Постоянные магниты, характеристики и параметры

Содержание:

Электромагнит против постоянного магнита  

Электромагниты и постоянные магниты — две важные темы в теории электромагнетизма. В этой статье будут объяснены основы магнетизма, электромагнита и постоянного магнита, а также описаны отношения между двумя магнитами.

Что такое электромагнит?

Чтобы понять электромагниты, нужно сначала понять теории, лежащие в основе магнетизма. Магнетизм возникает из-за электрических токов. Прямой проводник с током действует перпендикулярно току к другому проводнику с током, размещенному параллельно первому проводнику. Поскольку эта сила перпендикулярна потоку зарядов, это не может быть электрическая сила. Позже это было идентифицировано как магнетизм.

Магнитная сила может быть притягивающей или отталкивающей, но всегда взаимной. Магнитное поле воздействует на любой движущийся заряд, но на неподвижные заряды это не влияет. Магнитное поле движущегося заряда всегда перпендикулярно скорости. Сила, действующая на движущийся заряд со стороны магнитного поля, пропорциональна скорости заряда и направлению магнитного поля.

У магнита два полюса. Они определяются как Северный полюс и Южный полюс. Силовые линии магнитного поля начинаются на Северном полюсе и заканчиваются на Южном полюсе. Однако эти силовые линии являются гипотетическими. Следует отметить, что магнитные полюса не существуют как монополь. Полюса нельзя изолировать. Это известно как закон Гаусса для магнетизма. Электромагнит — это компонент, состоящий из токоведущих петель. Эти петли могут иметь любую форму, но обычные электромагниты имеют форму соленоидов или колец.

Что такое постоянный магнит?

Поскольку электрический ток — единственный способ создать магнит, постоянные магниты должны состоять из токов. У каждого атома есть электроны, вращающиеся вокруг ядра атома, и эти электроны обладают свойством, называемым электронным спином. Эти два свойства ответственны за магнетизм материалов. Материалы можно разделить на несколько категорий в зависимости от их магнитных свойств. Парамагнитные материалы, диамагнитные материалы и ферромагнитные материалы — это лишь некоторые из них. Есть также некоторые менее распространенные типы, такие как антиферромагнитные материалы и ферримагнетики. Диамагнетизм проявляется в атомах только с парными электронами. Полный спин этих атомов равен нулю. Магнитные свойства возникают только за счет орбитального движения электронов. Когда диамагнитный материал помещается во внешнее магнитное поле, он создает слабое магнитное поле, антипараллельное внешнему полю. Парамагнитные материалы имеют атомы с неспаренными электронами. Электронные спины этих неспаренных электронов действуют как маленькие магниты, которые сильнее, чем магниты, созданные орбитальным движением электронов. Когда эти небольшие магниты помещены во внешнее магнитное поле, они выравниваются по полю, создавая магнитное поле, параллельное внешнему полю. Ферромагнитные материалы также являются парамагнитными материалами с зонами магнитных диполей в одном направлении еще до приложения внешнего магнитного поля. При приложении внешнего поля эти магнитные зоны выравниваются параллельно полю, так что они усиливают поле. Ферромагнетизм остается в материале даже после удаления внешнего поля, но парамагнетизм и диамагнетизм исчезают, как только внешнее поле устраняется. Постоянные магниты сделаны из таких ферромагнитных материалов.

В чем разница между электромагнитами и постоянными магнитами?

• Постоянные магниты — это также электромагниты, по которым течет непрерывный ток, который делает каждый атом магнитом.

• Электромагнетизм исчезает после прекращения подачи внешнего тока, но постоянный магнетизм остается.

Приложения

Любой магнитный бар , естественно , ориентируется на севере — юг , направление , следуя линии магнитного поля Земли , до тех пор , как он покинул ось вращение свободна от всех ограничений. Это свойство используется при изготовлении компасов . Например, они присутствуют в громкоговорителях, некоторых дверных замках различных форм и размеров (от крошечных магнитов 4 мг (редкоземельный кобальт), например, в электрических часах, до литых магнитов Ticonal 600 массой 40 кг (например, магнит статора от электрического генератора ).
в начале 1970 — х годов, крупные заводы могли бы производить до нескольких сотен миллионов долларов в год.

Примеры использования

Магниты широко используются для изготовления машин постоянного тока или синхронных машин (например, двигателей малой мощности), а также различных электронных и электротехнических устройств.

Наличие магнитного поля в отсутствие тока используется для производства сепараторов и датчиков , например, датчиков приближения, ЯМР и, следовательно, МРТ .

Магниты также используются в конструкции дипольных источников для создания микроволновой плазмы. Однако это должно подтвердить условия связи RCE (электронный циклотронный резонанс), т.е. 0,0875 тесла для вращающегося электрического поля 2,45  ГГц . Обычно в качестве магнитов используются кобальт- самарий или бор- железо- неодим .

Магниты используются в различных предметах. Магнитные зажимы — это канцелярские товары, которые позволяют прикреплять листы бумаги к доске, как зажим или булавку; эти же застежки используются для фото держателей, заменяя клей или скотч. декоративные и утилитарные предметы, называемые «  магнитами  », крепятся к определенным опорам (например, холодильник). Некоторые игровые элементы работают с магнитами, в том числе и строительные игры.

Преимущества

Самый распространенный неодимовый магнит — тот, который имеет сплав железного оксида, обладающий хорошей термостойкостью, высокой магнитной проницаемостью и низкой себестоимостью. Оснащен цветовой маркировкой, высокой коэрцитивной силой, мощным магнитным полем, удерживающим предметы на весу, компактным размером, малым весом, доступностью и широкой областью применения. Имеет большой срок службы.

Если обычный магнит работает на протяжении 10 лет и может размагничиваться, то неодимовый через 100 лет не утрачивает свои свойства. Еще одно преимущество заключается в форме. Подобное изделие обладает формой подковы. Она дает большой срок службы прибору. Что касается стоимости, это — дорогие изделия, однако стоимость оправдывается с помощью превосходных эксплуатационных качеств и безупречной надежности.

Стоит указать, что сила, заключенная в неодимовых магнитах, еще одно их преимущество. Она высокая и найти конкурентную ей нереально. Это рекордный вид показателя, повышение которого невозможно. Сила образуется при изготовлении. Намагничивание происходит после формирование сплава. Благодаря существующим технологиям намагничивается сплав таким образом, что магнит имеет невероятно высокую мощность и этот показатель достигает рекорда.

Обратите внимание! Мощность — относительное обывательское понятие. Сила стабильная, но измеряется она при помощи приборов

При этом показания зависят от того, какая толщина у поверхности и чистота. Некоторое влияние способен оказывать угол отрыва.

Срок службы

Срок работы оборудование, если будет надлежащее использование, равен 30 лет

Из-за неосторожного обращения, прибор может быть испорчен. Дело в отсутствии гибкости, а также в ломкости и потрескивании в момент большой нагрузки

Из-за падения, удара или снижения сцепных свойств снижается срок службы оборудования. По этой причине необходимо избежание падений с использованием соприкасающихся в движениях деталей.

Еще одним крайне важным моментом является безвозвратная потеря магнитных свойств из-за нагревания. Поэтому шлифовка с резкой или сверлением снижает цепную силу и может возгораться сплав. Если же хранение с эксплуатацией организовано правильно, то намагниченность сохраняется на протяжении 10 лет.

Типы постоянных магнитов

Генератор на неодимовых магнитах

Всего существует пять типов постоянных магнитов, каждый из которых изготовляется по-разному на основе материалов с отличающимися свойствами:

  • альнико;
  • ферриты;
  • редкоземельные SmCo на основе кобальта и самария;
  • неодимовые;
  • полимерные.

Альнико

Это постоянные магниты, состоящие в основном из комбинации алюминия, никеля и кобальта, но могут также включать медь, железо и титан. Благодаря свойствам магнитов альнико, они могут работать при самых высоких температурах, сохраняя свой магнетизм, однако они легче размагничиваются, чем ферритовые или редкоземельные SmCo. Они были первыми серийными постоянными магнитами, заменяющими намагниченные металлы и дорогие электромагниты.


Магниты в электродвигателях

Применение:

  • электродвигатели;
  • термическая обработка;
  • подшипники;
  • аэрокосмические аппараты;
  • военная техника;
  • высокотемпературное погрузо-разгрузочное оборудование;
  • микрофоны.

Ферриты

Для изготовления ферритовых магнитов, известных еще как керамические, применяются карбонат стронция и оксид железа, в соотношении 10/90. Оба материала в изобилии и экономически доступны.

Из-за низких издержек производства, устойчивости к нагреву (до 250°C) и коррозии ферритовые магниты – одни из самых популярных для повседневного применения. Они имеют большую внутреннюю коэрцитивность, чем альнико, но меньшую магнитную силу, чем неодимовые аналоги.

Применение:

  • звуковые колонки;
  • охранные системы;
  • большие пластинчатые магниты для удаления загрязнения железом технологических линий;
  • электродвигатели и генераторы;
  • медицинские инструменты;
  • подъемные магниты;
  • морские поисковые магниты;
  • устройства, основанные на работе вихревых токов;
  • выключатели и реле;
  • тормоза.


Магнит в звуковом динамике

Редкоземельные магниты SmCo

Магниты из кобальта и самария работают в широком температурном диапазоне, имеют высокие температурные коэффициенты и высокую коррозионную стойкость. Этот вид сохраняет магнитные свойства даже при температурах ниже абсолютного нуля, что делает их популярными для использования в криогенных установках.

Применение:

  • турботехника;
  • насосные муфты;
  • влажные среды;
  • высокотемпературные устройства;
  • миниатюрные гоночные автомобили с электроприводом;
  • радиоэлектронные устройства для работы в критических условиях.

Неодимовые магниты

Сильнейшие существующие магниты, состоящие из сплава неодима, железа и бора. Благодаря их огромной силе, даже миниатюрные магниты эффективны. Это обеспечивает универсальность использования. Каждый человек постоянно находится рядом с одним из неодимовых магнитов. Они есть, например, в смартфоне. Изготовление электродвигателей, медтехника, радиоэлектроника опираются на сверхпрочные неодимовые магниты. Из-за их сверхпрочности, огромной магнитной силы и стойкости к размагничиванию возможно изготовление образцов до 1 мм.


Неодимовые магниты разной формы

Применение:

  • жесткие диски;
  • звуковоспроизводящие устройства – микрофоны, акустические датчики, наушники, громкоговорители;
  • протезы;
  • насосы с магнитной связью;
  • дверные доводчики;
  • двигатели и генераторы;
  • замки на ювелирных изделиях;
  • сканеры МРТ;
  • магнитотерапия;
  • датчики ABS в автомобилях;
  • подъемное оборудование;
  • магнитные сепараторы;
  • герконовые переключатели и т. д.

Полимерные магниты

Гибкие магниты содержат магнитные частицы, находящиеся внутри полимерного связующего. Используются для уникальных устройств, где невозможна установка твердых аналогов.

Применение:

  • дисплейная реклама – быстрая фиксация и быстрое удаление на выставках и мероприятиях;
  • знаки транспортных средств, учебные школьные панели, логотипы компаний;
  • игрушки, головоломки и игры;
  • маскирование поверхностей для окраски;
  • календари и магнитные закладки;
  • оконные и дверные уплотнения.


Полимерные магниты

Большинство постоянных магнитов являются хрупкими и не должны использоваться в качестве структурных элементов. Они изготавливаются в стандартных формах: кольца, стержни, диски, и индивидуальных: трапеции, дуги и др. Неодимовые магниты из-за высокого содержания железа подвержены коррозии, поэтому покрываются сверху никелем, нержавеющей сталью, тефлоном, титаном, каучуком и другими материалами.

Эксперименты с неодимовыми магнитами

Неомагнит довольно популярен, его состав: неодим, бор, железо. Такой магнит обладает высокой мощностью и отличается стойкостью к размагничиванию.

Как усилить неодим? Неодим очень подвержен коррозии, то есть быстро ржавеет, поэтому покрывают никелем, чтобы повысить срок службы. Также они напоминают керамику, их легко разбить или расколоть.

Но пытаться увеличивать его мощность искусственным способом нет смысла, потому что это постоянный магнит, он имеет определенный для себя уровень силы. Поэтому, если вам необходимо иметь более мощный неодим, лучше приобрести его, учитывая нужную силу нового.

Заключение: в статье рассмотрена тема, как увеличить силу магнита, в том числе, как увеличить мощность неодимового магнита. Получается, что существует несколько способов увеличить свойства магнита. Потому что бывает просто намагниченный металл, увеличить силу которого невозможно.

Наиболее простые способы: с помощью клея и других магнитиков (они должны быть приклеены идентичными полюсами), а также – более мощного, во внешнем поле которого должен находится исходный магнит.

Рассмотрены способы увеличения силы электромагнита, которые заключаются в дополнительной обмотке проводами или усилении поступления тока. Единственное, что нужно учитывать — это силу поступления тока в целях безопасности и сохранности аппарата.

Обычные и неодимовые магниты не способны поддаваться на увеличение собственной мощности.

24.10.17, 19:10

Популярные темы сообщений

  • Гитара Сегодня гитара является инструментом, который знают практически во всех уголках мира. Но вот историю происхождения и развития гитары знают далеко не все.
  • Хризантема Хризантема – известный во всем мире цветок, который славится большим видовым разнообразием. Его родиной считается Япония. Происхождение названия этого цветка относится к греческому языку и имеет отношение к желтому оттенку.
  • Как передвигается кошка Кошка — одно из тех животных, которые имеют быструю реакцию на внешний раздражитель, нежную шерсть и целый комплекс движений, не перестающих удивлять ловкостью, скоростью, умением держать равновесие в разных ситуациях.

Понятие магнит

Магнит — это тело, которое имеет собственное МП.

Главное качество магнитов — способность притягивать предметы из железа или его сплавов (сталь, чугун).

Магниты делятся на 2 вида:

  • природные (из магнитного железняка);
  • искусственные (намагниченные железные полосы).

Постоянные магниты — это тела, которые долгое время создают МП.

Переменные МП и электрические существуют только совместно, так как МП порождает электрическое, а электрическое поле порождает МП.

Область, где качества магнита демонстрируются с наибольшей силой, называются полюсами. Магнит имеет два полюса: северный (N) и южный (S). Два одинаковых поля (N — N) отталкиваются, а противоположные (N — S) — притягиваются.

Если постоянный магнит разделить напополам, то у этих частей окажется также два полюса.

Промышленность


Смотреть галерею

Наверное, все хоть раз, но видели разновидности такого устройства, как электромагнит подъемный. Это толстый «блин» различного диаметра, который обладает огромной силой притяжения и используется для переноски груза, металлолома и вообще любого иного металла. Удобство его заключается в том, что достаточно отключить питание — и весь груз сразу же отцепляется, и наоборот. Это значительно упрощает процесс погрузки и разгрузки.

Сила электромагнита, кстати, рассчитывается по следующей формуле: F=40550∙B^2∙S. Рассмотрим ее более подробно. В данном случае F – это сила в килограммах (также может измеряться в ньютонах), B – значение индукции, а S – площадь рабочей поверхности устройства.

Процесс изготовления мощного 12-вольтового магнита

Конечно, в роли сердечника можно использовать и любой другой массивный стальной штырь. Но подкова от старого замка подойдет как нельзя лучше. Ее изгиб будет служить в качестве своеобразной ручки, если мы начнем поднимать грузы, обладающие внушительным весом. Итак, в данном случае процесс изготовления электромагнита своими руками следующий:

  1. Наматываем проволоку из трансформатора вокруг одной из подков. Витки кладем как можно плотнее. Изгиб подковы будет немного мешать, но ничего страшного. Когда заканчивается длина стороны подковы, укладываем витки в противоположную сторону, поверх первого ряда витков. Делаем, в общей сложности, 500 витков.
  2. Когда обмотка одной половины подковы готова, обматываем ее одним слоем изоленты. Изначальный конец провода, предназначенного для подпитки от источника тока, выводим в верхнюю часть будущей ручки. Обматываем нашу катушку на подкове еще одним слоем изоленты. Другой конец проводника приматываем к изгибающейся сердцевине ручки и на другой стороне делаем еще одну катушку.
  3. Наматываем проволоку на противоположную сторону подковы. Делаем все так же, как и в случае с первой стороной. Когда 500 витков уложено, так же выводим конец провода для запитки от энергоисточника. Кому непонятно, порядок действий хорошо показан в этом видео.

Заключительная стадия изготовления электромагнита своими руками — подпитка к энергоисточнику. Если это аккумулятор, наращиваем концы зачищенных проводников нашего электромагнита при помощи дополнительных проводов, которые подсоединяем к клеммам аккумулятора. Если это блок питания, отрезаем штекер, идущий на потребитель, зачищаем провода и к каждому прикручиваем по проводу от электромагнита. Изолируем изолентой. Включаем блок питания в розетку. Поздравляем. Вы сделали своими руками мощный электромагнит на 12 вольт, который в состоянии поднимать грузы свыше 5 кг.

Единицы измерения

В системе СИ единицей магнитного потока является вебер (Вб), магнитной проницаемости — генри на метр (Гн/м), напряжённости магнитного поля — ампер на метр (А/м), индукции магнитного поля — тесла.

Вебер — магнитный поток, при убывании которого до нуля в сцепленном с ним контуре сопротивлением 1 ом проходит количество электричества 1 кулон.

Генри — международная единица индуктивности и взаимной индукции. Если проводник обладает индуктивностью в 1 Гн и ток в нём равномерно изменяется на 1 А в секунду, то на его концах индуктируется ЭДС в 1 вольт. 1 генри = 1,00052 · 109 абсолютных электромагнитных единиц индуктивности.

Тесла — единица измерения индукции магнитного поля в СИ, численно равная индукции такого однородного магнитного поля, в котором на 1 метр длины прямого проводника, перпендикулярного вектору магнитной индукции, с током силой 1 ампер действует сила 1 ньютон.

Усиление электромагнита

Чтобы понять, как увеличить силу магнита, нужно разобраться в процессе намагничивания. Это произойдет, если магнит расположить во внешнем магнитном поле противоположной стороной к исходной. Увеличение же мощности электромагнита происходит тогда, когда увеличивается подача тока или умножаются витки обмотки.

Увеличить силу магнита можно с помощью стандартного набора необходимого оборудования: клея, набора магнитов (нужны именно постоянные), источника тока и изолированного провода. Они понадобятся для осуществления тех способов увеличения силы магнита, которые представлены ниже.

Усиление с помощью более мощного магнита

Этот способ заключается в использовании более мощного магнита для усиления исходного. Для осуществления надо поместить один магнит во внешнее магнитное поле другого, обладающего большей мощностью. Также с этой же целью применяют электромагниты. После удержания магнита в поле другого, произойдет усиление, но специфика заключается в непредсказуемости результатов, поскольку для каждого элемента такая процедура будет работать индивидуально.

Усиление с помощью добавления других магнитов

Известно, что каждый магнит имеет два полюса, причем каждый притягивает противоположный знак других магнитов, а соответствующий – не притягивает, лишь отталкивает. Как увеличить мощность магнита, используя клей и дополнительные магниты. Здесь предполагается добавление других магнитов с целью увеличения итоговой мощности. Ведь, чем больше магнитов, тем, соответственно, будет больше сила. Единственное, что нужно учесть, — это присоединение магнитов одноименными полюсами. В процессе они будут отталкиваться, согласно законам физики. Но задача состоит в склеивании, несмотря на сложности в физическом плане. Лучше использовать клей, который предназначен для склеивания металлов.

Метод усиления с использованием точки Кюри

В науке есть понятие точки Кюри. Усиление или ослабление магнита можно произвести, нагревая или охлаждая его относительно самой этой точки. Так, нагревание выше точки Кюри или сильное охлаждение (гораздо ниже нее) приведет к размагничиванию.

Надо заметить, что свойства магнита при нагревании и охлаждении относительно точки Кюри имеют скачкообразное свойство, то есть, добившись правильной температуры можно усилить его мощность.

Метод №1

Если возник вопрос, как сделать магнит сильнее, если его сила регулируется электрическим током, то сделать это можно с помощью увеличения тока, который подается на обмотку. Здесь идет пропорциональное увеличение мощности электромагнита и подачи тока. Главное, ⸺ постепенная подача, чтобы не допустить перегорания.

Метод №2

Для осуществления этого метода надо увеличить количество витков, но длина должна оставаться неизменной. То есть, можно сделать один-два дополнительных ряда провода, чтобы общее количество витков стало больше.

В этом разделе рассмотрены способы, как увеличить силу магнита в домашних условиях, для экспериментов можно заказать на сайте .

Природа магнетизма

Демонстрация свойств магнита в притягивании к себе металлических предметов у людей вызывает вопрос: что такое представляют собой постоянные магниты? Какова же природа такого явления, как возникновение тяги металлических предметов в сторону магнетита?

Первое объяснение природы магнетизма дал в своей гипотезе великий учёный – Ампер. В любой материи протекают электрические токи той или иной степени силы. Иначе их называют токами Ампера. Электроны, вращаясь вокруг собственной оси, вдобавок обращаются вокруг ядра атома. Благодаря этому, возникают элементарные магнитные поля, которые взаимодействуя между собой, формируют общее поле вещества.

В потенциальных магнетитах при отсутствии внешнего воздействия поля элементов атомной решётки ориентированы хаотически. Внешнее магнетическое поле «выстраивает» микрополя структуры материала в строго определённом направлении. Потенциалы противоположных концов магнетита взаимно отталкиваются. Если приближать одинаковые полюсы двух полосовых ПМ, то руки человека ощутят сопротивление движению. Разные полюсы будут стремиться друг к другу.

При помещении стали или железного сплава во внешнее магнитное поле происходит строгое ориентирование внутренних полей металла в одном направлении. В результате этого материал приобретает свойства постоянного магнита (ПМ).

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N 2) 1 — А, 2 — N 3) 1 — S, 2 — S 4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному 2) 1 — южному; 2 — северному полюсу 3) и 1, и 2 — северному полюсу 4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90° 2) повернётся на 180° 3) повернётся на 90° или на 180° в зависимости от значения силы тока 4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

1) 1 2) 2 3) 3 4) 4

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо 2) влево 3) на нас из-за плоскости чертежа 4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный 2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный 3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный 4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

1) вправо → 2) влево ← 3) 4) вниз ↓

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

1) 2) вниз ↓ 3) направо → 4) налево ←

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

1) 2) вправо → 3) вниз ↓ 4) влево ←

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле. 2) Вокруг неподвижных зарядов существует электростатическое поле. 3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный. 4) Магнитное поле существует вокруг движущихся зарядов. 5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится. 2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо. 3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А. 4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз. 5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

История открытия магнита, изучение его свойств

Реальная история открытия магнита, подкреплённая фактами, отражёнными в письменных источниках, началась в IV веке до нашей эры. Фалес, греческий философ и физик, упомянул в своих трудах магнитные свойства каменистой породы.

В XIII веке началось первое научное исследование магнита. П. Перегрин выпустил сочинение, где описывал, что у предмета есть 2 полюса, которые невозможно разделить. Учёный также рассказал об отталкивании и притяжении. К концу столетия компасы стали использоваться для навигации в развитых странах.

Уильям Гильберт в 1600 году выпустил труд «О магните». Английский врач к уже известным фактам добавил сенсационные сведения: железная арматура усиливает действие магнитных полюсов, нагревание ослабевает магнетизм.

Далее изучение свойств камня приобрело углублённый характер: проводились многочисленные опыты с использованием других предметов, со сменой условий, нагревом и охлаждением.

Спустя 220 лет Ганс Эрстед на лекции продемонстрировал студентам, как ведёт себя магнит рядом с электрическим током. Вскоре выдающийся физик доказал, что он действует на провод, по которому проходит ток, с определённой силой. Открытие стало грандиозным прорывом в исследовании магнитных свойств.

В первой четверти XIX века английский инженер Стёрджен создал первый электромагнит. Предмет представлял собой согнутый железный стержень, обмотанный медной проволокой. Изоляцией выступал слой лака. Когда по стержню проходил ток, он становился сильным магнитом, а при прерывании подачи мгновенно терял свойства. Именно эта способность электромагнитов вывела их в широкое применение.

Намагниченность

Численно магнитная восприимчивость равна намагниченности вещества при единичной напряженности поля. Намагниченность (обозначается J) характеризует магнитное состояние конкретного физического тела. Если его поместить в силовое поле, то оно получит определенный магнитный момент М. В таком случае, его намагниченность будет равна магнитному моменту единицы объема V. Если тело намагничено однородно, то J = М/V. Намагниченность прямо пропорциональна напряженности силового поля, которое ее вызвало. На одном из этапов производства изделий NdFeB, их помещают в очень мощное силовое поле, дающее большую намагниченность. Поэтому неодимовый магнит сцепление имеет просто огромное.

Магнитный момент – это векторная характеристика вещества, являющегося источником магнитного поля. (Если, например, слиток железа внести в силовое поле и намагнитить, то он сам станет источником магнетизма). Его создают магнитные моменты элементарных частиц (атомов), которые имеют в пространстве упорядоченное ориентирование и потому суммируются. Сила неодимового магнита велика, в частности, из-за того, что у него значительный магнитный момент.

Современные магнитотвердые материалы

Во многих электрических машинах применяются магнитные цепи, возбуждение которых проходят через постоянные магниты. Для изготовления этих элементов используются специальные материалы двух основных типов. Первый тип относится к магнитомягким материалам, характеризующимся узкой петлей гистерезиса. Основой для изготовления служит низкоуглеродистая сталь или железоникелевые и железокобальтовые сплавы.

Во втором случае используются магнитотвердые материалы с высокой остаточной индукцией и коэрцитивной силой. Их собственная намагниченность позволяет создавать интенсивные магнитные потоки. Материалами для изготовления служат сплавы, основой которых является алюминий, железо, кобальт, никель и редкоземельные материалы.

Использование редкоземельных материалов в интерметаллических соединениях считается наиболее эффективным при создании постоянных магнитов. Среди них следует отметить соединение кобальт-самарий, а также сплав железо-неодим-бор. Они отличаются высокой удельной магнитной энергией. Кривая размагничивания имеет форму с очень высоким коэффициентом. Нестабильные характеристики отличаются низким температурным коэффициентом. Благодаря хорошим технологическим показателям, данные материалы при необходимости легко свариваются или склеиваются. Это позволяет использовать магнитные элементы в самых разных конструкциях машин. Рабочий температурный диапазон таких магнитов находится в пределах от -60 до +200 градусов.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: