Устройство
Упрощённая блок-схема осциллографа отображает структурное строение аналогового прибора. Это входной делитель, усилитель горизонтальной развёртки и схема синхронизации, усилитель вертикального отклонения, блок питания и электронно-лучевая трубка.
Блок-схема аналогового осциллографа
Цифровые измерители осциллограмм имеют в своём составе:
- входной делитель;
- нормализующий усилитель;
- аналого-цифровой преобразователь;
- блок памяти;
- устройство управления;
- устройства отображения.
Устройство отображения представляет собой жидкокристаллическую панель чёрно-белого или цветного отображения картинки.
Экран
Способность изображать изменения исследуемых гармонических колебаний – есть основная задача этого прибора. До появления жк-дисплеев эту роль выполняла ЭЛТ. Это стеклянный конусообразный баллон, дно которого покрыто люминофором. Он издаёт видимое свечение при попадании на него электронного луча. На экран нанесена калибровочная сетка с делениями.
Устройство электронно-лучевой трубки
Сигнальные входы
Количество входов прибора обозначает число его каналов. Наличие 2 и более каналов обозначает многоканальный осциллограф. Входные импульсы от каждого канала подаются на Y-вход и усиливаются собственным усилителем вертикальной развёртки.
Важно! Такой усилитель всегда выполнен по схеме усиления постоянного тока. Значит, нижняя граница частоты – 0 Гц. Это даёт возможность измерить постоянное напряжение, отображать несимметричные сигналы и контролировать постоянную составляющую сигнала
Это даёт возможность измерить постоянное напряжение, отображать несимметричные сигналы и контролировать постоянную составляющую сигнала.
Управление развёрткой
График, который получится в результате подачи напряжения на вертикально расположенные пластины, напоминает зубья пилы. Разность потенциалов нарастает, потом резко падает. При наблюдении за движением луча видно, что он бегает слева направо. Такие пилообразные движения называются вертикальной и горизонтальной развёрткой. Горизонтальную развёртку ещё зовут строчной. Периодичность повторения пилообразных импульсов определяет частоту развёртки.
Синхронизация развёртки с исследуемым сигналом
Эта функция необходима для того, чтобы картинка луча в циклах развёртки была неподвижной. Значит, что при повторении каждого следующего движения по экрану луч должен проходить свой путь по одной и той же траектории. Этим занимается синхронизация развёртки. Она запускает развёртку с заданной точки. При частоте повторения больше 20 Гц, в результате инерционности человеческого зрения, наблюдается неподвижное изображение.
Оперируют всегда с двумя настройками:
- уровень запуска – по напряжению;
- тип запуска – по фронту или спаду импульса.
Применительно к работе с цифровыми устройствами запуск развёртки происходит при совпадении заданного двоичного кода с кодом на шине микропроцессора.
Устройство и принцип действия прибора
Аналоговый состоит из:
- блока питания;
- канал вертикального / горизонтального отклонения;
- канал модуляции луча;
- электронно-лучевой трубки;
- устройства синхронизации и развертки.
Для управления сигналами есть регуляторы, с помощью которых можно было регулировать масштаб отображения выходного сигнала на электронно-лучевой трубке. На экране ЭЛТ наносится сетка разметки, с помощью которой, ориентируясь на выставленный масштаб, можно подсчитать амплитуду и длительность.
Подключая щуп в нужную точку цепи, мы подаем сигнал на вход канала вертикального отклонения. Канал имеет высокое входное сопротивления и не уменьшает его амплитуду. По горизонтали разворачивается в зависимости от частоты. Сигнал усиливается так, чтобы работала отклоняющая система ЭЛТ. В цифровых аппаратах сигнал из аналогового преобразуется в цифровой и выдается на экране встроенного ЖК-монитора или он имеет вид специальной платы, которая вставляется в гнездо на материнской плате компьютера или приставки, которая вставляется в разъем компьютера, и тогда сигнал, обработанный с помощью специальной программы выдает информацию на экране монитора.
Основные параметры
Для выбора осциллографа рекомендуется правильно оценивать следующие характеристики:
- чтобы исключить искажения при работе с несколькими высокочастотными сигналами, следует приобрести двух,- или многолучевой прибор;
- в разных моделях погрешность составляет 5-15%, поэтому следует учитывать ограниченную точность измерений;
- цифровые аппараты оснащают цветными экранами, разнообразными устройствами для синхронизации, дополнительными сервисными режимами;
- функциональность аналоговых приборов скромнее, но стоят они дешевле;
- ограниченные возможности амплитудно-частотных преобразователей затрудняют качественную обработку цифровой электроникой высокочастотных сигналов;
- режим застывшей картинки с функцией увеличения поможет изучить мельчайшие детали сложных изображений.
Перед детальным анализом нужно уточнить, для чего именно предназначается прибор. Далее оценивают соответствие по следующим параметрам:
- полоса пропускания;
- частотный диапазон;
- входное сопротивление;
- допустимые значения амплитуды (переменной и постоянной составляющей);
- погрешность измерений;
- развязка между каналами;
- объем внутренней памяти (цифровая техника).
Устройство
Главный узел осциллографа — трубка как у старых телевизоров, электронно-лучевая, осуществляющая визуализацию величин, принимаемых входным делителем, от которого зависят рамки допустимых замеров. Происходит усиление, синхронизация с генератором развертки. Далее, исследуемая величина попадает на оконечный усиливающий узел, на ЭЛТ, затем происходит отображение его онлайн без каких-либо задержек.
Алгоритм, как работает цифровой осциллограф несколько иной: он сначала пропускает сигнал через преобразователь (аналого-цифровой), замеряя его несколько раз в сек. Затем происходит реконструкция и отображение на мониторе. Одновременно данные записываются буферной памятью, есть возможность будущей их обработки.
Работать с цифровым осциллографом удобнее, его преимущества — полная функциональность с дополнительными опциями в маленьком корпусе, простота настроек. Выбор осциллографа в современных условиях обычно осуществляется среди указанных видов. Отдельные аналоговые старые основательные советские экземпляры (дешевле в 4–5 раз) неплохи, но они габаритные, требуют больше навыков по настройке.
Что такое осциллограф
Осциллограф позволяет визуально изучать характеристики сложных сигналов, рассчитывать временные и амплитудные параметры. Аналоговые модели отображают данные в реальном времени, современные цифровые позволяют архивировать информацию и проводить ее анализ. Для сравнения сигналов применяют устройства с несколькими информационными входами. В зависимости от решаемых задач, встречаются модификации в виде приставок к компьютеру или комбинированные с другой измерительной аппаратурой.
Краткая история
История осциллографа насчитывает уже 100 с лишним лет. В разное время над усовершенствованием прибора работали такие известные люди как Адре Блондель, Роберт Андреевич Колли, Уильям Крукс, Карл Браун, И. Ценнек, А. Венельт, Леонид Исаакович Мандельштам и многие другие.
Кстати, а вы знали, что первое подобие осциллографа создали в Российской Империи? Это сделал В 1885 году русский физик Роберт Колли. Прибор назывался осциллометр. Осциллографы того времени сильно отличались от тех, что используются сейчас!
Цифровые осциллографы UNI-T 2000-3000 модельного ряда
Двухканальные осциллографы нового поколения. В отличие от аналоговых позволяют сохранять и обрабатывать полученные осциллограммы, производить над сигналами любые математические действия (суммирование, умножение, преобразование Фурье для получения спектра и т. д.), вести одновременное измерение большого количества параметров сигнала (частота, амплитуда, период, RMS и т. д.) с выводом значений на дисплей в реальном времени. Очень удобна команда автоматической подстройки под сигнал, реализованная одной кнопкой на передней панели, позволяющая отменить все ранее произведенные настройки и отобразить на дисплее устойчивую синхронизированную осциллограмму. Друг от друга модели отличаются полосой пропускания (от 25 до 200 МГц), минимальным временем развертки (от 2 наносекунд на деление до 20 наносекунд на деление) цветным или монохромным дисплеем (литера C или B соответственно) и некоторыми дополнительными функциями. Обладают очень малым весом, в отличие от аналоговых осциллографов, для 2000-й серии — 2,6 кг, для 3000-й — 4,5 кг. Абсолютно неприхотливы по питанию, напряжение может колебаться от 100 до 240 Вольт при частоте от 45 до 440 Герц.
Настройка
Современные осциллографы не требуют какой-либо настройки перед использованием, но тем не менее в большинстве осциллографов встроен прибор калибровки (Калибратор). Назначение этого прибора — формировать контрольный сигнал с заведомо известными и стабильными параметрами
Обычно такой сигнал имеет форму прямоугольных импульсов с амплитудой 1 Вольт, частотой 1кГц и скважностью 50% (параметры обычно указаны рядом с выходом сигнала калибратора). В любой момент пользователь осциллографа может подключить измерительный щуп прибора к выходу калибратора, и убедиться, что на экране осциллографа виден сигнал с указанными параметрами. В случае, если сигнал отличается от указанного на калибраторе, что скорее характерно для аналоговых осциллографов, то с помощью подстроечной отвертки пользователь может скорректировать входные характеристики щупа или усилители осциллографа таким образом, чтобы сигнал соответствовал данным калибратора
Стоит отметить, что современные цифровые осциллографы не имеют подстроечных элементов по причине использования цифровой обработки сигнала, но имеют автоматическую настройку по калибратору, когда через меню осциллографа вызывается специальная утилита, которая вносит поправочные коэффициенты в математический блок осциллографа и тем самым настраивает осциллограф на корректное отображение сигналов.
В случае, если сигнал отличается от указанного на калибраторе, что скорее характерно для аналоговых осциллографов, то с помощью подстроечной отвертки пользователь может скорректировать входные характеристики щупа или усилители осциллографа таким образом, чтобы сигнал соответствовал данным калибратора. Стоит отметить, что современные цифровые осциллографы не имеют подстроечных элементов по причине использования цифровой обработки сигнала, но имеют автоматическую настройку по калибратору, когда через меню осциллографа вызывается специальная утилита, которая вносит поправочные коэффициенты в математический блок осциллографа и тем самым настраивает осциллограф на корректное отображение сигналов.
История[ | ]
Ондограф Госпиталье Электрический колебательный процесс изначально фиксировался вручную на бумаге. Первые попытки автоматизировать запись были предприняты Жюлем Франсуа Жубером в 1880 году, который предложил пошаговый полуавтоматический метод регистрации сигнала. Развитием метода Жубера стал полностью автоматический ондограф Госпиталье. В 1885 году русский физик Роберт Колли создал осциллометр, а в 1893 году французский физик Андре Блондель изобрел магнитоэлектрический осциллоскоп с бифилярным подвесом.
Подвижные регистрирующие части первых осциллографов обладали большой инерцией и не позволяли фиксировать быстротечные процессы. Этот недостаток был устранён в 1897 годуУильямом Дадделлом, который создал светолучевой осциллограф, использовав в качестве измерительного элемента небольшое лёгкое зеркальце. Запись производилась на светочувствительную пластину. Вершиной развития этого метода стали в середине XX века многоканальные ленточные осциллографы.
Практически одновременно с Дадделлом Карл Фердинанд Браун использовал для отображения сигнала изобретённый им кинескоп. В 1899 году устройство было доработано Йонатаном Зеннеком, добавившим горизонтальную развертку, что сделало его похожим на современные осциллографы. Кинескоп Брауна в 1930-е годы заменил кинескоп Зворыкина, что сделало устройства на его основе более надёжными.
В конце XX века на смену аналоговым устройствам пришли цифровые. Благодаря развитию электроники и появлению быстрых аналого-цифровых преобразователей, к 1990-м годам они заняли доминирующую позицию среди осциллографов.
Критерии выбора
Какой осциллограф выбрать для ремонта электроники? Существует несколько видов осциллографов. Среди них можно выделить:
По типу питания устройства
Если рассматривать возможность питания, существует два вида осциллографов: стационарные и портативные. Портативные имеют мало возможностей, диапазон частот небольшой. Их используют для работы в полевых условиях, когда главной задачей для прибора является его мобильность. Стационарные, несмотря на то, что их нельзя переносить с собой, считаются более надежными. Они как раз и предназначены для диагностики домашней техники и электроники – компьютера, планшета, смартфона. Их конструкция основана на электронно-лучевой трубке, через которую проходящий сигнал, превращается в графическую форму. Но, несмотря на надежность, они имеют ряд недостатков:
- ограниченная полоса пропускания;
- невысокая точность.
USB-осциллографы отличаются портативностью. Они используются в работах, которые не требуют высокой точности.
Количество каналов
По количеству каналов, делятся на двухканальные, четырехканальные, восьми – и шестнадцатиканальные. Для хорошей работы, все каналы должны ловить достаточный диапазон.
Как правило, современные устройства имеют 2 или 4 основные каналы. В эконом-моделях содержится 2 канала, хорошие модели имеют 4, а профессиональные осциллографы 4 и более. Выбор устройства по количеству каналов зависит от объема выполняемой работы.
Органы управления
На передней панели прибора имеется несколько рукояток, которые необходимы для проведения точной настройки осциллографа. Два потенциометра — для управления каналами 1 и 2. Также имеется функция управления синхронизацией, разверткой, присутствует возможность регулировки фокусировки, яркости, подсветки. Если присмотреться к экрану, то можно увидеть, что он разбит на небольшие квадраты — деления. Ими необходимо пользоваться при проведении измерений. Именно к этим квадратам следует привязывать масштабы по горизонтали и вертикали. Такие особенности имеет осциллограф С1-67. Как пользоваться приборами такого типа для измерений величин, будет рассказано ниже.
Обратите внимание, что по горизонтали масштаб измеряется в секундах на деление. А по вертикали — в вольтах на деление. Как правило, в осциллографе имеется примерно 6-10 квадратов в горизонтальной плоскости и 4-8 — в вертикальной
На центровые линии нанесены риски, они делят каждый отрезок на 10 частей (равных) или на 5. Благодаря этим делениям можно производить более точные расчеты
Как правило, в осциллографе имеется примерно 6-10 квадратов в горизонтальной плоскости и 4-8 — в вертикальной. На центровые линии нанесены риски, они делят каждый отрезок на 10 частей (равных) или на 5. Благодаря этим делениям можно производить более точные расчеты.
Устройство
Главный узел осциллографа — трубка как у старых телевизоров, электронно-лучевая, осуществляющая визуализацию величин, принимаемых входным делителем, от которого зависят рамки допустимых замеров. Происходит усиление, синхронизация с генератором развертки. Далее, исследуемая величина попадает на оконечный усиливающий узел, на ЭЛТ, затем происходит отображение его онлайн без каких-либо задержек.
Алгоритм, как работает цифровой осциллограф несколько иной: он сначала пропускает сигнал через преобразователь (аналого-цифровой), замеряя его несколько раз в сек. Затем происходит реконструкция и отображение на мониторе. Одновременно данные записываются буферной памятью, есть возможность будущей их обработки.
Работать с цифровым осциллографом удобнее, его преимущества — полная функциональность с дополнительными опциями в маленьком корпусе, простота настроек. Выбор осциллографа в современных условиях обычно осуществляется среди указанных видов. Отдельные аналоговые старые основательные советские экземпляры (дешевле в 4–5 раз) неплохи, но они габаритные, требуют больше навыков по настройке.
Виды развёрток
В разных режимах работы осциллографа линейные (создаваемых пилообразным напряжением) развёртки могут различаться:
- Однократная. Генератор запускается один раз, затем блокируется. Такая развёртка нужна для фиксирования неповторяющихся сигналов.
- Ждущая. Запуск происходит сразу после сигнала. Нужна для наблюдения за редкими колебаниями.
- Автоколебательная. Генератор периодически включается при отсутствии сигнала. Удобна для отображения частых периодических импульсов.
Осциллографом исследуют различные типы сигналов. Они могут быть постоянными (напряжение в сети), периодическими (шумы, помехи, звуки и т.д.). Периодические могут возникать случайно или с определенным интервалом. В зависимости от того, как часто или редко возникает сигнал, выбирают тот или иной режим работы. Чаще всего в осциллографе есть два режима: автоматический (автоколебательный) и ждущий. Еще может быть однократный.
Выбор режима работы осциллографа
Если мы не знаем, как часто возникают импульсы, выбирают обычно автоматический режим. В нем даже при отсутствии потенциала на входе или при его недостаточном уровне экран светится. Отображается «нулевой» сигнал — прямая линия, которая должна идти по горизонтальной оси на экране (выставляется по линии регуляторами со стрелочками). При появлении потенциала на входе, он отображается на экране. Картинка при этом периодически обновляется и мы видим развертку сигнала по времени.
Режим работы
Ждущий режим хорош для редко появляющихся сигналах. Пока на входе ничего нет, экран не светится. При появлении каких-либо изменений он загорается, запускается генератор развертки и сигнал отображается на экране. Запуск можно настроить как по восходящему фронту импульса/синусоиды, так и по нисходящему. Можно настроить запуск не на исследуемый сигнал, а на то событие, которое ему предшествует (если такое есть).
Одиночный режим настраивает осциллограф на принятие одного сигнала. Когда на вход приходит потенциал нужного уровня, сигнал отображается на экране. После этого прибор переходит в неактивное состояние. И, даже если на входе будет следующий потенциал (или пять, или сто пять) он его не зарегистрирует. Для приема другого импульса нужно заново «взвести» прибор.
Параметры осциллографа, которые влияют на выбор
Основными показателями являются:
- полоса пропускания;
- количество каналов;
- частота дискретизации;
- глубина памяти;
- скорость обновления осциллограмм;
- триггер;
- работа с последовательными интерфейсами;
- измерения и анализ сигналов.
Характеристики осциллографа всегда влияют на его стоимость. При выборе Вы должны определить с какими именно сигнал потребуется исследовать, какие свойства прибора нужны. Можно выбрать очень дорогой и “навороченный” вариант там где Вам сможет помочь бюджетный осциллограф.
Полоса пропускания
Чем выше полоса пропускания, тем более правильную форма сигнала будет видна. Высокочастотный осциллограф имеет возможность увидеть осциллограмму с меньшим количеством погрешностей на экране.
Количество каналов
Наличие большого количества каналов позволяет отладить цифровые линии. Осциллограф выступает в роли логического анализатора.
Частота дискретизации
Этот термин показывает скорость оцифровки входного сигнала. Большая скорость расширяет полосу пропускания для однократных и дает достаточное разрешение изображения.
Глубина памяти
Эта величина регулирует частоту дискретизации – чем больше глубина памяти, тем больший интервал сигнала с максимальной частотой дискретизации. Но использование максимальной глубины памяти может резко снизить производительность в целом.
Скорость обновления осциллограмм
Эта величина показывает сколько раз в секунду устройство захватывает сигнал и обновляет его изображение на экране. Высокая скорость дает большую вероятность регистрации редких событий.
Триггер
Это устройство включающее генератор развертки с одной и той же точки. Этим обеспечивает устойчивое изображение.
Он может срабатывать:
- при достижении сигналом какого-то уровня;
- по времени нарастания или убывания амплитуды фронта импульса;
- запуск на сбой в последовательности импульсов.
Работа с последовательными интерфейсами
Для управления и обмена данными применяются стандартные интерфейсы:
GPIB, RS-232, USB, Ethernet, Centronics. Они создают расширенные функции для проведения анализа.
Измерения и анализ сигналов
Современные цифровые аппараты позволяют не только просто выдать «картинку» на экран, но и проанализировать составляющие гармоники, запомнить и потом показать форму и параметры в цифровом представлении. Другим удобством цифрового прибора будет возможность автоматической синхронизации параметров.
С их помощью измеряют:
- амплитудные характеристики (и не просто все подряд, но и в выделенном сегменте);
- временные параметры;
- выдача тренда в различных режимах и сохранения его в файл для последующей обработки;
- проведение измерений и построение последующих гистограмм на основе анализа этих изменений.
Осциллографические пробники
Это щуп имеющий высокое входное сопротивление и увеличивающий его импеданс. При измерении высоких частот следует учитывать вносимые пробником помехи за счет емкости и индуктивности. Поэтому перед началом работ пробники обязательно подстраивают, подавая на него калибровочный сигнал типа «меандр». Добиваясь получения правильной формы сигнала на экране.
На 3 месте — мультиметр-осциллограф Jinhan JDS2022A
— это весьма достойный представитель гибридов мультиметра и портативного осциллографа. Он поставляется с двумя каналами без мультиметра и с 1 каналом и встроенным мультиметром. Максимальная рабочая частота составляет 20 МГц и максимальное напряжение канала осциллографа 50 В.
Как обращаться с таким гибридным осциллографом можно посмотреть в следующем видео.Стоимость: 140 $.Количество каналов: 1 — 2
Аналоги:
- (140 $, 20 МГц + генератор 5 МГц, 2 канала: аналог. + цифр.)
- (70 $, 200 кГц, 1 канал)
- (180 $, 5 МГц, 1 канал)
- (220 $, 16 МГц, 1 канал)
- (500$, 100 МГц, 4 канала, планшетный осциллограф, выглядит круто),
- (120 $, 10 МГц, 2 канала)
- (110 $, 25 МГц, 1 канал)
- (170 $, 70 МГц, 2 канала + генератор сигналов + мультиметр)
Недостатки:
- маленький дисплей
- инерционность отображения показаний
- много не очевидных кнопок
Достоинства:
- малые габариты
- низкая цена осциллографа
- распространенный разъем BNC
Сфера применения: измерение цифровых сигналов, кварцевых генераторов, сигналов блоков питания с ШИМ, аудио и видеосигналов до 20 МГц. Подойдет для мастер на выезде по ремонту аудио, видеотехники и блоков питания.
Классификация
Так как осциллоскоп работает с входящими сигналами, то по виду обработки импульсов приборы делятся на:
- аналоговые;
- цифровые.
В аналоговых аппаратах применяются ЭЛТ с электростатическим смещением.
Цифровые аппараты оснащены жк-дисплеем. Они имеют память, позволяющую рассматривать уже зафиксированные сигналы, делать их скриншоты. ЖК-цветной монитор способствует улучшению восприятия картинки.
Следующее деление можно провести по числу лучей:
- однолучевые;
- двухлучевые;
- многолучевые.
Важно! N-лучевой прибор показывает сразу n-графиков на дисплее. У него n-входов. Но количество входов (каналов) не всегда равно количеству лучей
Так, двухканальный измеритель может отображать два сигнала одним лучом, но не одновременно
Но количество входов (каналов) не всегда равно количеству лучей. Так, двухканальный измеритель может отображать два сигнала одним лучом, но не одновременно.
Цифровые осциллографы можно разделить на модели:
- стробоскопические;
- запоминающие;
- люминофорные;
- виртуальные.
Стробоскопические осциллографы сжимают спектр исследуемого сигнала путём моментального стробирования в определённой точке. С каждым новым появлением сигнала точка смещается по кривой, пока не простробируется сигнал. На дисплей выдаётся преобразованная кривая, повторяющая форму основного сигнала, но состоящая из мгновенных значений.
В запоминающих моделях цифровой формат информации позволяет сохранять результаты измерений в памяти или выводить на печать. У большинства моделей в наличии накопитель, где можно хранить картинки в виде файлов.
Технология «цифрового люминофора» даёт возможность имитировать изменение интенсивности картинки, присущее аналоговым моделям, но уже в цифровом формате. Люминофорные осциллографы выдают на дисплей модулированные сигналы в мельчайших подробностях, как и аналоговые устройства. При этом они обеспечивают измерение, сравнение и хранение, как цифровые запоминающие модели.
Отдельный класс виртуальных осциллографов может быть внешним или внутренним дополнительным гаджетом на базе ISA или PCI карт. ПО любого виртуального осциллоскопа разрешает полностью управлять прибором и предоставляет линейку сервисных опций: цифровая фильтрация, экспорт и импорт данных и иные возможности.
Двухканальный прибор
Модели типа «два канала – один луч» имеют два канала вертикальной развёртки и однолучевую ЭЛТ. Конструктивно это переключаемые электронным переключателем входы Y1 и Y2. Переключатель поочерёдно соединяет выходные сигналы каналов с пластинами вертикального отклонения.
Что можно сказать по результатам
По результатам осциллограммы специалистом делается вывод об общем физическом состоянии пациента. А также о том, какие сосуды и в каком месте имеют повреждения в случае обнаружения заболевания.
В случае если осциллограмма представляет собой стандартное колебание амплитуд, то можно сказать о том, что человек абсолютно здоров.
Данный метод можно считать простым и наглядным. К тому же, он легко переносится больными, если только у них нет проблем с кровообращением в кишечнике.
В этом случае у пациентов при сдавливании конечности манжетой могут проявиться боли, которые затруднят исследование.
Где применяется
Сферы применения:
- всегда в научных, технических лабораториях, исследовательских отделениях на заводах, выпускающих электроприборы, например, производитель должен знать, как реагирует его продукция на помехи;
- при углубленном анализе сборок, при наладке, ремонте электроустройств: от радио и сотовой связи до цепей двигателей машин. Для радиолюбителей прибор незаменим.
Аппарат выдает визуальную информацию о характеристиках сложных сигналов, показывает временные и амплитудные данные изменений, что важно для расчетов и определения, как будет себя вести изучаемый объект за периоды в конкретных условиях
Где применяют осциллографы?
Информация, которую даёт осциллограф:
- значения напряжения, временные параметры колебаний;
- сдвиг фаз, искажение импульса на разных участках цепи;
- частота (определяется путем фиксирования его временных характеристик);
- переменная и постоянная составляющие колебаний;
- процессы в цепи.
Осциллографы используют как в практических, так и в научно-исследовательских целях. Для простых измерений можно воспользоваться мультиметром, но в большинстве случаев осциллограф незаменим.
Приборы для измерения колебаний применяют при настройке электронного оборудования. К примеру, для регулировки телевизионного сигнала необходимо получить его осциллографическое изображение. Приборы также используются при ремонте блоков питания, диагностике печатных плат.
При ремонте автомобилей устройство поможет получить данные о положении коленчатого и распределительного валов, датчиков положения. Данные осциллограммы расскажут о наличии импульса на катушке, укажут на неисправность свечей и проводов, диодного моста генератора.
Медицинское оборудование (кардиографы, энцефалографы) тоже работает по принципу осциллографирования. Только электрические колебания, измеряемые ими, происходят в живых организмах.
Анализ работы усилителя НЧ
В идеале, на эквиваленте нагрузки должно быть, по форме, то же, что и на входе, то есть ровные прямоугольные импульсы, как на рис.4. Если это так, то усилитель просто замечательный.
Если будет наблюдаться завал фронта и спада (рис.5) это говорит о том, что на высших частотах усиление данного усилителя снижается. Степень этого снижения может быть разной, если совсем плохо — это как на рисунке 6.
Рис. 4. Ровные прямоугольные импульсы на экране осциллографа.
Рис. 5. Завал фронта и спада на экране осциллографа.
Рис. 6. Если все плохо с УЗЧ.
При завале усиления на низких частотах осциллограмма будет выглядеть как на рисунке 7.
Рис. 7. Завал усиления усилителя на низких частотах, осциллограмма.
Подъем усиления на низких частотах, — осциллограмма на рис. 8. Падение усиления на низких и средних частотах, — осциллограмма на рис. 9.
Подъем усиления на средних частотах, -осциллограмма на рисунке 10. Подъем усиления на высоких частотах, -осциллограмма на рисунке 11. Провал усиления в каком-то узком диапазоне частот — рис. 12.
Рис. 8. Подъем усиления на низких частотах — осциллограмма.
Рис. 9. Падение усиления на низких и средних частотах — осциллограмма.
Рис. 10. Подъем усиления на средних частотах — осциллограмма.
Рис. 11. Подъем усиления на высоких частотах — осциллограмма.
Рис. 12. Провал усиления в каком-то узком диапазоне частот.
Таким образом, всего лишь один сигнал прямоугольных импульсов частотой 1 кГц может рассказать очень много о работе усилителя ЗЧ.
Если у осциллографа нет калибратора, можно на вход усилителя ЗЧ подать прямоугольные импульсы от любого генератора прямоугольных импульсов частотой 1 кГц, например, сделанного на логических элементах или по другой схеме.
В том случае, если частоту импульсов на выходе генератора можно регулировать, можно будет более широко проанализировать работу усилителя ЗЧ.
Кроме того, используя тот же осциллограф с калибратором (или отдельным генератором импульсов) можно проследить прохождение сигнала и внутри схемы УН4, чтобы найти дефектный каскад, например, в УН4, построенного по сложной многокаскадной схеме.
Литература: РК-2017-03.
Особенности прибора
Цифровые осциллографы могут не только показывать в режиме реального времени форму сигнала, но и сохранять все данные, которые впоследствии можно будет прочитать на персональных компьютерах. По осциллограмме, изображенной на рисунке выше, можно определить некоторые особенности сигналов:
- Характер сигнала импульсный.
- Отрицательных значений не имеет входящий сигнал.
- Происходит очень быстрое изменение значений от 0 до максимума и обратно.
- Длительность импульса выше длительности паузы более чем в три раза.
Как правило, при помощи осциллографа проводятся исследования периодических сигналов. Именно о них и пойдет речь в статье.
Что может измерить осциллограф
Осциллограф может измерить:
- покажет по сигналам:
- форму;
- частотность;
- период;
- амплитуду;
- угол сдвига фазы;
- сравнение сигналов;
- АЧХ (ампл.-частотную х-ку);
- через закон Ома по показателям прибора исчисляют ток (при этом его преобразовывают в напряжение резисторами).
O-Scope — фактически это вольтметр, но отображающий изменения напряжения онлайн, им можно обозначить форму тока, подключив последовательно к обслуживаемой сети резистор (Rt, «t» — токовый, он же шунтирующий). Его число Ом подбирают намного меньшим, чем у цепи, чтобы отсутствовали влияния на схему. Далее, вычисляют по формуле и, зная величину Rt, можно найти ток.