Коэффициент трансформации

4.5.ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР

В общем случае параметры первичной обмотки трансформатора отличаются
от параметров вторичной обмотки. Разница наиболее ощутима при больших
коэффициентах трансформации, что затрудняет расчеты и (особенно) построение
векторных диаграмм. Векторы электрических величин, относящиеся к первичной
обмотке, значительно отличаются по своей длине от одноименных векторов
вторичной обмотки. Затруднения можно устранить, если привести все параметры
трансформатора к одинаковому числу витков, например, к w1. С этой целью
параметры вторичной обмотки пересчитываются на число витков w1.
Таким образом, вместо реального трансформатора с коэффициентом трансформации
получают эквивалентный
трансформатор
с
Такой трансформатор называется приведенным. Приведение параметров
трансформатора не должно отразиться на его энергетическою процессе,
т.е. все мощности и фазы вторичной обмотки должны остаться такими же,
что и в реальном трансформаторе.
Так, например, если полная мощность вторичной обмотки реального трансформатора
то она должна быть
равна полной мощности вторичной обмотки приведенного трансформатора:

Используя ранее полученное выражение I 2‘ = I2 w2/w1,
напишем выражение для E2‘:

Приравняем теперь активные мощности вторичной обмотки:

Определим приведенное активное сопротивление:

по аналогии:

Уравнения ЭДС и токов для приведенного трансформатора теперь будут иметь вид:

2.4. Определение группы соединения обмоток трансформатора.

Группа соединения обмоток трансформатора имеет особо важное значение для параллельной работы его с другими трансформаторами. Метод двух вольтметров для определения группы соединения обмоток является распространенным и доступным

Метод основан на совмещении векторных диаграмм первичного и вторичного напряжений, измерении напряжений между соответствующими выводами и последующем сравнении этих напряжений с условным

Метод двух вольтметров для определения группы соединения обмоток является распространенным и доступным. Метод основан на совмещении векторных диаграмм первичного и вторичного напряжений, измерении напряжений между соответствующими выводами и последующем сравнении этих напряжений с условным.

Для проведения опыта собирают схему, показанную на рис.3.

Рис.3 Определение группы соединения обмоток трансформатора методом двух вольтметров.

Вводы А-а соединяют между собой, а на линейные вводы А, В, С обмотки ВН подают трехфазовое напряжение 220 В. это напряжение измеряется вольтметром PV1. вольтметром PV2 измеряется напряжение между вводами В-в, С-с, В-с, С-в. измеренные напряжения сравнивают с условным Uусл. Условное напряжение определяется по формуле:

Где U2л – линейное напряжение на вводах обмотки НН во время опыта В.

Кл – линейный коэффициент трансформации.

Где Uл1 – линейное напряжение, подведенное к обмотке ВН при опыте.

Результаты измерений группы соединений заносятся в таблицу 3

Напряжение на вводах

Полученные напряжения сравнивают с условным напряжением. На основании сравнения и по таблице 4 определяется группа соединений обмоток трансформатора.

Сравнение на вводах Uусл

Примечание: М – меньше, Б – больше, Р – равно.

2.5 Определение сопротивления обмоток трансформатора постоянному току.

При заданном измерении могут выявится следующие характерные дефекты:

а) недоброкачественная пайка и плохие контакты в обмотке и в присоединении вводов;

б) обрыв одного или нескольких параллельных проводников в обмотке.

Измерение сопротивления обмоток в данном случае производится мостовым методом – мостом Р 353. Измерение производится на всех ответвлениях и на всех фазах. При наличии выведенной нейтрали (0) измерение производится между фазными выводами и нулем. Если обмотка соединена в «звезду», то сопротивление фазы можно определить /1/

Где RAB, RВС, RАС – сопротивления на линейных зажимах АВ, ВС, АС.

Полученные значения сопротивления разных фаз при одном положении переключателя не должны отличаться друг от друга более чем на 2%. Данные измерений следует занести в таблицу 5.

Примечание в данной работе трансформатор имеет одно положение переключателя.

Назначение, устройство и работа прибора Э236.

Прибор Э236 предназначен для контроля технического состояния и испытания изоляции при техническом обслуживании и ремонте якорей автотракторных генераторов, стартеров и электродвигателей постоянного тока с номинальным напряжением 12 и 24 В. Диаметр проверяемых якорей от 25 до 180 мм при питании прибора от однофазной электрической цепи переменного тока напряжением 220В. /2/

Рис.4 Вид на лицевую панель прибора Э236

Конструктивно прибор представляет собой настольную измерительную установку, имеющую дроссель, измерительную цепь, контактные устройства.

С черным проводом (левое) контактное устройство используется при испытании электрической прочности изоляции. При нажатии рукоятки стержень утопает до упора, замыкая цепь. В свободном состоянии цепь обесточена.

С синим проводом (правое) контактное устройство служит для снятия с коллектора наводимой в якоре ЭДС, и применяется при определении короткозамкнутых секций и витков, обрывов и т.д. Верхняя пластина устройства – подвижная и позволяет установить в зависимости от шага и ширины пластин коллектора якоря необходимый размер между торцами пластин. В нерабочем положении оба контактных устройства должны быть установлены на задней стенке прибора в кронштейнах.

На рис.5 приведена принципиальная электрическая схема прибора.

Рис.5 Принципиальная электрическая схема прибора Э236.

Дроссель L1 имеет основную обмотку (1000 витков проводом ПЭВ-2 диаметром 0,4мм) для создания магнитного потока в магнитопроводе и проверяемом якоре, и дополнительную обмотку (1100 витков проводом ПЭВ-2 диаметром 0,2мм). Питание обмоток дросселя осуществляется напряжением 220В. Основная обмотка дросселя имеет отвод от 54 витка, что обеспечивает питание лампы HL2, служащей для сигнализации включенного состояния прибора. Для защиты питающей сети от перегрузок и КЗ в цепи основной обмотки установлен предохранитель F1.

Определение и расчет коэффициента трансформации счетчика электроэнергии

Все приборы учета электроэнергии, которые рассчитаны на большие токи (от 100 А и выше) имеют в своем составе понижающие трансформаторы. Они уменьшают ток, поступающий непосредственно на измерительную часть. Одним из основных параметров для потребителя в этом случае является коэффициент трансформации счетчика электроэнергии. Он необходим для правильного снятия показаний с таких измерительных приборов.

Техническая характеристика коэффициента

Коэффициент трансформации – отношение токов нагрузки и электрического счетчика. В данном случае он всегда будет больше единицы, так как токи потребления превышают измерительные. При подсчете израсходованной электроэнергии, показания на циферблате или панели, умножаются на данный коэффициент. Получившееся значение является правильным количеством потребленных киловатт-часов.

А также трансформаторы имеют класс точности. Для оборудования учета электроэнергии он равен 0,2 или 0,5. Чем ниже значение класса, тем более высокая точность измерительных приборов.

Виды электросчетчиков

Существует огромное количество различных электросчетчиков. Однако их всех можно разбить на три основных вида:

Механические устройства

Конструктивно индукционные счетчики выполнены следующим образом – между двух катушек, токовой и напряжения, находится алюминиевый диск, который механически связан со шкалой.

Принцип работы – ток, протекающий по катушкам, создает электромагнитное поле, которое заставляет вращаться диск. Он через червячную передачу передает свое вращение на механизм отсчета. Чем больший ток протекает через катушки, тем большая индуктивность электромагнитного поля, которое заставляет быстрее вращаться диск, а следственно и шкалу.

В классификации счетчиков индуктивные являются самыми неточными. Это обусловлено погрешностями, возникающими при преобразовании электромагнитного поля во вращение диска. А также довольно серьезные погрешности могут возникать и в механизме вращения шкалы.

Главным достоинством данного вида – низкая цена.

С электронным механизмом

Электронные приборы учета электроэнергии появились относительно недавно. Основаны они на измерении тока посредством аналоговых датчиков. Информация с датчиков поступает на микроконтроллер, где преобразуется и выводится на ЖК дисплей.

К достоинствам электронных относится:

  • Небольшие размеры.
  • Возможность настраивать несколько алгоритмов подсчета электроэнергии.
  • Самый высокий класс точности среди других видов из-за отсутствия большого числа элементов при измерении.
  • Возможность настроить систему АСКУЭ.

Главными недостатками являются высокая цена и большая чувствительность к скачкообразному изменению напряжения в сети.

Смешанные модели

Гибридные приборы, как видно из названия, являются комбинацией компонентов индуктивных и электронных счетчиков. Измерительная часть у них взята от механических, а обработка и вывод показаний осуществляется с помощью микроконтроллера.

Данный вид был создан с целью уменьшения цены на оборудование, которое можно было бы подключить в систему АСКУЭ. Данный вид нечувствителен к скачкам напряжения.

К недостаткам можно отнести большие размеры и невысокую точность по сравнению с электронными.

Определение коэффициента трансформации

Как было сказано выше, при подсчете затраченной электроэнергии важно знать коэффициент трансформации счетчика. Информацию о нем можно найти как в паспорте на счетчик электроэнергии, так и на лицевой панели прибора

Иногда в электронных приборах его можно найти в меню. Обозначается он либо через знак деления, либо просто числом. Обычно это значения из ряда 10, 20, 30 и 40.

Но нередки случаи, когда паспорт на оборудование отсутствует. В этом случае коэффициент трансформации можно высчитать самому. Для этого необходимо иметь либо два мультиметра, либо специальное оборудование.

В первом случае, одним мультиметром измеряется напряжение на первичной обмотке, вторым на вторичной

Важно помнить, что замеры делаются только на холостом варианте работы трансформатора, то есть без нагрузки. Ни в коем случае не следует превышать значение номинального напряжения, указанного в паспорте, так как это значительно увеличит погрешность

Использование специального оборудования позволяет не использовать внешний источник питания, что существенно упрощается процедуру измерения.

Измеряя показатель трансформации, следует использовать измерительные приборы с классом точности не менее 0,5.

Что такое коэффициент трансформации

Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.

В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.

Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:

  • первичной;
  • вторичной.

Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.

Понятие коэффициента трансформации

Трансформаторы напряжения

Хотя трансформатор и называют преобразователем, на деле он не превращает характеристику в другую. Установка меняет значение какого-либо параметра цепи в сторону возрастания или уменьшения. Такое преобразование влияет и на остальные показатели тока, но по сравнению с «главным» они остаются вторичными.

В быту такие приборы встречаются очень часто. Например, чтобы зарядить телефонный аккумулятор, необходим источник питания в 6В. Однако в розетке напряжение достигает 220 единиц. Чтобы не сжечь телефон, нужно каким-то образом понизить напряжение в 36,7 раз. Это и делает «зарядка» – преобразователь, снижающий напряжение.

Разные виды трансформаторов и их коэффициенты

Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

  • силовой;
  • автотрансформатор;
  • импульсный;
  • сварочный;
  • разделительный;
  • согласующий;
  • пик-трансформатор;
  • сдвоенный дроссель;
  • трансфлюксор;
  • вращающийся;
  • воздушный и масляный;
  • трехфазный.

Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель – это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

Номинальная вторичная нагрузка, В 3 5 10 15 20 30 40 50 60 75 100
Коэффициент, n Номинальная предельная кратность
3000/5 37 31 25 20 17 13 11 9 8 6 5
4000/5 38 32 26 22 20 15 13 11 10 8 6
5000/5 38 29 25 22 20 16 14 12 11 10 8
6000/5 39 28 25 22 20 16 15 13 12 10 8
8000/5 38 21 20 19 18 14 14 13 12 11 9
10000/5 37 16 15 15 14 12 12 12 11 10 9
12000/5 39 20 19 18 18 12 15 14 13 12 11
14000/5 38 15 15 14 14 12 13 12 12 11 10
16000/5 36 15 14 13 13 12 10 10 10 9 9
18000/5 41 16 16 15 15 12 14 14 13 12 12

Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:

Коэффициентом трансформации трансформаторов называется отношение напряжения обмотки высшего напряжения (ВН) к напряжению обмотки низшего напряжения (НН) при холостом ходе:

Где: Кл- коэффициент трансформации линейных напряжений;

U1 — линейное напряжение обмотки ВН;

U2 — линейное напряжение обмотки НН.

При определении коэффициента трансформации однородных трансформаторов или фазного коэффициента трансформации трехфазных

трансформаторов отношение напряжения можно приравнять к отношению чисел витков обмотки

где: Кф — фазный коэффициент трансформации;

U1ф,U2ф — фазные напряжения обмоток ВН и НН соответственно;

WI,W2 — число витков обмоток ВН и НН соответственно.

При измерении линейного коэффициента трансформации трехфазного трансформатора равенство отношения высшего и низшего линейных напряжения обмоток и соответственно числа витков ВН и НН сохраняется лишь при одинаковых группах соединения этих обмоток.

Если первичная и вторичная обмотки соединены по одинаковой схеме, например, обе в звезду, обе в треугольник и так далее, фазный и линейный коэффициенты трансформации равны друг другу. При различных схемах соединений обмоток, например, одной в звезду, а другой в треугольник, линейньй и фазный коэффициенты трансформации неодинаковы (они в данном случае отличаются друг от друга в 3 раз).

Определение коэффициента трансформации производится на всех ответвлениях обмоток и для вех фаз. Эти измерения, кроме проверки самого коэффициента трансформации дают возможность проверить также правильность установки переключателя напряжения на соответствующих ступенях, а также целостность обмоток.

Для определения коэффициента трансформации применяют метод двух вольтметров (рис.2)

Рис.2 Определение коэффициента трансформации.

Со стороны высокого напряжения (ВН) подводится трехфазовое напряжение 220 В и измеряется напряжение на вторичной обмотке.

Внимание! Напряжение подводится только к обмоткам ВН (А, В, С). Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В

Пределы измерения вольтметров: PV1-250 В,PV2-15В

Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В.

Примечание: В данной работе трансформатор имеет одно положение переключателя.

Коэффициент трансформации отдельных фаз, замеренных на одних и тех же ответвлениях не должен отличаться друг от друга более чем на 2%.

Виды трансформаторов и коэффициенты

Коэффициент – величина постоянная, так как зависит не от характера передаваемого тока, а от конструкции установки. Однако для разных параметров величину рассчитывают по разным формулам.

Различают 3 категории оборудования:

  • преобразователь напряжения;
  • трансформатор тока;
  • преобразователь сопротивления.

Перед вычислением напряжения на катушках измеряют напряжение на холостом ходу — без подключения нагрузки. Показатели обычно указываются в паспорте трансформатора или в таблицах справочника.

Трансформатор тока

Преобразователь номинального тока включается в цепь последовательно с нагрузкой. Это означает, что ток в первичной обмотке будет равен току нагрузки. На вторичной катушке появляется напряжение, пропорциональное коэффициенту масштабирования. Здесь показатель рассчитывается с учетом тока холостого хода – он вызван намагничиванием.

Трансформаторы тока применяют при измерениях токов большой силы, которые оценивать напрямую опасно. Различают их по следующим параметрам:

  • по функциям – измерительные, защитные, промежуточные;
  • по конструкции – одно- и многовитковые;
  • по методу монтажа – переносные, накладные, встроенные;
  • по виду изоляции – сухие, газонаполненные, с компаундной заливкой;
  • по напряжению – от 0,66 до 1150 кВ;
  • по нормальному первичному и вторичному току;
  • по допустимой величине нагрузки – от 1 до 120 Вт.

Показатель преобразования тока в характеристиках обычно не указывается. Но его легко рассчитать, зная показатели тока на первичной и вторичной катушках.

Трансформатор напряжения

В быту это самый известный вариант. Подсоединяется параллельно нагрузке. В простейшем случае коэффициент преобразования здесь равен результату деления числа витков первичной обмотки на число витков вторичной. Соответственно, у понижающего варианта число витков на первой обмотке будет больше. Такой вариант называют силовым. У повышающего, наоборот, число оборотов на первичной обмотке будет больше, чем на вторичной.

Любой преобразователь напряжения обратим. Если подавать на вторичную обмотку переменное напряжение, его получают и на выходе первичной с тем же коэффициентом трансформации.

Трансформатор сопротивления

Преобразователь часто называют согласующим. Он компенсирует разницу в сопротивлении между источником и нагрузкой для точной передачи сигнала. Используется в каскадных электронных схемах. В таких цепях показатели напряжении и тока менее важны, а важным выступает согласование работы каскадов с разным сопротивлением.

Коэффициент рассчитывается по близкой формуле, то есть по числу витков на катушках, но корреляция здесь квадратичная – k=√Ri/Rn, где:

  • K – коэффициент трансформации;
  • Ri – сопротивление источника;
  • Rn – сопротивление подключенного прибора.

Такие преобразователи востребованы, например, в звуковых усилителях, где нагрузочное сопротивление собственно усилителя выше, чем у низкоомных динамиков. Другой вариант –высокочастотные устройства. Сварочные аппараты по большей части являются трансформаторами сопротивления, а не напряжения.

Автотрансформатор

Автотрансформатор – определение преобразователя напряжения. У него есть только одна обмотка, но зато как минимум 3 вывода. К одной паре выводов подсоединяют входное напряжение, а выходное снимают со свободного. Прибор так же может быть понижающим или повышающим.

4 практических совета по наладке и сборке трансформатора: личный опыт

Сборка магнитопровода

Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.

Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.

Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

Расчет провода по плотности тока

Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.

Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.

Способы намотки витков

Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.

Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

Замер тока на холостом ходу трансформатора

Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.

Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Чтобы их избежать рекомендую посмотреть видеоролик владельца Юность Ru. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Тонкая сталь: коэффициент трансформации

В смысле уменьшения толщины листов большая перспектива видится в использовании аморфной стали. Главное ограничение накладывает магнитострикция (изменение геометрических размеров материала действием поля). Эффект снижает коэффициент передачи на вторичную обмотку, аналогично гистерезису. Однако, несмотря на хрупкость, сложности отжига в технологическом цикле, удаётся получить листы толщиной единицы сотых долей мм. Специалисты называют основным препятствием применению высокую стоимость, не названные выше особенности.

Основной сегмент использования находится в рамках намотанных магнитопроводов. Здесь (в отличие от шихтования) сердечник сложен не полосами, является одним цельным куском, образующим тесно свитую спираль. Касаемо прочих методик сборки, надежду дает факт независимости потерь от направления вдоль кристаллической решётки. Поскольку ориентированных доменов нет, упраздняются требования поверхностной обработки листов стали.

Ввиду описанных особенностей из аморфной стали становится возможным собирать трансформаторы с приемлемым коэффициентом передачи высокочастотных сигналов.

Понятие о коэффициенте трансформации

Для произведения рационального контроля электроэнергии на крупных объектах используется специальное оборудование, снижающее мощность на выходах электросчетчика. Данные устройства не соединены напрямую с электросетью здания, что обозначает невозможность прямого включения высоковольтного напряжения к общей электросети. Отсюда следует, чтобы минимизировать возникновение неисправностей надо уменьшать мощность с помощью трансформаторного оборудования. В таком случае электросчетчики зафиксируют нагрузку, сниженную в десятки раз. Полученные таким образом результаты и будут КТ, а, чтобы определить настоящий расход электричества, следует умножить показания электросчетчика на используемый расчетный коэффициент.

Методы определения КПД

КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.

Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.

Непосредственное измерение

Формула для вычисления данного показателя может быть представлена в нескольких выражениях:

ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,

в которой:

  • ɳ – значение КПД;
  • Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
  • ΔР – величина суммарных мощностных потерь.

Из указанной формулы видно, что значение показателя КПД не может превышать единицу.

После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:

ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,

в которой:

  • U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
  • Робм и Рс – величина потерь в обмотках и сердечнике.

Представленная формула содержится в ГОСТе, описывающем определение данного показателя.


Расчёты КПД

Определение косвенным методом

Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.

Также читайте: Межповерочный интервал трансформаторов тока

Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.

Более подробно про КПД трансформатора можете прочитать здесь(откроется в новой вкладе, читать со страницы 14):Открыть файл

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: