции исполнительного элемента в программе установлено определённое количество импульсов. Так под их влиянием либо подаётся напряжение на моторчик, либо прекращается.

Сравнительный анализ

Факторы выбора между сервоприводом и шаговым двигателем, их преимущества и недостатки наглядно представлены в таблице.

Параметр Шаговые двигатели Сервоприводы
Момент Сильно падает с повышением скорости. Максимален при остановленном вале Высокий на всех скоростях. Максимален на высоких оборотах
Ускорение Инертны, номинальная скорость не превышает 1000 об/мин. При слишком быстром разгоне пропускают шаги, вал может остановиться Высокое, способны на короткое время увеличить ток обмоток в 3-4 раза от номинального значения. Скорость номинального вращения – до 10000 об/мин и выше
Мощность Низкая, не превышает 1 кВт Высокая, может достигать 15 кВт
Удельная мощность Низкая. Очень малый КПД – потребляет много тока, основная часть энергии расходуется в виде тепла Высокая. Потребляемый ток пропорционален нагрузке
Обратная связь по положению Отсутствует. Не выполненный шаг будет не замечен в системе ЧПУ. Однако, при грамотном проектировании станка обратная связь не нужна Есть. Положение вала корректируется во время работы, при сбое обратной связи (например, заклинило вал) система укажет на ошибку
Плавность хода Низкая. Возможна только при применении дополнительных методов управления Большая
Точность позиционирования Не более 5% от величины шага Определяется энкодером
Безопасность Высокая. Если вал заклинило, двигатель просто пропустит шаги Низкая. При заклинивании вала устройство может провернуть передачу, что приведет к поломке. Может сгореть в случае некорректной настройки поведения драйвера при перегрузке
Сложность настройки Просты в настройке, работают по принципу включения и выключения Множество настраиваемых параметров, что требует предельной внимательности и опыта в использовании
Резонанс ротора Сильный, что приводит к пропуску шагов, ухудшению качества обработки и др., особенно в крупных станках Отсутствует, что делает их моторами выбора в крупном оборудовании (рабочее поле более 1,2 м2, масса свыше 50 кг)
Звук Сильный гул Незначительный
Нагрев Сильный, что может потребовать дополнительного охлаждения радиатором и вентилятором Слабый
Стоимость Значительно дешевле сервоприводов, но только до размера фланца 110 мм Дороже шаговых моторов, но при размере фланца 110 мм и выше цены схожи

Подключение


Рисунок 4. Подключение сервопривода к системе Arduino

Подключение сервопривода осуществляется за счёт проводников в количестве трёх штук. Два проводника используются для подачи питания на электромотор, а оставшийся необходим для передачи сигналов от блока управления, которые приводят вал в нужную позицию.

Стоит отметить, что для того чтобы снизить вероятность огромных динамических нагрузок, которым может подвергаться электромотор, необходимо осуществлять как плавный разгон мотора, так и его торможение. Для этой цели создаются и используются более высокие по сложности микроконтроллеры, которые обеспечивают высокую точность в контроле и управлении положением рабочей детали.

Процесс рекуперации

Зачастую запускается при переключении режимов работы сервомотора: что это такое? Это возвратная энергия, которая выделяется при смене знака (направления движения) относительно вращающего момента. Обычно она не слишком большая, но все равно собирается на конденсаторах, увеличивая, таким образом, напряжение на звене постоянного тока.

В тех же случаях, когда данное неравенство абсолютных значений достигнет серьезной отметки, пороговый уровень емкости шины будет пробит. И тогда все излишки будут сброшены в тормозной резистор.

Мы постарались рассмотреть все особенности данных механизмов и подчеркнуть удобство и перспективность их использования. Предлагаем также взглянуть на схемы сервоприводов, фото и видеоролики на эту тему – чтобы вы могли дополнить свое представление.

Общие сведения

Термин «сервопривод» происходит от латинского слова servus, которое переводится как «слуга» или «помощник». Так называют любой тип механического привода с устройством обратной связи по положению, скорости или усилию, а также сам привод, который выполняет функцию автоматического регулирования заданного параметра. Сервоприводы находят широкое применение в станко­строении, производстве упаковочных, фасовочных и разливных машин, робототехнике — в общем, когда требуется высокая точность передвижения исполнительного органа. В данной статье мы не будем рассматривать гидравлические сервоприводы и под сервоприводом будем понимать электропривод с отрицательной обратной связью.

Есть два типа таких сервоприводов: вращательного и линейного движения. Для вращательного движения используют асинхронные и синхронные электродвигатели, а для линейного в основном применяют механическую передачу в виде шариковинтовой пары с кареткой, перемещающейся по рельсам, линейные актуаторы и линейные серво­двигатели.

Как мы уже отмечали выше, сервоприводы обеспечивают точное передвижение исполнительного органа. Но о какой степени точности может идти речь? Если точность вращательного движения измеряется в градусах, то целесообразнее применять сервоприводы на базе асинхронных электродвигателей, где роль устройства обратной связи играет встроенный или помещенный на вал энкодер, а роль привода исполняет всем нам знакомый преобразователь частоты. Но если речь заходит о точности вращательного движения, исчисляемой в угловых минутах, и при этом переключение с прямого на обратное вращение происходит с высокой интенсивностью, то в таком случае оптимальным вариантом станут синхронные электродвигатели на постоянных магнитах. На рис. 1 показаны конструктивные особенности синхронных электродвигателей на примере продуктов компании Kollmorgen.

Рис. 1. Конструктивные особенности синхронных серводвигателей Kollmorgen

Управляются серводвигатели электронными устройствами, которые чаще всего называются сервоусилителями. По своим свойствам серво­усилители похожи на преобразователи частоты, только с той разницей, что в них заложены сложные алгоритмы контура регулирования скорости, позиции и момента. Сервоусилители содержат цифровые входы для устройств обратной связи и чаще всего работают лишь с определенными серводвигателями конкретного производителя.

Однако возможности современных сервоусилителей могут быть более широкими. Например, к устройствам Kollmorgen можно легко, по принципу plug and play, подключить серводвигатели (в том числе асинхронные и индуктивные, с устройствами обратной связи и без них) не только того же производителя, но и других компаний — при использовании моделей SERVOSTAR S700 (рис. 2).

Рис. 2. Электродвигатели, сопрягаемые с сервоусилителями Kollmorgen S700

Рис. 3. Технологии передачи движения

Принцип работы

Принцип действия устройств основан на использовании импульсного сигнала, который имеет три важные характеристики – частоту повторения, минимальную и максимальную продолжительность. Именно продолжительность импульса определяет угол поворота двигателя.

Импульсные сигналы, получаемые сервоприводом, имеют стандартную частоту, а вот их продолжительность в зависимости от модели может составлять от 0,8 до 2,2 мс. Параллельно с поступлением управляющего импульса активируется работа генератора опорного импульса, который связан с потенциометром. Тот, в свою очередь, механически сопряжен с выходным валом и отвечает за корректирование его положения.

Электронная схема анализирует импульсы с учетом длительности и на основе разностной величины определяет разницу между ожидаемым (заданным) положением вала и реальным (измеренным при помощи потенциометра). Затем производится корректировка путем подачи напряжения на питание двигателя.

Принцип работы цифровой конструкции

Цифровыми устройствами используется специальный процессор, функционирующий на высоких частотах. Он обрабатывает сигнал приемника и посылает импульсы управления в двигатель с показателем частоты в 300 раз в секунду. Так как показатель частоты значительно выше, то и реакция заметно быстрее и держит позицию лучше. Это вызывает оптимальное центрирование и высокий уровень кручения. Но такой метод требует больших затрат энергии, поэтому батарея, используемая в аналоговом механизме, в этой конструкции будет разряжаться намного быстрее.

Однако все пользователи, которые хоть однажды столкнулись с цифровой моделью, говорят о том, что ее различие с аналоговой конструкцией настолько значительно, что они никогда бы больше не употребляли последнюю.

Виды и характеристики

Серводвигатели выпускаются в самых разных вариантах, позволяющих использовать их во многих областях. Основные конструкции разделяются на коллекторные и бесколлекторные, предназначенные для работы от постоянного и переменного тока.

Кроме того, каждый сервомотор может быть синхронным и асинхронным. Синхронные устройства обладают способностью задавать высокоточную скорость вращения, а также углы поворотов и ускорение. Эти приводы очень быстро набирают номинальную скорость вращения. Сервоприводы в асинхронном исполнении управляются за счет изменения параметров питающего тока, когда его частота меняется с помощью инвертора. Они с высокой точностью выдерживают заданную скорость даже при самых низких оборотах.

В зависимости от принципиальной схемы и конструкции, сервоприводы могут быть электромеханическими и электрогидромеханическими. Первый вариант, включающий редуктор и двигатель, отличается низким быстродействием. Во втором случае действие происходит очень быстро за счет движения поршня в цилиндре.

Каждый сервопривод характеризуется определенными параметрами:

  • Крутящий момент или усилие, создаваемое на валу. Считается наиболее важным показателем работы сервопривода. Для каждой величины напряжения существует собственный крутящий момент, отражаемый в паспорте изделия.
  • Скорость поворота. Данный параметр представляет собой определенный период времени, который требуется, чтобы изменить позицию выходного вала на 600. Эта характеристика также зависит от конкретного значения напряжения.
  • Максимальный угол поворота, на который может развернуться выходной вал. Чаще всего эта величина составляет 180 или 3600.
  • Все сервоприводы разделяются на цифровые и аналоговые. В зависимости от этого и осуществляется управление сервоприводом.
  • Питание серводвигателей. В большинстве моделей используется напряжение от 4,8 до 7,2В. Питание и управление осуществляется с помощью трех проводников.
  • Возможность модернизации в сервопривод постоянного вращения.
  • Материалы для редуктора могут использоваться самые разные. Шестерни изготавливаются из металла, карбона, пластика или комбинированных составов. Каждый из них обладает своими преимуществами и недостатками. Например, пластиковые детали плохо выдерживают ударные нагрузки, но устойчивы к износу в процессе длительной эксплуатации. Металлические шестерни, наоборот, быстро изнашиваются, зато они обладают высокой устойчивостью к динамическим нагрузкам.

Сервопривод переменного тока

В сервоприводах переменного тока используется синхронный двигатель с мощными постоянными магнитами. В таких двигателях частота вращения ротора совпадает с частотой вращения магнитного поля, наводимого в обмотке статора.

Принцип работы сервопривода на основе трехфазного синхронного электродвигателя состоит в следующем. На обмотки статора поступает трехфазное напряжение, которое создает внутри него вращающееся магнитное поле. Это поле взаимодействует с постоянными магнитами, расположенными в роторе. В результате ротор вращается с частотой магнитного поля.

На валу ротора закреплен энкодер с высокой разрешающей способностью. Сигнал от него поступает по отдельному кабелю на специальный вход сервоусилителя. В то же время на управляющий вход сервоусилителя подается сигнал управления. В результате сравнения этих двух сигналов выделяется сигнал рассогласования, величина которого прямо пропорциональна разнице между целевыми и актуальными показателями вращения двигателя. На основании данного сигнала формируется трехфазное напряжение с такими параметрами, которые обеспечивают максимально быстрое уменьшение рассогласования до нуля.

Применение [ править | править код ]

Сервоприводы применяются для точного (по датчику) позиционирования (чаще всего) приводимого элемента в автоматических системах:

  • управляющие элементы механической системы (заслонки, задвижки, углы поворота)
  • рабочие органы и заготовки в станках и инструментах

Сервоприводы вращательного движения используются для:

Сервоприводы линейного движения используются, например, в автоматах установки электронных компонентов на печатную плату.

Серводвигатель

Серводвигатель — сервопривод с мотором, предназначенный для перемещения выходного вала в нужное положение (в соответствии с управляющим сигналом) и автоматического активного удержания этого положения.

Серводвигатели применяются для приведения в движение устройств управляемых поворотом вала — как открытие и закрытие клапанов, переключатели и так далее.

Важными характеристиками сервомотора являются динамика двигателя, равномерность движения, энергоэффективность.

Серводвигатели широко применяются в промышленности, например, в металлургии, в станках с ЧПУ, прессо-штамповочном оборудовании, автомобильной промышленности, тяговом подвижном составе железных дорог.

В основном в сервоприводах использовались 3-полюсные коллекторные двигатели, в которых тяжелый ротор с обмотками вращается внутри магнитов.

Первое усовершенствование, которое было применено — увеличение количества обмоток до 5. Таким образом, вырос вращающий момент и скорость разгона. Второе усовершенствование — это изменение конструкции мотора. Стальной сердечник с обмотками очень сложно раскрутить быстро. Поэтому конструкцию изменили — обмотки находятся снаружи магнитов и исключено вращение стального сердечника. Таким образом, уменьшился вес двигателя, уменьшилось время разгона и возросла стоимость.

Ну и наконец, третий шаг — применение бесколлекторных двигателей. У бесколлекторных двигателей выше КПД, так как нет щёток и скользящих контактов. Они более эффективны, обеспечивают большую мощность, скорость, ускорение, вращающий момент.

В конструкциях современного оборудования, создаваемого на базе высоких технологий, постоянно развиваются и совершенствуются различные автоматические процессы. Среди них широкое распространение получил сервопривод, устанавливаемый с целью совершения отдельными элементами и деталями постоянных динамических движений. Эти устройства обеспечивают постоянный контроль над углами поворота вала, устанавливают нужную скорость в приборах электромеханического типа.

Составной частью этих систем являются серводвигатели, которые дают возможность управлять скоростями в нужном диапазоне в установленный промежуток времени. Таким образом, все процессы и движения могут периодически повторяться, а частота этих повторов закладывается в системе управления.

4.6. Влияние ООС на амплитудно-частотную характеристику усилителя

Обратная связь, изменяя коэффициент усиления усилителя, изменяет его частотную, фазовую и переходную характеристики. Применительно к ООС, которая обычно используется в усилителе, различают частотно-независимую и частотно-зависимую обратные связи.

В случае частотно-независимой ООС можно получить коэффициент частотных искажений в виде :

;

где М – коэффициент частотных искажений усилителя без обратной связи. При этом полоса частот усилителя расширяется, а коэффициент усиления усилителя, как было отмечено выше, уменьшается в глубину ООС раз.

В другом случае, частотно-зависимой ООС, можно получить желаемую АЧХ (ФЧХ и переходную характеристику), если применить глубокую ООС и зависимость β(f). Это свойство широко используется в групповых усилителях, в конструировании усилителей и устройств с заданными параметрами. Например, в линейных усилителях систем передачи с частотным разделением каналов (ЧРК), требуется АЧХ подъёмом в области ВЧ, рис. 4.6:

Рис. 4.6. Влияние частотно-зависимой ООС на коэффициент усиления усилителя

Такую характеристику можно реализовать, если напряжение обратной связи будет уменьшаться с ростом частоты.

Режимы управления

Работа сервопривода может осуществляться в трех разных форматах. Рассмотрим каждый из них.

Контроль положения

Здесь нужно сохранять заданный угол поворота вала, подавая последовательность сигналов. Пусть они идут с контроллера – таким образом, можно обеспечить точное позиционирование, что особенно актуально для узлов производственных станков.

Обратите внимание, с помощью совокупности импульсов не проблема задать информацию не только о положении в пространстве, но и о векторе вращения или скорости движения. Сделать это можно одним из трех способов – направляя напряжение:

  • со сдвигом фазы на 90 градусов;
  • сразу на два входа (SIGN, PULSE – стандартные названия);
  • с перемещением по часовой стрелке или против.

Контроль скорости

Здесь сервоуправление – это увеличение или уменьшение аналогового сигнала на дискретную величину при его подаче на соответствующие обмотки. А если он еще и разнополярный, тогда не составляет труда быстро менять направление вращения.

Данный режим напоминает эксплуатацию асинхронного силового агрегата с преобразователем частоты. Потому что в ее рамках требуется постоянно выполнять разгон и замедление, задавать минимумы и максимумы и тому подобное. Главное – реализовывать не слишком сложный алгоритм, чтобы не превращать рядовую практическую задачу в непосильный труд программирования.

Контроль момента

В данном случае назначение сервопривода – обеспечивать стабильное число оборотов, вне зависимости от того, вращается двигатель или нет. Эта цель достигается путем подачи или дискретного сигнала, или аналогового двухполярного. Метод более чем актуален для оборудования, в процессе эксплуатации требующего смены давления, прижима или других параметров.

Внимание, силовой агрегат должен быть дополнительно оснащен встроенным датчиком тока, ведь именно последний и оценивает значение текущего момента, чтобы потом электроника могла сравнить его с необходимой величиной

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: