Зависимость емкости конденсатора от частоты и напряжения

Содержание:

В емкостное сопротивление Это сопротивление, которое конденсатор, регулирующий поток заряда в цепи переменного тока, противодействует прохождению тока.

В цепи, состоящей из конденсатора и активируемой источником переменного тока, емкостное реактивное сопротивление X может быть определеноC следующим образом:

ИксC = 1 / ωC

Или также:

ИксC = 1 / 2πfC

Где C — емкость конденсатора, а ω — угловая частота источника, связанная с частотой f следующим образом:

ω = 2πf

Емкостное реактивное сопротивление зависит от обратной частоты, поэтому на высоких частотах оно обычно мало, а на низких частотах реактивное сопротивление велико.

Единицей измерения в Международной системе измерения емкостного реактивного сопротивления является ом (Ом), при условии, что емкость C конденсатора выражается в фарадах (сокращенно F), а частота выражается в обратных секундах (с-1).

Пока идет заряд, через конденсатор устанавливаются переменное напряжение и ток, амплитуды или максимальные значения которых обозначаются соответственно как VC и яC, связаны емкостным сопротивлением аналогично закону Ома:

VC = ЯC ⋅ XC

В конденсаторе напряжение на 90 ° отстает от тока или ток на 90 ° опережает ток, как вы предпочитаете. В любом случае частота такая же.

Когда XC очень большой, ток имеет тенденцию быть маленьким, и значение X стремится к бесконечностиC, конденсатор ведет себя как разомкнутая цепь и ток равен нулю.

Ёмкостное сопротивление

Единицы измерения

Конденсатор, как обладатель электрической ёмкости, напоминает по своим показателям автомобильный аккумулятор. Но, в отличие от АКБ, ёмкостной заряд на нём держится совсем недолго, что объясняется наличием утечек в диэлектрике и частичной разрядкой через окружающую среду.

При этом ёмкость (как и у аккумулятора) определяет накопительные свойства конденсатора или его способность удерживать энергию между обкладками.

Обратите внимание! В системе СИ этот показатель измеряется в Фарадах, которые представляют собой очень крупную единицу измерения. На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

  • Пикофарады, соответствующие 10-12 Фарады (Ф);
  • Нанофарады, равные 10-9Ф;
  • Микрофарады (мкФ), составляющие 10-6 от Фарады.

Все эти единицы для кратности обозначаются как «пФ», «нФ» и «мФ» соответственно.

Пример расчета емкостного сопротивления

Иногда конденсаторы устанавливаются в цепочках гашения напряжения с целью получения меньших его значений (вместо понижающих трансформаторов).

Важно! Этот способ получения нужных напряжений считается не только очень простым, но и самым опасным, поскольку индуктивной развязки от высокого потенциала здесь не существует. Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками

При расчёте требуемой ёмкости обычно исходят из следующих соображений:

Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками. При расчёте требуемой ёмкости обычно исходят из следующих соображений:

  • Включаемый последовательно с нагрузкой конденсатор характеризуется импедансом, аналогом сопротивления для ёмкости;
  • Этот показатель соответствует отдельному плечу в делителе напряжения, вторым элементом которого является сопротивление нагрузки;
  • Соотношение сопротивлений обоих плеч выбирается с таким расчётом, чтобы на нагрузке осталось требуемое напряжение (12 Вольт, например), а весь остаток от 220 Вольт рассеивался бы на самом конденсаторе.

Дополнительная информация. Для улучшения переходных характеристик делительной цепочки иногда параллельно конденсатору включается ещё один из резисторов, называемый разрядным.

Схема для расчёта ёмкостного сопротивления

В нашем случае выбираются следующие данные:

  • Uвх=220 Вольт;
  • Uвых=12 Вольт;
  • Iнагр=0,1Ампер (ток в нагрузке выбирается согласно её паспорта).

Исходя из них, можно определить значение сопротивления нагрузки:

Rн=220/0,1=2200 Ом или 2,2 Ком.

Для вычисления величины ёмкости, на которой должны «упасть» оставшиеся 208 Вольт, используются следующие показатели:

  • Uс=208 Вольт;
  • Iс=0,1Ампер;
  • Fсети=50 Гц.

После этого можно вычислить омическое сопротивление конденсатора, достаточное для того, чтобы на нём было 208 Вольт:

Xc=Uс/Iс=208/0,1=2080.

Ёмкость конденсатора получается из рассмотренной ранее зависимости:

Xс=1/ ω C.

Исходя из этого, получим:

С = 1/Хс2 π Fсети = 1/2080х6, 28х50 = 0,0000015311 Фарады или 1,5 мкФ.

Сопротивление Rраз выбирается равным примерно 10 Ком или более.

Свойства емкостей

Общее сопротивление

При параллельном включении нескольких конденсаторов их ёмкости складываются между собой. При этом общее ёмкостное сопротивление (согласно рассмотренным выше формулам) уменьшается. Если же все конденсаторные элементы соединены в последовательную цепочку, их суммарная ёмкость вычисляется как обратные значения каждой из составляющей.

Ёмкостное сопротивление последовательно включенных элементов в этом случае, наоборот, увеличивается. В заключение отметим, что такой характер изменения ёмкости и импеданса объясняется свойствами конденсатора, способного накапливать заряд на своих обкладках.

Ёмкостное сопротивление

Единицы измерения

Конденсатор, как обладатель электрической ёмкости, напоминает по своим показателям автомобильный аккумулятор. Но, в отличие от АКБ, ёмкостной заряд на нём держится совсем недолго, что объясняется наличием утечек в диэлектрике и частичной разрядкой через окружающую среду.

При этом ёмкость (как и у аккумулятора) определяет накопительные свойства конденсатора или его способность удерживать энергию между обкладками.

Обратите внимание! В системе СИ этот показатель измеряется в Фарадах, которые представляют собой очень крупную единицу измерения. На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

  • Пикофарады, соответствующие 10-12 Фарады (Ф);
  • Нанофарады, равные 10-9Ф;
  • Микрофарады (мкФ), составляющие 10-6 от Фарады.

Все эти единицы для кратности обозначаются как «пФ», «нФ» и «мФ» соответственно.

Пример расчета емкостного сопротивления

Иногда конденсаторы устанавливаются в цепочках гашения напряжения с целью получения меньших его значений (вместо понижающих трансформаторов).

Важно! Этот способ получения нужных напряжений считается не только очень простым, но и самым опасным, поскольку индуктивной развязки от высокого потенциала здесь не существует. Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками

При расчёте требуемой ёмкости обычно исходят из следующих соображений:

Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками. При расчёте требуемой ёмкости обычно исходят из следующих соображений:

  • Включаемый последовательно с нагрузкой конденсатор характеризуется импедансом, аналогом сопротивления для ёмкости;
  • Этот показатель соответствует отдельному плечу в делителе напряжения, вторым элементом которого является сопротивление нагрузки;
  • Соотношение сопротивлений обоих плеч выбирается с таким расчётом, чтобы на нагрузке осталось требуемое напряжение (12 Вольт, например), а весь остаток от 220 Вольт рассеивался бы на самом конденсаторе.

Дополнительная информация. Для улучшения переходных характеристик делительной цепочки иногда параллельно конденсатору включается ещё один из резисторов, называемый разрядным.


Схема для расчёта ёмкостного сопротивления

В нашем случае выбираются следующие данные:

  • Uвх=220 Вольт;
  • Uвых=12 Вольт;
  • Iнагр=0,1Ампер (ток в нагрузке выбирается согласно её паспорта).

Исходя из них, можно определить значение сопротивления нагрузки:

Rн=220/0,1=2200 Ом или 2,2 Ком.

Для вычисления величины ёмкости, на которой должны «упасть» оставшиеся 208 Вольт, используются следующие показатели:

  • Uс=208 Вольт;
  • Iс=0,1Ампер;
  • Fсети=50 Гц.

После этого можно вычислить омическое сопротивление конденсатора, достаточное для того, чтобы на нём было 208 Вольт:

Xc=Uс/Iс=208/0,1=2080.

Ёмкость конденсатора получается из рассмотренной ранее зависимости:

Xс=1/ ω C.

Исходя из этого, получим:

С = 1/Хс2 π Fсети = 1/2080х6, 28х50 = 0,0000015311 Фарады или 1,5 мкФ.

Сопротивление Rраз выбирается равным примерно 10 Ком или более.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного тока, на протяжении короткого периода времени будет наблюдаться течение по цепи зарядного тока. По окончании зарядки, когда напряжение конденсатора будет соответствовать напряжению источника тока, кратковременное течение тока в цепи прекратится. Таким образом, полностью при постоянном токе будет своеобразным разрывом цепи или сопротивлением с бесконечно большим значением. При переменном токе конденсатор будет вести себя совершенно иначе. Его зарядка в такой цепи будет осуществляться поочередно в разных направлениях. Течение переменного тока в цепи в это время не прерывается.

Более подробное рассмотрение этого процесса указывает на нулевое значение напряжения в конденсаторе в момент его включения. После поступления к нему переменного напряжения сети начнется зарядка. В это время сетевое напряжение будет возрастать на протяжении первой четверти периода. По мере того как на обкладках накапливаются заряды, происходит увеличение напряжения самого конденсатора. После того как сетевое напряжение в конце первой четверти периода станет максимальным, зарядка прекращается и значение тока в цепи станет равным нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q является количеством электричества, протекающим по цепи в течение промежутка времени t. В соответствии с законами электростатики, количество электричества в устройстве составит: q = C x Uc = C x U. В этой формуле С будет емкостью конденсатора, U — напряжением сети, Uc — напряжением на обкладках элемента. В окончательном виде формула тока в цепи будет выглядеть следующим образом: i = C x (∆Uc/∆t) = C x (∆U/∆t).

При наступлении второй четверти периода произойдет уменьшение сетевого напряжения и начнется разрядка конденсатора. Ток в цепи изменит свое направление и будет течь в обратную сторону. В следующей половине периода направление сетевого напряжения изменится, наступит перезарядка элемента, а потом он вновь начнет разряжаться. Ток, присутствующий в цепи с конденсаторной емкостью, будет опережать по фазе напряжение на обкладках на 90 градусов.

Установлено что изменения тока конденсатора происходят со скоростью, находящейся в пропорциональной зависимости с угловой частотой ω. Поэтому в соответствии с уже известной формулой тока в цепи i = C x (∆U/∆t), аналогично получается, что действующее значение тока также будет представлять собой пропорцию между скоростью изменения напряжения и угловой частотой ω: I = 2π x f x C x U.

Далее уже совсем несложно установить значение емкостного сопротивления или реактивного сопротивления емкости: xc = 1/2π x f x C = 1/ ω x C. Данный параметр вычисляется, когда конденсаторная емкость включается в цепь переменного тока. Поэтому в соответствии с законом Ома в цепи переменного тока с включенным конденсатором, значение силы тока будет следующим: I = U/xc, а напряжение на обкладках составит: Uc = Ic x xc.

Часть сетевого напряжения, приходящаяся на конденсатор, получила название емкостного падения напряжения. Она известна также, как реактивная слагающая напряжения, обозначаемая символом Uc. Величина емкостного сопротивления хс, так же, как и значение индуктивного сопротивления xi напрямую связана с частотой переменного тока.

ОПРЕДЕЛЕНИЕ

Конденсатор, в простейшем случае состоит из двух металлических проводников (обкладок), которые разделяет слой диэлектрика. Каждая из обкладок конденсатора имеет свой вывод и может быть подключена к электрической цепи.

Конденсатор характеризуют при помощи ряда параметров (емкость, рабочее напряжение и т. д), одной из таких характеристик является сопротивление. Конденсатор практически не пропускает постоянный электрический ток. То есть сопротивление конденсатора является бесконечно большим для постоянного тока, но это идеальный случай. Через реальный диэлектрик очень малый ток протекать может. Этот ток называют током утечки. Ток утечки является показателем качества диэлектрика, который применяется при изготовлении конденсатора. У современных конденсаторов ток утечки составляет некоторые доли микроампера. Сопротивление конденсатора в таком случае можно вычислить, используя закон Ома для участка цепи, зная величину напряжения, до которой заряжен конденсатор и ток утечки. Но обычно при решении учебных задач сопротивление конденсатора постоянному току считают бесконечно большим.

Треугольник сопротивлений

Цепи переменного тока обладают полным сопротивлением. Полное сопротивление цепи определяется как сумма квадратов активного и реактивного сопротивлений

Графическим изображением этого выражения служит треугольник сопротивлений, который можно получить в результате расчёта последовательной RLC-цепи. Выглядит он следующим образом:На треугольнике видно, что катетами являются активное и реактивное сопротивление, а полной сопротивление гипотенуза.Величина и начальная фаза переменного тока, создаваемого переменным напряжением, зависят не только от величины сопротивлений, образующих электрическую цепь, но и от индуктивности и емкости этой цепи.Активное сопротивление в цепи переменного тока.Строго говоря, любая электрическая цепь обладает, кроме сопротивления, также индуктивностью и емкостью. Если по проводнику проходит ток, то вокруг него возбуждается магнитное поле, т.

е. имеют место явления индуктивности. Ток возникает под действием электрического поля на заряды, следовательно, проводник должен обладать емкостью, так как в диэлектрической среде вокруг него возникает поток смещения.Однако в ряде случаев относительная роль двух из трех параметров  R, L, С в электрической цепи практически незначительна.

Это позволяет рассматривать подобную цепь как обладающую только сопротивлением, или только индуктивностью, или только емкостью.Мы рассмотрим поочередно условия в трех таких простейших цепях переменного тока.В цепи, содержащей только сопротивление г, синусоидальное напряжени u = Um sin ?t источника электроэнергии создает ток:i = u : r = (Um: r ) sin ?tТак как сопротивление r от времени не зависит, то в этой цепи ток совпадает по фазе с напряжением (рис. 1) и изменяется также синусоидально:i = Imsin ?tздесь:Im= Um: rРисунок 1 Кривые мгновенных значений напряжения и тока в цепи,содержащей только сопротивление r.Разделив последнее выражение на , получим формулу закона Омадля действующих значений напряжения и тока:I = U : rКак видно из формулы, этот закон для цепей переменного тока, содержащих только сопротивление r, имеет такой же вид, как и закон Ома для цепи постоянного тока.В цепи переменного тока сопротивление r называется активным сопротивлением. Это сопротивление, в котором электроэнергия преобразуется в другую форму (в теплоту и др.).Оно может существенно отличаться от сопротивления rпри постоянном токе.

Сопротивление для постоянного тока называют омическим, чтобы отличить его от активного сопротивления для переменного тока.Различие между активным и омическим сопротивлениями обуславливается рядом причин. Одна из них – поверхностный эффект, частичное вытеснение переменного тока в поверхностные слои проводника.Чем больше частота переменного тока, тем это вытеснение значительнее. Из-за поверхностного эффекта сопротивлениеrоказывается уже существенно большим, чем вычисленное по формуле:r = ?

(l : S)Поверхностный эффект создается тем, что переменное магнитное поле индуктирует во внешних слоях проводника меньшую ЭДС самоиндукции, чем во внутренней его части.Особенно сильно поверхностный эффект увеличивает активное сопротивление стальных проводов. На активное сопротивление медных и алюминиевых проводов при промышленной частоте поверхностный эффект существенно влияет только при больших сечениях проводов (свыше 25 кв. мм).Кроме поверхностного эффекта, большое увеличение активного сопротивления электрической цепи могут вызывать потери энергии в переменном электромагнитном поле цепи от гистерезиса и вихревых токов.Поделитесь полезной статьей:

https://youtube.com/watch?v=NSxgxMNG2fwrel%3D0%26amp%3Bcontrols%3D0%26amp%3Bshowinfo%3D0

  • electrosam.ru
  • electrono.ru
  • electroandi.ru
  • fazaa.ru

Величины и единицы измерения ёмкости и индуктивности – для новичков в радиоделе

Ёмкость конденсатора, если его представить в виде двух металлических пластин с диэлектриком между ними, зависит от площади поверхности пластин, расстояния между ними и свойств диэлектрика Есть конденсаторы переменной ёмкости, где в качестве диэлектрика выступает воздух

Рис 418 Конденсатор переменной ёмкости

Чтобы увеличить ёмкость постоянного конденсатора его обкладки изготавливают, например, из алюминиевой фольги, проложенной тонким диэлектриком Поверхность получается достаточно большой, а свёрнутая фольга занимает мало места Чем тоньше диэлектрик, тем больше ёмкость

Но при этом тонкий диэлектрик легче пробивается напряжением То есть, рабочее напряжение конденсатора становится меньше

Переменные конденсаторы небольшой ёмкости служат для подстройки, их ещё называют триммерами

Рис 419 Подстроечный конденсатор

К единице ёмкости конденсаторов применяют приставки микро, нано, пико, что означает, почти все конденсаторы имеют ёмкость меньше основной единицы, фарады Часто это можно отнести и к единицам индуктивности, где основная единица генри

Есть один вид конденсаторов, отличающийся от других, которые называют электролитическими конденсаторами Это конденсаторы большой ёмкости, но для получения такой ёмкости их заполняют электролитом Такие конденсаторы, как правило, полярные, то есть, их правильная работа зависит от правильной полярности напряжения на них Чтобы при подключении конденсатора не произошла ошибка, на корпус наносят маркировку Если электролит в процессе работы конденсатора высыхает, то конденсатор теряет ёмкость

Хотя конденсатор не пропускает постоянный электрический ток, ток утечки всё-таки есть, то есть, у сопротивления конденсатора есть активная составляющая Электролитический конденсатор, выполненный из свёрнутой ленты фольги, похож на индуктивность, что подразумевает влияние этой индуктивности на высоких частотах Чтобы избежать этого влияния, параллельно электролитическому конденсатору можно поставить керамический конденсатор

Катушки индуктивности с номиналом в десятки миллигенри выглядят как катушки:

Рис 420 Катушка индуктивности 15 мГн

А катушки индуктивности в десятки микрогенри похожи, скорее, на резисторы

Рис 221 Катушка индуктивности 10 мкГн

Такие индуктивности называют ещё дросселями и используют в фильтрах, особенно в фильтрах цепей питания высокочастотных устройств Их можно намотать на обычном резисторе с большим сопротивлением, скажем в несколько мегаом Или намотать на тонком ферритовом стержне Катушки колебательных контуров карманных радиоприёмников наматывают на ферритовый стержень, который одновременно служит магнитной антенной приёмника

Индуктивность катушки зависит от количества витков, диаметра намотки и материала, на который наматывается катушка Чтобы уменьшить влияние сопротивления провода, его стараются выбрать достаточно большого диаметра Провод высокочастотных катушек, когда количество витков небольшое, применяют посеребрённый

На высоких частотах вполне можно применять изготовление катушки в виде спирали на печатной плате Такой способ изготовления очень технологичен и имеет хорошую повторяемость параметров

Для получения больших значений индуктивности используют такие сердечники, как кольца из ферритов или сердечники из трансформаторной стали

Для точной настройки величины индуктивности катушки индуктивности часто имеют сердечники, медные или ферритовые

Раньше карманные приёмники имели довольно большое количество фильтров промежуточной частоты, выполненных с использованием катушек индуктивности

Для уменьшения влияния катушек друг на друга их помещали в защитные экраны

Каждая из катушек имела ферритовый сердечник, который позволял настроить фильтр точно на промежуточную частоту

Позже в качестве фильтров стали применять ПАВ-фильтры (фильтры на поверхностных акустических волнах) и пьезо-фильтры

Рис 222 Катушки индуктивности с подстроечными сердечниками

Tweet Нравится

  • Предыдущая запись: Как переводить с языка электрических схем
  • Следующая запись: КОНВЕРТОРЫ В УСТРОЙСТВАХ НА МИКРОСХЕМАХ

Конденсаторы как элементы схем (0)
Конденсаторы в цепи переменного тока (0)
Индуктивности (0)
БУФЕРНОЕ УСТРОЙСТВО ДЛЯ АЦП I (0)
УСТРОЙСТВО ЗАЩИТЫ ПК C ПОМОЩЬЮ ПАРОЛЯ (0)
ЛИНЕЙНЫЙ УСИЛИТЕЛЬ МОЩНОСТЬЮ 1,2 KBT И ЧАСТОТОЙ 144 МГЦ (0)
УСТРОЙСТВО ДЛЯ ВЫБОРА ФИЛЬТРОВ HA Р1Н-ДИОДЕ (0)

Что такое

Цепь, по которой протекает непостоянный ток, обладает полным сопротивлением. Вычисляется оно по сумме активного и реактивного сопротивлений, возведенных в квадрат.

Формула вычисления

Графическое изображение этой формулы представляет собой треугольник. Его катеты представлены активным и реактивным сопротивлениями, а гипотенуза полным электросопротивлением.


Графическое отображение формулы

Емкостное электросопротивление (Xc) является одним из видов реактивного сопротивления. Этот показатель характеризует противодействие электроемкости в цепи электротоку с переменными параметрами. Преобразование электроэнергии в тепловую в момент протекания электричества сквозь емкость не возникает (свойство реактивного сопротивления). Вместо этого осуществляется передача энергии электрического тока электрическому полю и обратно. Потерь энергии при таком обмене не происходит.

Емкостное сопротивление конденсатора можно сравнить с кастрюлей, наполняемой жидкостью, при полном заполнении ее объема она переворачивается, выливая содержимое, а затем наполняется заново. После достижения максимального заряда конденсатора происходит разрядка, затем он заряжается вновь.

Дополнительная информация: Конденсатор цепи способен накопить лишь ограниченную величину заряда до перемены полярности напряжения

По данной причине непостоянный ток не падает до нуля, важное отличие от постоянного электричества. Низкие значения частоты тока соответствуют низким показателям заряда, накопленного конденсатором, низким значениям противодействия электричеству, что придает реактивные свойства

По сути, Xc — это противостояние электродвижущей силы конденсатора, уровню его заряда.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного тока, на протяжении короткого периода времени будет наблюдаться течение по цепи зарядного тока. По окончании зарядки, когда напряжение конденсатора будет соответствовать напряжению источника тока, кратковременное течение тока в цепи прекратится. Таким образом, полностью заряженный конденсатор при постоянном токе будет своеобразным разрывом цепи или сопротивлением с бесконечно большим значением. При переменном токе конденсатор будет вести себя совершенно иначе. Его зарядка в такой цепи будет осуществляться поочередно в разных направлениях. Течение переменного тока в цепи в это время не прерывается.

Более подробное рассмотрение этого процесса указывает на нулевое значение напряжения в конденсаторе в момент его включения. После поступления к нему переменного напряжения сети начнется зарядка. В это время сетевое напряжение будет возрастать на протяжении первой четверти периода. По мере того как на обкладках накапливаются заряды, происходит увеличение напряжения самого конденсатора. После того как сетевое напряжение в конце первой четверти периода станет максимальным, зарядка прекращается и значение тока в цепи станет равным нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q является количеством электричества, протекающим по цепи в течение промежутка времени t. В соответствии с законами электростатики, количество электричества в устройстве составит: q = C x Uc = C x U. В этой формуле С будет емкостью конденсатора, U – напряжением сети, Uc – напряжением на обкладках элемента. В окончательном виде формула тока в цепи будет выглядеть следующим образом: i = C x (∆Uc/∆t) = C x (∆U/∆t).

При наступлении второй четверти периода произойдет уменьшение сетевого напряжения и начнется разрядка конденсатора. Ток в цепи изменит свое направление и будет течь в обратную сторону. В следующей половине периода направление сетевого напряжения изменится, наступит перезарядка элемента, а потом он вновь начнет разряжаться. Ток, присутствующий в цепи с конденсаторной емкостью, будет опережать по фазе напряжение на обкладках на 90 градусов.

Соединение конденсаторов

Часто самого по себе конденсатора недостаточно. Поэтому такие электронные компоненты приходится объединять в группы, так называемые батареи. При таком подключении множество ёмкостей соединяются друг с другом для получения новой, обладающей другими характеристиками.

Выделяют 2 основных способа соединения деталей:

  1. последовательный;
  2. параллельный.

Последовательное соединение ёмкостей

При этом виде соединения множество деталей выстраивается в длинную цепь (от двух штук и более). Чаще всего на практике применяются комбинации из 2-5 деталей. Каждая предшествующая соединяется с последующей. В результате получается длинная цепочка, напоминающая вагоны в железнодорожном составе.

Последовательное включение

Последовательное соединение конденсаторов снижает их общую ёмкость. Вызвано это тем, что увеличивается толщина диэлектрика между обкладками прибора, а площадь их пересечения при этом остаётся неизменной (см. формулу выше). Как рассчитать суммарную ёмкость конденсатора при последовательном подключении, можно узнать из формулы ниже.

Ёмкость последовательно включенных конденсаторов

На деле такое подключение используется для получения нового значения ёмкости, но такой конденсатор просто не выпускается промышленностью. Например, имея два элемента номиналом 10 uF каждый и соединив их последовательно, можно получить общую ёмкость в 5 uF.

Пример последовательного расчёта

Другая особенность последовательного соединения – это увеличение общего напряжения. Если взять 2 ёмкости на 200 В каждую и подключить их описываемым способом, то итоговое напряжение батареи составит 200 + 200 = 400 вольт.

Применение на практике

Свойства конденсатора используются при конструировании различных фильтров. Действие ёмкостного сопротивления в этом случае зависит от способа подключения детали:

  • Если он присоединён параллельно нагрузке, то получится фильтр, задерживающий высокие частоты. С их ростом падает сопротивление конденсатора. Соответственно, нагрузка на высоких частотах шунтируется сильнее, чем на низких.
  • Если деталь подключена последовательно с нагрузкой, то получится фильтр, задерживающий низкие частоты. Эта схема также не пропускает постоянное напряжение.

В фильтрах электропитания, наряду с ёмкостным сопротивлением, используется также свойство накопления и отдачи заряда. В момент повышения нагрузки заряженная ёмкость фильтра разряжается, отдавая дополнительную энергию. Она также осуществляет подавление пульсаций и прочих паразитных сигналов, пропуская их через себя и замыкая на общий провод. Таким образом, обеспечивается сглаживание и поддержание напряжения на нагрузке в заданных пределах, и устранение нежелательных междукаскадных связей, вызывающих нестабильную работу.

Благодаря своим свойствам конденсаторы используются в тех случаях, когда необходимо передать и постоянный, и переменный ток по одним и тем же проводам. Источник постоянного напряжения подключается к общему проводу и второму выводу ёмкости, через которую присоединяется источник переменного напряжения. На другой стороне происходит разделение: потребитель переменного подключается через конденсатор той же ёмкости, а потребитель постоянного — напрямую, до выводов детали.

О реальном конденсаторе

Реальный конденсатор имеет одновременно два сопротивления: активное и емкостное. Их следует считать включенными последовательно.

Напряжение приложенное генератором к активному сопротивлению и ток идущий по активному сопротивлению совпадают по фазе.

Напряжение приложенное генератором к емкостному сопротивлению и ток идущий по емкостному сопротивлению сдвинуты по фазе на 90 . Результирующее напряжение приложенное генератором к конденсатору можно определить по правилу параллелограмма.

На активном сопротивлении напряжение Uакт и ток I совпадают по фазе. На емкостном сопротивлении напряжение Uc отстает от тока I на 90 . Результирующее напряжение приложенное генератором к конденсатору определяется по правилу параллелограмма. Это результирующее напряжение отстает от тока I на какой то угол φ всегда меньший 90 .

Комплексное сопротивление конденсатора

В цепи с резисторами, конденсаторами и индуктивностями реактивное сопротивление — это мнимая часть импеданса Z, комплексная величина, которая в цепях переменного тока играет роль, аналогичную роли электрического сопротивления в цепях постоянного тока.

Фактически, импеданс цепи определяется как отношение напряжения к току:

Z = V / I

Для конденсатора или конденсатора его импеданс определяется отношением:

ZC = v (t) / i (t) = VC sin ωt / IC грех (ωt + π / 2)

Один из способов выразить напряжение и ток в виде векторов — это указать амплитуду и фазовый угол (полярная форма):

v (t) = VC ∠ 0º

я (т) = яC ∠ 90º

Таким образом:

ZC = VC ∠ 0º / IC ∠ 90º = (VC / IC) ∠ 0º -90º =

= VC/ РЕЗЮМЕC ω ∠ -90º = (1 / ωC) ∠ -90º =

ZC = (- j) XC

То есть импеданс конденсатора — это его емкостное реактивное сопротивление, умноженное на отрицательную величину мнимой единицы.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: