Удельное сопротивление металлов, электролитов и веществ (Таблица)
Удельное сопротивление металлов и изоляторов
В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18—20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.
Таблица удельное сопротивление металлов
Чистые металлы | 104 ρ (ом·см) | Чистые металлы | 104 ρ (ом·см) |
Серебро | 0,016 | Хром | 0,131 |
Медь | 0,017 | Тантал | 0,146 |
Золото | 0,023 | Бронза 1) | 0,18 |
Алюминий | 0,029 | Торий | 0,18 |
Дюралюминий | 0,0335 | Свинец | 0,208 |
Магний | 0,044 | Платинит 2) | 0,45 |
Кальций | 0,046 | Сурьма | 0,405 |
Натрий | 0,047 | Аргентан | 0,42 |
Марганец | 0,05 | Никелин | 0,33 |
Иридий | 0,063 | Манганин | 0,43 |
Вольфрам | 0,053 | Константан | 0,49 |
Молибден | 0,054 | Сплав Вуда 3) | 0,52 (0°) |
Родий | 0,047 | Осмий | 0,602 |
Цинк | 0,061 | Сплав Розе 4) | 0,64 (0°) |
Калий | 0,066 | Хромель | 0,70-1,10 |
Никель | 0,070 | ||
Кадмий | 0,076 | Инвар | 0,81 |
Латунь | 0,08 | Ртуть | 0,958 |
Кобальт | 0,097 | Нихром 5) | 1,10 |
Железо | 0,10 | Висмут | 1,19 |
Палладий | 0,107 | Фехраль 6) | 1,20 |
Платина | 0,110 | Графит | 8,0 |
Олово | 0,113 |
Таблица удельное сопротивление изоляторов
Изоляторы | ρ (ом·см) | Изоляторы | ρ (ом·см) |
Асбест | 108 | Слюда | 1015 |
Шифер | 108 | Миканит | 1015 |
Дерево сухое | 1010 | Фарфор | 2·1015 |
Мрамор | 1010 | Сургуч | 5·1015 |
Целлулоид | 2·1010 | Шеллак | 1016 |
Бакелит | 1011 | Канифоль | 1016 |
Гетинакс | 5·1011 | Кварц _|_ оси | 3·1016 |
Алмаз | 1012 | Сера | 1017 |
Стекло натр | 1012 | Полистирол | 1017 |
Стекло пирекс | 2·1014 | Эбонит | 1018 |
Кварц || оси | 1014 | Парафин | 3·1018 |
Кварц плавленый | 2·1014 | Янтарь | 1019 |
Удельное сопротивление чистых металлов при низких температурах
В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).
Чистые металлы | t (°С) | Удельное сопротивление, 104 ρ (ом·см) |
Висмут | -200 | 0,348 |
Золото | -262,8 | 0,00018 |
Железо | -252,7 | 0,00011 |
Медь | -258,6 | 0,00014 1 |
Платина | -265 | 0,0010 |
Ртуть | -183,5 | 0,0697 |
Свинец | -252,9 | 0,0059 |
Серебро | -258,6 | 0,00009 |
Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.
В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.
Чистые металлы | Т (°К) | RT/R0 |
Алюминий | 77,7 | 1,008 |
20,4 | 0,0075 | |
Висмут | 77,8 | 0,3255 |
20,4 | 0,0810 | |
Вольфрам | 78,2 | 0,1478 |
20,4 | 0,0317 | |
Железо | 78,2 | 0,0741 |
20,4 | 0,0076 | |
Золото | 78,8 | 0,2189 |
20,4 | 0,0060 | |
Медь | 81,6 | 0,1440 |
20,4 | 0,0008 | |
Молибден | 77,8 | 0,1370 |
20,4 | 0,0448 | |
Никель | 78,8 | 0,0919 |
20,4 | 0,0066 | |
Олово | 79,0 | 0,2098 |
20,4 | 0,0116 | |
Платина | 91,4 | 0,2500 |
20,4 | 0,0061 | |
Ртуть | 90,1 | 0,2851 |
20,4 | 0,4900 | |
Свинец | 73,1 | 0,2321 |
20,5 | 0,0301 | |
Серебро | 78,8 | 0,1974 |
20,4 | 0,0100 | |
Сурьма | 77,7 | 0,2041 |
20,4 | 0,0319 | |
Хром | 80,0 | 0,1340 |
20,6 | 0,0533 | |
Цинк | 83,7 | 0,2351 |
20,4 | 0,0087 |
Удельное сопротивление электролитов
В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.
c (%) | NH4Cl | NaCl | ZnSO4 | CuSO4 | КОН | NaOH | H2SO4 |
5 | 10,9 | 14,9 | 52,4 | 52,9 | 5,8 | 5,1 | 4,8 |
10 | 5,6 | 8,3 | 31,2 | 31,3 | 3,2 | 3,2 | 2,6 |
15 | 3,9 | 6,1 | 24,1 | 23,8 | 2,4 | 2,9 | 1,8 |
20 | 3,0 | 5,1 | 21,3 | — | 2,0 | 3,0 | 1,5 |
25 | 2,5 | 4,7 | 20,8 | — | 1,9 | 3,7 | 1,4 |
_______________
Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М.: 1960.
Выбор сечения кабелей
Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:
- при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
- сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
- потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.
Что такое электрическое сопротивление
При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:
S = (2*I*L)/((1/p)*ΔU.
В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).
С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.
К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.
Измерение сопротивления кабеля мультиметром
При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:
ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,
где:
- Pа (Pр) – активная (реактивная) мощность;
- Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.
Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.
Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.
Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.
К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.
Выбор сечения проводника по допустимому нагреву
По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).
Выбор кабельных изделий с учетом нагрева
Выбор сечения по потерям напряжения
Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.
Выбор по допустимым потерям
Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.
Практическое использование волнового сопротивления
Зная эту характеристику, можно предвидеть, какое будет полное сопротивление при пропускании тока высокой частоты через кабель. Чем волновое или полное сопротивление выше, тем меньше он приспособлен работать с высокой частотой. Поэтому в каждом случае использование определённого кабеля подразумевает определённые требования к волновому сопротивлению кабеля.
На практике наибольшее распространение получили коаксиальные кабели с сопротивлением 50 Ом. Это связано с тем, что они способны обеспечить передачу радиосигналов с наименьшими потерями по мощности. Применение коаксиальных кабелей 75 Ом в телевидении объясняется таким их достоинством, как наименьшее ослабление сигнала, что для телевизионного приемника является необходимым условием.
Волновое сопротивление очень важно при использовании сложных систем. Обычно его подбирают таким образом, чтобы оно соответствовало характеристикам платы, заземления и другим особенностям оборудования
Смысл волнового сопротивления подразумевает, что при использовании кабеля с неподходящей характеристикой поведение устройства может стать непредсказуемым.
Рассматриваемая характеристика измеряется для идеального провода. Он, в частности, должен не иметь изгибов, неровностей, скручиваний и аналогичных особенностей. Каждая из них нарушает идеальность распространения волны вдоль проводника, создаёт искажения и отражения. Эти изменения могут существенно влиять на электрические параметры кабеля, чего нельзя допускать. При использовании волнового сопротивления такие отклонения должны быть учтены.
Нужно также учитывать затухание сигнала, которое происходит при его реальном прохождении через проводник. Его величина будет зависеть от используемой частоты.
Когда используется электрическая энергия, важно, чтобы система обладала максимальным коэффициентом полезного действия. Одним из важных условий для этого является равенство трёх сопротивлений – передатчика, приёмника и линии передачи
Рассогласование между ними приводит к потере энергии и соответствующему снижению КПД.
Химические свойства
По таким характеристикам медь, электропроводность и теплопроводность которой очень высокие, занимает промежуточное положение между элементами первой триады восьмой группы и щелочными первой группы таблицы Менделеева. К основным ее химическим свойствам относят:
- склонность к комплексообразованию;
- способность давать окрашенные соединения и нерастворимые сульфиды.
Наиболее характерным для меди является двухвалентное состояние. Сходства с щелочными металлами она не имеет практически никакого. Химическая активность ее также невелика. В присутствии СО2 или же влаги на поверхности меди образуется зеленая карбонатная пленка. Все соли меди являются ядовитыми веществами. В одно- и двухвалентном состоянии этот металл образует очень устойчивые комплексные соединения. Наибольшее значение для промышленности имеют аммиачные.
Таблица сопротивления кабелей и проводов
Стабильность работы кабелей и проводов зависит от точности выбора сечения, который необходим при проектировании и монтаже электроустановок или прокладке силовых сетей.
Ключевой параметр расчетов — максимально допустимая нагрузка по току, обеспечивающая рабочую температуру жилы, отсутствие перегрева и безопасность эксплуатации линии и электрооборудования. Сила тока для однофазной и трехфазной сети рассчитывается, исходя из суммарной мощности всех подключаемых приборов, аппаратов и установок.
Для правильного определения сечения медной и алюминиевой жилы воспользуйтесь таблицей, в которой сведены основные характеристики — номинальное напряжение, мощность и допустимая токовая нагрузка.
Сечение жил, мм | Медные жилы проводов и кабелей | Сечение жил, мм | Алюминиевые жилы проводов и кабелей | ||||||
Напряжение 220 В | Напряжение 380 В | Напряжение 220 В | Напряжение 380 В | ||||||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | ||
1,5 | 19 | 4,1 | 16 | 10,5 | 1,5 | ||||
2,5 | 27 | 5,9 | 25 | 16,5 | 2,5 | 22 | 4,4 | 19 | 12,5 |
4 | 38 | 8,3 | 30 | 19,8 | 4 | 28 | 6,1 | 23 | 15,1 |
6 | 46 | 10,1 | 40 | 26,4 | 6 | 36 | 7,9 | 30 | 19,8 |
10 | 70 | 15,4 | 50 | 33 | 10 | 50 | 11 | 39 | 25,7 |
16 | 85 | 18,7 | 75 | 49,5 | 16 | 60 | 13,2 | 55 | 36,3 |
25 | 115 | 25,3 | 90 | 59,4 | 25 | 85 | 18,7 | 70 | 46,2 |
35 | 135 | 29,7 | 115 | 75,9 | 35 | 100 | 22 | 85 | 56,1 |
50 | 175 | 38,5 | 145 | 95,7 | 50 | 135 | 29,7 | 110 | 72,6 |
70 | 215 | 47,3 | 180 | 118,8 | 70 | 165 | 36,3 | 140 | 92,4 |
95 | 260 | 57,2 | 220 | 145,2 | 95 | 200 | 44 | 170 | 112,2 |
120 | 300 | 66 | 260 | 171,6 | 120 | 230 | 50,6 | 200 | 132 |
150 | 150 | ||||||||
185 | 185 | ||||||||
240 | 240 |
Выбор сечения кабелей
Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:
- при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
- сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
- потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.
При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:
В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).
С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.
К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.
При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:
ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,
где:
- Pа (Pр) – активная (реактивная) мощность;
- Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.
Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.
Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.
Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.
К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.
Выбор сечения проводника по допустимому нагреву
По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).
Выбор сечения по потерям напряжения
Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.
Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.
Выбор электрического проводника по допустимому нагреву рабочим током
Для расчета сечения электрического проводника по допустимому нагреву следует рассчитать величину электрического тока, протекающего по данному проводнику. Расчетный электрический ток определяется по выражению:
Iрасч=Ррасч / (√(3 ) ∙ Uном ∙ cosφ ) ,А;
– где Р расч – расчетная мощность, Вт;
– cosφ – средневзвешенный коэффициент мощности.
По результатам расчетов в зависимости от напряжения и конструкции электрических проводников согласно ПУЭ, ГОСТ и технических данных завода-изготовителя выбираем сечение токопроводящей жилы и тип проводника.
Расчетный электрический ток должен быть меньше допустимого:
Iдоп ≥ Iрасч;
где I доп – допустимый ток электрического проводника выбираем из справочных данных, с учетом всех поправочных коэффициентов согласно ПУЭ;
В расчете применяем следующие коэффициенты:
0,93 – поправочный коэффициент для 4-х ,5-ти жильного кабеля (ГОСТ Р 53769-2010 «Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ. Общие технические условия.»);
0,8 –поправочный коэффициент на количество проложенных работающих кабелей лежащих в земле, в трубах, или без труб (табл. ПУЭ 1.3.26).
Таблица 1.3.26. Поправочный коэффициент на количество работающих кабелей, лежащих рядом в земле (в трубах или без труб)
Расстояние между кабелями в свету, мм | Коэффициент при количестве кабелей | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
100 | 1,00 | 0,90 | 0,85 | 0,80 | 0,78 | 0,75 |
200 | 1,00 | 0,92 | 0,87 | 0,84 | 0,82 | 0,81 |
300 | 1,00 | 0,93 | 0,90 | 0,87 | 0,86 | 0,85 |
1,15 – допустимая перегрузка кабеля в аварийном режиме (ПУЭ 1.3.6. «На период ликвидации послеаварийного режима для кабелей с полиэтиленовой изоляцией допускается перегрузка до 10 % а для кабелей с поливинилхлоридной изоляцией до 15 % номинальной на время максимумов нагрузки продолжительностью не более 6 ч в сутки в течение 5 сут, если нагрузка в остальные периоды времени этих суток не превышает номинальной.»);
Таблица сопротивления медного провода
Узнать резистентность проводника можно по таблицам. В них содержатся готовые результаты вычислений для разных кабелей.
Таблица меди на метр 1
Например, сопротивление меди на метр для различных сечений можно определить без вычислений, из соответствующей таблицы.
Таблица меди на метр 2
Важно! Таблицы не содержат данные о всех сечениях. Если нужно узнать величину импеданса для неуказанного кабеля, то находится среднее значение между двумя ближайшими известными сопротивлениями
Таблица сечений, сопротивлений, силы тока
Расчет сопротивления кабеля является важной задачей при проектировании электрической системы. Воспользовавшись формулами или таблицами, можно успешно ее решить
Удельное сопротивление
Удельное сопротивление – это табличная величина, для каждого металла она своя. Она нужна для расчета и зависит от кристаллической решетки металла и структуры атомов.
Из таблицы видно, что самое меньшее сопротивление у серебра, для медного кабеля оно равняется 0,017 Ом*мм 2 /м. Такая размерность говорит нам, сколько приходится Ом при сечении в 1 миллиметр квадратный и длине в 1 метр.
Кстати, серебряное покрытие используется в контактах коммутационных аппаратов, автоматических выключателей, реле и прочего. Это снижает переходное контактное сопротивление, повышает срок службы и уменьшает нагрев контактов. При этом в контактах измерительной и точной аппаратуры используют позолоченные контакты из-за того, что они слабо окисляются или вообще не окисляются.
У алюминия, который часто использовался в электропроводке раньше, сопротивление в 1,8 раза больше чем у меди, равняется 2,82*10 -8 Ом*мм 2 /м. Чем больше сопротивление проводника, тем сильнее он греется. Поэтому при одинаковом сечении алюминиевый кабель может передать меньший ток, чем медный, это и стало основной причиной почему все современные электрики используют медную электропроводку. У нихрома, который используется в нагревательных приборах оно в 100 раз больше чем у меди 1,1*10 -6 Ом*мм 2 /м.
Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов.
Проект Карла III Ребане и хорошей компании | Раздел недели: Набор прочности бетоном. Время твердения бетона. Тепловыделение цемента (бетонной смеси) | ||
Мы в Facebook: DPVA.ru в Facebook Мы ВКонтакте: | Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Электрическое сопротивление и проводимость проводников, растворов, почв…. / / Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов. | Удельное сопротивление ρ, Ом*мм2/м | α, 10 -3*C-1(или K -1) |
Алюминий | 0,028 | 4,2 | |
Бронза | 0,095 — 0,1 | — | |
Висмут | 1,2 | — | |
Вольфрам | 0,05 | 5 | |
Железо | 0,1 | 6 | |
Золото | 0,023 | 4 | |
Иридий | 0,0474 | — | |
Константан ( сплав Ni-Cu + Mn) | 0,5 | 0,05! | |
Латунь | 0,025 — 0,108 | 0,1-0,4 | |
Магний | 0,045 | 3,9 | |
Манганин (сплав меди марганца и никеля — приборный) | 0,43 — 0,51 | 0,01!! | |
Медь | 0,0175 | 4,3 | |
Молибден | 0,059 | — | |
Нейзильбер (сплав меди цинка и никеля) | 0,2 | 0,25 | |
Натрий | 0,047 | — | |
Никелин ( сплав меди и никеля) | 0,42 | 0,1 | |
Никель | 0,087 | 6,5 | |
Нихром ( сплав никеля хрома железы и марганца) | 1,05 — 1,4 | 0,1 | |
Олово | 0,12 | 4,4 | |
Платина | 0.107 | 3,9 | |
Ртуть | 0,94 | 1,0 | |
Свинец | 0,22 | 3,7 | |
Серебро | 0,015 | 4,1 | |
Сталь | 0,103 — 0,137 | 1-4 | |
Титан | 0,6 | — | |
Фехраль (Cr (12—15 %); Al (3,5—5,5 %); Si (1 %); Mn (0,7 %); + Fe) | 1,15 — 1,35 | 0,1 | |
Хромаль | 1,3 — 1,5 | — | |
Цинк | 0,054 | 4,2 | |
Чугун | 0,5-1,0 | 1,0 |
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста. Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.
Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
www.dpva.ru
Что влияет на сопротивление медного провода
Электрический импеданс медного кабеля зависит от нескольких факторов:
- Удельного сопротивления;
- Площади сечения проволоки;
- Длины провода;
- Внешней температуры.
Последним пунктом можно пренебречь в условиях бытового использования кабеля. Заметное изменение импеданса происходит при температурах более 100°C.
Зависимость сопротивления
Удельное сопротивление в системе СИ обозначается буквой ρ. Оно определяется, как величина сопротивления проводника, имеющего сечение 1 м2 и длину 1 м, измеряется в Ом ∙ м2. Такая размерность неудобна в электротехнических расчетах, поэтому часто используется единица измерения Ом ∙ мм2.
Вам это будет интересно Описание установленной и расчетной мощности
Важно! Данный параметр является характеристикой вещества — меди. Он не зависит от формы или площади сечения
Чистота меди, наличие примесей, метод изготовления проволоки, температура проводника — факторы, влияющие на удельное сопротивление.
Зависимость параметра от температуры описывается следующей формулой: ρt= ρ20. Здесь ρ20— удельное сопротивление меди при 20°C, α— эмпирически найденный коэффициент, от 0°Cдо 100°C для меди имеет значение, равное 0,004 °C-1, t — температура проводника.
Ниже приведена таблица значений ρ для разных металлов при температуре 20°C.
Таблица удельного сопротивления
Согласно таблице, медь имеет низкое удельное сопротивление, ниже только у серебра. Это обуславливает хорошую проводимость металла.
Чем толще провод, тем меньше его резистентность. Зависимость R проводника от сечения называется «обратно пропорциональной».
Важно! При увеличении поперечной площади кабеля, электронам легче проходить сквозь кристаллическую решетку. Поэтому, при увеличении нагрузки и возрастании плотности тока, следует увеличить площадь сечения
Увеличение длины медного кабеля влечет рост его резистентности. Импеданс прямо пропорционален протяженности провода. Чем длиннее проводник, тем больше атомов встречаются на пути свободных электронов.
Выводы
Последним элементом, влияющим на резистентность меди, является температура среды. Чем она выше, тем большую амплитуду движения имеют атомы кристаллической решетки. Тем самым, они создают дополнительное препятствие для электронов, участвующих в направленном движении.
Важно! Если понизить температуру до абсолютного нуля, имеющего значение 0° Kили -273°C, то будет наблюдаться обратный эффект — явление сверхпроводимости. В этом состоянии вещество имеет нулевое сопротивление
Температурная корреляция