Что такое полярность конденсатора и как ее определить?

Трубная продукция

Отдельной отраслью, использующей танталовые трубки, теплообменники выступает атомная энергетика. Обладая высокой жаропрочностью, низким сечением захвата нейтронов, элемент долгое время занимал основную долю в конструкционном материале ядерных установок.

Теплообменник из танталовых труб на одной из АЭС

Сегодня, тантал вытесняется из этой отрасли ниобием. Однако сдавать, списанные из атомно-энергетической сферы, танталовые изделия вряд ли получится в силу комплекса препятствий:

запрет на реализацию;

невозможность достать этот вид вторичного металла;

угроза для здоровья.

Напротив, исключительная инертность тантала относительно кислот находит применение редкому металлу в химической и лабораторной целях. Из танталовых трубок изготавливаются змеевики, магистрали для подачи соляной кислоты, мешалки. Некоторые разновидности лабораторной посуды также исполнены из этого материала. Несмотря на долгие термины службы, окупающие высокую стоимость танталовой продукции, изделия со временем изнашиваются и подлежат замене. Некоторая часть списанной трубной продукции успевает просочиться на пункты приема металлолома.

Изделия из тантала

Остается добавить, что не все трубы изготовлены из марки высокочистого тантала ТВЧ. Существенный процент этих изделий исполнен из сплава этого металла с вольфрамом. Марки этих жаропрочных соединений ТВ-5 (10,15) содержат тантала на уровне 95 – 85%.

Марки высокочистого тантала используются в производстве слитков и различных разновидностях металлопроката:

листовые изделия, включая пластины, диски, ленты;

фольга;

трубные конструкции;

прутки;

проволока.

Изделия из танталовой проволоки

Область эксплуатации танталовых трубок достаточно широка. Они используются для транспортировки жидкого металла, в качестве трубопроводов под кислотные среды.

Металлургическое использование тантала широко реализовано при получении редкоземельных элементов, а также иттрия, скандия, когда танталовые тигли применяются для плавки и литья. Особенность металла уживаться с тканями человеческого организма без негативных последствий широко реализована в протезировании. Дополнительно, танталовые скобы выступают, как материл при закреплении шва.

С одной стороны, отходы металлического тантала, включая его сплавы, характеризуются широким разнообразием:

  1. Кускового лома слитков. Образуются обломки корон при вакуумно-дуговом переплаве.
  2. Обрезью листовых полуфабрикатов.
  3. Браком штабиков.
  4. Стружкой.
  5. Отсевами порошка.

С другого ракурса, сдача вторичного тантала остается существенно ограниченной из-за особенностей сфер его использования: оборонная промышленность, атомная энергетика, химическое производство, лабораторные цели.

Виды

«Электролиты» подразделяются на следующие типы элементов:

  • алюминиевые;
  • танталовые;
  • ниобиевые.

Каждый из видов рассчитан на определённые условия работы.

Алюминиевые электролитические конденсаторы (ЭК)

Алюминиевый ЭК включает в себя две ленты из алюминиевой фольги и бумагу, пропитанную электролитом. Всё это свёрнуто в рулон и помещено в металлический корпус. Диэлектрик в этой детали – окись алюминия. Чтобы увеличить площадь поверхности, фольгу протравливают в электролите под напряжением. При этом ёмкость увеличивается многократно. Конструкция герметически уплотняется резиновыми прокладками.

К сведению. Вторая полоска фольги нужна для улучшения контакта с электролитом (катодом) и для формирования минусового вывода.

Танталовые конденсаторы

Размер таких ЭК маленький, что позволяет использовать их в печатных платах с навесным монтажом. В качестве анода применяется тантал. У него пористая структура, даёт большую рабочую площадь. Диэлектриком является оксид того же тантала – Та2О5. Слой формируют, помещая заготовку в раствор кислоты с высокой температурой, после чего пропускают через них ток. Регулируя силу тока, контролируют толщину плёнки. Катодом служит диоксид марганца. Заготовку замачивают в растворе Mn(NO3)2 (нитрат марганца) и сушат.

Интересно. Катодный вывод делают, покрывая слой диоксида марганца графитом, его, в свою очередь, – слоем серебра. После чего к серебру припаивают отвод для установки выводов элемента в отверстия на плате. При изготовлении полярных SMD-конденсаторов формуют вывод-контакт из посеребрённой эпоксидной смолы.


Танталовый ЭК

Ниобиевые конденсаторы

В элементах этого типа в качестве анода используют ниобий. Остальная технология и свойства таких двухполюсников схожи с танталовыми собратьями.


Ниобиевый ЭК

Как проверить емкость конденсатора

Главный показатель, основная характеристика всех конденсаторов — это «емкость».  Измеряя эту характеристику и сравнивая ее с указанными параметрами на корпусе, мы сможем выяснить, исправен кондиционер или нет. Есть приборы, которые легко позволят вам выполнить эту проверку.

Но можно ли проверить емкость конденсатора, как в нашем случае, мультиметром . Если вы будет проверять емкость при помощи щупов, вы не получите желаемого результата. Как же быть?

В этом нам помогут разъемы «гнезда» -CX+(«-» и «+» — это полярность подключения)

Для этого примера мы будем использовать кондер «150нФ». Маркировка 150nK:

Устанавливаем переключатель на отметку – ближайшее большее значение. В нашем случае это 200 нФ. Следующим шагом вставляем ножки конденсатора в разъемы  -CX+

(не обращаем внимание на полярность, наш кондер неполярный). Дисплей показывает значение емкости– 160.3 нФ, что совпадает с номинальными показателями

Продолжаем проверку  конденсатора с емкостью 4700 пФ. Устанавливаем переключатель на шкале в положение 20 n.

Теперь вставляем ножки в разъёмы прибора и наблюдаем на дисплее параметры 4750 пФ. Вы это можете увидеть на фото. Параметры точно соответствуют параметрам  заявленным производителем.

Запомните,  если показатели сильно отличаются от номинальных параметров или вообще равны нулю, это говорит нам, что конденсатор не рабочий и его необходимо заменить.

Лучшие бумажные конденсаторы для звука

Бумажные компоненты помещаются в металлическую оболочку, чтобы улучшить прочность. Используются на разных частотах за счет широкого диапазона.

Jensen Nos Aluminium foil

Данная модель оснащена диэлектриком, который выполнен из промасленной бумаги. Сверху Jensen Nos Aluminium foil имеет покрытие из алюминиевой фольги, что обеспечивает длительное время эксплуатации до 3000 часов. За счет сочетания материалов получается сбалансированная звукопередача на разных частотах.

Основное применение – для аудиотехники высокого класса, включая ламповую. Частотный диапазон составляет от 400 пФ до 0,082 мкФ. Работает с напряжениями 400, 600, 630В, что зависит от выбранной модели.

Достоинства:

  • Отличный звук;
  • Наилучшее качество изготовления;
  • Широкий выбор емкостей;
  • Время работы до 3000 часов;
  • Может использоваться на различной аудиотехнике, включая усилители.

Недостатки:

Не всегда есть в продаже.

Jupiter Copper Foil – Paper & Wax

Высококачественный элемент выполнен из прочных надежных материалов. Диэлектрик из вощеной бумаги, а в качестве оболочки используется медная фольга, обеспечивающая наилучшую звукопередачу без искажений.

Активно используется для установки на аудиотехнику премиум сегмента. Изделия имеют широкий диапазон емкостей от 1 нФ до 12 мкФ, поэтому возможно применение на самой разной звуковой технике. Конденсаторы производятся с точностью до 5%. Работают на напряжении до 600 В.

Достоинства:

  • Широкий емкостной диапазон;
  • Отличное качество;
  • Подходит для премиальной аудиотехники;
  • Высокая точность звукопередачи;
  • Используется медная фольга;
  • Долгий срок службы.

Недостатки:

Высокая стоимость.

Alexander by Duelund copper

Довольно дорогостоящий вариант, отличающийся своими непревзойденными характеристиками. Диэлектрик из промасленной бумаги вместе с медной фольгой обеспечивают насыщенный звук. Натуральный тембр голоса и инструментов, эффект присутствия, бесконечное пространство, динамичный бас – все это обеспечивает конденсатор от Alexander by Duelund copper. Подходит для работы на аудиотехнике, обычной электронике – везде обеспечивается стабильный результат.

Важной отличительной чертой является использование чистой бескислородной посеребренной меди для выводов изделия. Она дополнительно обеспечивает качественное звучание без помех, а также длительное время работы

Работает на высоком напряжении до 900В, погрешность емкости не превышает 10%.

Достоинства:

  • Обеспечение хорошей виброразвязки;
  • Выводы изготовлены из качественного материала;
  • Удобная конструкция;
  • Высокое качество звучания;
  • Работает на напряжении до 900В.

Недостатки:

Высокая стоимость.

Лучшие микшерные пульты

Плавное выключение светодиода при помощи конденсатора

Проведем небольшой опыт. Для этого соберем на макетной плате цепь с кнопкой, конденсатором и светодиодом. В качестве источника питания используем контакты питания Ардуино Уно.

Принципиальная схема

Внешний вид макета

Подключим Ардуино к питанию. Затем, нажмем кнопку и светодиод практически мгновенно загорится. Отпустим кнопку — светодиод медленно начнет гаснуть. Почему так происходит?

Сразу после подключения нашей схемы к источнику питания, в ней начинают происходит интересные процессы.

Как уже говорилось ранее, пока конденсатор пустой, ток через него максимален. Следовательно, конденсатор начинает стремительно набирать заряд. При этом светодиоду, который подключен параллельно, ничего не достается

Полярные и неполярные конденсаторы – в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества

Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать

Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?

Будет интересно Чем отличаются параллельное и последовательное соединение конденсаторов

В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Полярные и неполярные конденсаторы.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

Полярность конденсатора.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

Будет интересно Что такое танталовый конденсатор

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Полярный и неполярный конденсатор

Маркировка

Обозначение емкости на таких изделиях состоит из трех цифр. Последняя из них показывает число нулей, другие две – значение параметра в пикофарадах. Например, если на устройстве имеются цифры 123, емкость можно посчитать так: 12 пФ и 3 нуля – 12 000 пФ, то есть 0,012 мкФ. Маркировка малоемких элементов (меньше 10 пФ) отличается использованием латинской литеры R в качестве символа, разделяющего целую и дробную части числа.

Неполярные керамические изделия для smd-монтажа маркировкой не снабжаются вовсе. Емкость таких компонентов может находиться в диапазоне от 1 пФ до 10 мкФ. Танталовые и алюминиевые элементы имеют цифровую или цифробуквенную кодировку. Они различаются формой корпуса: у первых она прямоугольная, у вторых – цилиндрическая.

Будучи менее требовательными к условиям подключения, чем поляризованные изделия, неполярные элементы широко используются при монтаже электросхем. Они способны правильно работать в любом месте электроцепи и давать нужное значение емкости.

Как проверить конденсатор

Иногда неисправность электролитического конденсатора выявляется без проверки — по вздутию или разрыву верхней крышки. Она намеренно ослаблена крестообразной просечкой и работает как предохранительный клапан, разрываясь при незначительном давлении. Без этого выделяющиеся из электролита газы разрывали бы корпус конденсатора с разбрызгиванием всего содержимого. Hо нарушения могут и не проявляться внешне. Bот какими они бывают: Из-за химических изменений снизилась емкость элемента. Hапример, конденсаторы с жидким электролитом высыхают, особенно при высокой температуре. Из-за этой особенности для них существуют ограничения по температуре эксплуатации (допустимый диапазон указан на корпусе). Произошел обрыв вывода.


Тест электролитических конденсаторов.

Появилась проводимость между обкладками (пробой). Собственно, она существует и в исправном состоянии — это так называемый ток утечки. Hо при пробое эта величина из мизерной превращается в значительную. Снизилось максимально допустимое напряжение (обратимый пробой). Для каждого конденсатора существует критическое напряжение, вызывающее замыкание между обкладками. Оно указывается на корпусе.

Будет интересно Что такое полярность конденсатора и как ее определить?


B случае снижения этого параметра элемент при проверке ведет себя, как исправный, потому что тестеры подают низкое напряжение, но в схеме — как пробитый. Самый примитивный способ проверки конденсатора — на искру. Элемент заряжают, затем замыкают выводы металлическим инструментом с изолированной ручкой.

Hа руки при этом желательно одеть резиновые перчатки. Исправный элемент разряжается с образованием искры и характерного треска, нерабочий — вяло и незаметно. У данного способа два недостатка:

  • опасность электротравмы;
  • неопределенность:

Даже при наличии искры невозможно понять, соответствует ли фактическая емкость радиодетали номинальной. Более информативна проверка с применением тестера. Лучше всего использовать специальный — LС-метр. Он предназначен для замера емкости, причем рассчитан на широкий диапазон. Hо многое о состоянии конденсатора расскажет и обычный мультиметр.

Как проверить неполярный конденсатор мультиметром

Эксплуатация радиоэлектроники подразумевает и устранение неисправностей в оборудовании. Поэтому, рассматривая неполярные емкости, нельзя абстрагироваться от темы диагностики их работоспособности.

Как показывает практика, в большинстве случаев причиной выхода из строя емкости является пробой, что приводит к уменьшению сопротивления утечки. То есть, элемент становится, практически, проводником. Такую неисправность часто можно определить по внешнему виду емкости (см. рисунок 5), если это не помогло, потребуется простейший цифровой или аналоговый мультиметр.


Рисунок 5. «Выгоревшая» (пробитая) емкость

С помощью прибора следует замерить сопротивление утечки, в рабочих элементах оно должно быть бесконечно большим. Проверка выполняется следующим образом:

  • необходимо полностью демонтировать деталь, или отпаять один из ее выводов, чтобы исключить влияние других элементов цепи на показания мультиметра;
  • устанавливаем на приборе режим прозвонки или измерения сопротивления (выбираем максимальный предел);
  • подключаем щупы к выходным контактам (рисунок 6), при этом стараемся не прикасаться к ним, в противном случае прибор покажет сопротивление кожи;


Рисунок 6. Подключение емкости к измерительному прибору

Проводим измерение, если емкость исправна на экране отобразится единица (рисунок 7), что свидетельствует о бесконечно большом сопротивлении между обкладками.


Рисунок 7. Прибор в режиме прозвонки показывает бесконечно большое сопротивление

К сожалению, данным способом можно только проверить емкость на пробой, для определения внутреннего обрыва такой метод не подходит. В этом случае отличить поломанную деталь от работоспособной, можно измерив ее емкость, некоторые модели мультиметров имеют такую функциональную возможность. Принцип проверки практически не отличается от тестирования на пробой, за исключением того, что прибор необходимо перевести в режим измерения емкости.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В

Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Один из наиболее распространенных компонентов электрических схем – неполярный конденсатор. Они применяются в блоке питания, высокочастотном устройстве (емкости с тремя выводами), в цепи звука и т.д.

В рамках этой статьи мы не будем затрагивать теоретические основы радиоэлектроники, чтобы описать его принцип работы. Если требуется обновить знания, эту информацию несложно найти через поисковые серверы. Поэтому перейдем, непосредственно, к практическим вопросам. А именно: чем неполярная емкость отличается от полярной, как проверить работоспособность элемента, маркировка и т.д.

Подключение конденсаторов

Конденсаторы, как и резисторы, можно подключать последовательно и параллельно. Однако эффекты от этих комбинаций противоположны!

Последовательно соединяют только конденсаторы с емкостью меньше, чем у самого маленького используемого элемента. А конденсаторы с емкостью, большей, чем самая большая из используемых, соединяют параллельно. Формулы для расчета полученных значений несложны, но их стоит иметь под рукой.

Подключение конденсаторов параллельно (слева) и последовательно (справа)

Здесь также следует обращать внимание на количество конденсаторов и стандартизировать их, прежде чем подставлять их в формулу! Стоит помнить о таких возможностях подключения конденсаторов, но на практике это применяется нечасто. Теперь вы можете попробовать протестировать предыдущую схему, вставив на плату параллельно подключенные конденсаторы:

Теперь вы можете попробовать протестировать предыдущую схему, вставив на плату параллельно подключенные конденсаторы:

Пример параллельного подключения конденсаторов

Кстати, некоторые более дорогие мультиметры имеют функцию измерения емкости конденсаторов. Измеряемый конденсатор необходимо предварительно разрядить, путем короткого замыкания его выводов, иначе тестер может выйти из строя! Но, откровенно говоря, с практической точки зрения, эта функция используется очень редко, так что … не придется сожалеть о том, что ее нет.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: