Реализация рекуперативного торможение асинхронного электродвигателя

Тормозить и запасать: системы рекуперации в современных машинах

Десятки машин с системой Bosch и Eaton уже более десяти лет эксплуатируются в США, и их гибридный привод проявил себя как надежный и недорогой. Суть работы такой установки заключается в возможностях гидромотора, который при торможении закачивает рабочую жидкость в большой гидроаккумулятор – трубу со сжатым газом. При разгоне машины газ вытесняет жидкость, жидкость крутит тот же гидромотор и помогает экономить топливо. В системе нет дорогих аккумуляторов, и ресурс ее очень велик. Мощность гидромоторов тоже велика, а стоимость, наоборот, крайне низкая.

Одна загвоздка: гидроаккумулятор имеет большие габариты и массу, и реально его энергии хватает на один-два цикла разгона и торможения, пробег без включения ДВС составляет всего пару километров для легковой машины и сотни метров для грузовика. При использовании на автобусах или мусоровозах подобная система позволяет полностью отказаться от использования традиционных тормозных механизмов, гидромотор может замедлить машину вплоть до полной остановки. В этом пневмогидравлический рекуператор даже превосходит электрические системы, те при малой скорости вращения колес уже не эффективны.

Дополнительным плюсом является возможность запасти энергию надолго, на часы и дни. В отличие от маховиков, которые уже через десятки минут теряют солидную часть запасенной мощности. К сожалению, масштабные планы компании Peugeot были прохладно восприняты новыми акционерами из китайской Dongfeng, а также партнерами по разработке системы из Ford. Но судя по новостям, именно китайские грузовики Dongfeng могут оказаться следующими массовыми носителями этой технологии.

Электроторможение с рекуперацией

Главным конкурентом этих безусловно интересных, но обладающих множеством ограничений схем выступает уже классическая электрическая схема с электромотором, аккумуляторами или суперконденсаторами.

Обычное электрическое торможение и рекуперация хороши уже тем, что используются на железной дороге около 60 лет и отработаны до мелочей. Все конструктивные схемы с синхронными, асинхронными и коллекторными двигателями давно известны и рассчитаны. Энергия передается обратно в питающую сеть, запасается в аккумуляторы или суперконденсаторы и может быть использована через длительное время.

Основная беда электрических тормозов в том, что они плохо сочетаются с ДВС, и для эффективного использования электроэнергии пришлось совместить обычный двигатель внутреннего сгорания и всю атрибутику электромобиля – аккумуляторы и тяговый электродвигатель – в одном механизме. Получившиеся гибриды обычно так и называют просто «гибридами». И несмотря на сложность и высокую массу такой схемы, в данный момент она является единственной серийно использующейся в легковом автомобилестроении и уже весьма популярной.

Гибриды на данный момент оказываются самым перспективным направлением развития автомобилей с точки зрения снижения расхода топлива, а прогресс в создании аккумуляторных батарей и развитие так называемых «подзаряжаемых гибридов», по сути являющихся промежуточным звеном между чистыми электромобилями и гибридами, делает их важным элементом в эволюции персонального автотранспорта.

В 1997 году вышла первая серийная Toyota Prius, которая остается на данный момент самой популярной гибридной машиной и законодателем мод в своем классе. В ее схеме приняли решение использовать электромоторы малой мощности и недорогую никель-металлгидридную аккумуляторную батарею также малой мощности, а для компенсации этих недостатков наделили машину очень сложной трансмиссией со множеством режимов работы ДВС, электродвигателя и генератора. Успех этой схемы сильно повлиял на развитие подобных технологий у других производителей. Сейчас число моделей машин с гибридным приводом перевалило за два десятка.

Силовой спуск

Беспроводная передача электроэнергии

Недостатки устройств с рекуперацией, применяемых на транспорте, не позволяют использовать её как основной узел торможения. К основным минусам относятся:

  • отсутствие стояночного тормоза;
  • недопустимость полной остановки.

В связи с этим на всех устройствах и транспортных средствах применяют механические тормоза.

Эти же недостатки позволяют использовать рекуперацию для организации силового спуска. Её применяют при движении электротранспорта вниз на уклонах или для снижения скорости подачи груза вниз при опускании краном.


Силовой спуск при опускании грузов

Что такое рекуперация?

«Recuperatio» — именно от этого латинского слова произошла «рекуперация». Его значение — «обратное получение». Говоря более конкретно, это означает возвращение некоторого количества энергии или вещества, для дальнейшего применения в том же процессе. В случае со средствами передвижения, речь идёт о трансформации в процессе торможения кинетической энергии в электрическую.

Движущийся автомобиль — это кинетическая энергия, а при задействовании тормозной системы, ей нужно куда-то деваться. В машинах работа тормозных механизмов основана на трении, от которого при замедлении транспортного средства будет вырабатываться тепло. Что из этого следует? А то, что оно просто уходит в никуда — бесследно растворяется в окружающей среде.

Смекалистые инженеры пошли на хитрость: они решили пускать даровую энергию в рациональное русло и добились того, что некоторая её часть таки будет возвращена. При следующем ускорении машины, аккумулятор будет использовать энергию, сохранённую ранее от рекуперации.

Здесь важно понимать, что регенерация не является каким-то волшебством, увеличивающим пробег средства передвижения на одном заряде. Данная система не сделает ваш автомобиль более эффективным как таковым, она просто делает его менее неэффективным

Если говорить по сути, то идеальной будет такая езда, при которой вы разгонитесь до определённого постоянного скоростного режима и будете удерживать его, не прибегая по ходу движения к торможению.

Дело в том, что для замедления и последующего возвращения к прежнему темпу езды, понадобятся дополнительные энергозатраты поэтому, чтобы рассчитывать на большой запас хода, нужно полностью избегать замедлений. Очевидно, что воплотить подобную затею в жизнь — не реально. На практике, прибегать к замедлению приходится довольно часто, а рекуперация всего лишь делает процесс торможения менее бесполезным.

Рекуперация и дать, и взять журнал За рулем

16 февраля 2011 годаЕще до появления легковых гибридов рекуперативное торможение широко применяли в многотонной колесной и рельсовой технике, работающей на электрической тяге. Например, троллейбусы, трамваи, электропоезда передают вырабатываемое при торможении в контактную сеть электричество, которое потом можно повторно использовать.

Еще до появления легковых гибридов рекуперативное торможение широко применяли в многотонной колесной и рельсовой технике, работающей на электрической тяге. Например, троллейбусы, трамваи, электропоезда передают вырабатываемое при торможении в контактную сеть электричество, которое потом можно повторно использовать.

Термин «рекуперация» произошел от латинского recuperatio (обратное получение) и означает возвращение некоего количества вещества или энергии для последующего использования в том же технологическом процессе.

Например, существует рекуперация тепла в системах вентиляции, когда удаляемый из помещения воздух подогревает поток, нагнетаемый внутрь. Или рекуперация драгоценных камней или металлов, которые извлекают из отработавших ресурс инструментов, восстанавливают и вновь пускают в производство. В транспортных же машинах, в том числе в автомобилях, часто встречается рекуперация электрической энергии.

Как оно работает

Самый простой пример конструкции, позволяющей возвращать энергию, — умный генератор. При интенсивном разгоне он отключается, чтобы разгрузить двигатель, — следовательно, уменьшается расход топлива и количество вредных выбросов. Потребители электричества в это время вытягивают энергию из аккумулятора. Водитель убирает ногу с педали газа — генератор вновь подключается и пополняет заряд батареи, а автомобиль экономит до 3% горючего.

Направление потоков энергии при рекуперации. При разгоне электричество поступает из батареи в электродвигатель, где преобразуется в механическую энергию для вращения колес.Направление потоков энергии при рекуперации. При разгоне электричество поступает из батареи в электродвигатель, где преобразуется в механическую энергию для вращения колес.

Еще больше пользы приносит рекуперация в гибридных и электрических моделях. Тут электромотор выполняет две функции — движущей силы и генератора. Разгоняя автомобиль, он потребляет электричество, а при замедлении преобразует механическую энергию в электрическую.

Стоит отпустить педаль акселератора, как электроны начинают двигаться в обратную сторону — и батарея заряжается.

При торможении колеса раскручивают электромотор, тот переходит в режим генератора и отдает электроэнергию обратно в батарею.При торможении колеса раскручивают электромотор, тот переходит в режим генератора и отдает электроэнергию обратно в батарею.

Бессменная гидравлика, приводящая в действие колесные механизмы, работает обычно при интенсивном замедлении, а при плавном (до 0,2–0,3g) используется так называемое рекуперативное торможение. Электродвигатель переходит в режим генератора, обмотки статора отдают ток в аккумуляторную батарею, что создает тормозной момент, заставляющий автомобиль останавливаться.

Чем сильнее водитель давит на тормоз, тем выше противодействующий момент — и тем интенсивнее автомобиль замедляется, а электромотор заряжает батареи. Таким образом, рекуперация позволяет не только экономить топливо (примерно 5–10%), но и в полтора-два раза реже менять тормозные колодки.

Повышенная энергоотдача в батарею происходит и в случае, если селектор режимов движения переведен в положение B (Brake). При этом автомобиль лучше тормозит двигателем, поэтому на горной дороге быстрее пополнится запас электричества в аккумуляторах, а тормозные диски и колодки не перегреются.

Использование

Принцип рекуперации пытаются использовать в автомобилях Формулы 1: редкий случай, когда технологию опробовали на серийных машинах, а потом предложили королеве автоспорта.

Правда, конструкции так называемого KERS (Kinetic Energy Recovery System — система возврата кинетической энергии) здесь более изощренные. Большинство команд используют электрическую рекуперацию.

Обкатав KERS на формулах, Ferrari примерила систему рекуперации на дорожный автомобиль.

На базе купе 599 GTB Fiorano появился первый в истории Ferrari гибрид 599 GTB HY-KERS. Шестилитровому бензиновому двигателю на разгоне помогает 74-киловаттный электромотор, вырабатывающий энергию при торможении и позволяющий проехать на электротяге до 5 км.

Рекуперация: и дать, и взятьРекуперация: и дать, и взятьОшибка в тексте? Выделите её мышкой! И нажмите: Ctrl + Enter

Основная информация о рекуперации энергии торможения

Во время передвижения автомобиля, а особенно по городу, практически постоянно водителю приходится разгоняться и тормозить. Во время разгона мощность двигателя затрачивается на увеличение скорости, а во время остановки кинетическая энергия транспортного средства попросту теряется. Именно для того, чтобы пользоваться данной мощностью и была разработана рекуперация торможения, при помощи которой проходит заряжение аккумуляторной батареи.

Самым элементарным способом это реализуется на гибридном транспортном средстве. Современные гибридные машины используют систему рекуперативной остановки. В основании данной системы лежит электронный метод рекуперации.

Замедляющий эффект производится при помощи электрического двигателя, который включается в трансмиссии машины. Во время произведения остановки транспортного средства электронный двигатель функционирует в генерирующем режиме, на валике двигателя образовывается момент торможения и электричество, сохраняемая в аккумуляторе. Сохраненная электричество применяется впоследствии для передвижения машины.

Использование данной системы гарантирует максимальную передачу от каждой зарядки аккумулятора и высокий уровень экономии топлива. Рекуперация энергии торможения является самой эффективной на передней оси машины, потому как до семидесяти процентов силы во время торможения приходится на именно на данную ось.

Благодаря отдельному электронному блоку руководства реализуются такие функции:

  • Контролирование скорости кручения колес автомобиля;
  • Поддержка тормозного момента электронного двигателя, который необходим для остановки машины;
  • Поддержка момента кручения, который необходим для заряжения аккумулятора
  • Перераспределение тормозного усилия на фракционную тормозную систему.

Механическая связь между колодками и педалькой торможения представленной тормозной системы отсутствует. Анализируя действия водителя и характер передвижения машины, электроника принимает решение об остановке.

Система рекуперации кинетической энергии

Существует не только электрический метод рекуперации энергии остановки, но и такие методы как:

  • Гидравлический;
  • Пневматический;
  • Механический.

Самым распространенным из вышеперечисленных способов считается механический, а также разработанная на его основании система рекуперативного торможения. В такой системе кинетическая энергия передвигающегося транспортного средства возвращается во время остановки и сохраняется для последующего применения при помощи маховика. Главное отличие рекуперации энергии от системы рекуперативной остановки заключается в том, что система не может создавать тормозной момент.

Маховичок включается в трансмиссию транспортного средства, вращение происходит в вакуумной емкости и во время остановки способно разгоняться до шестидесяти тысяч оборотов за минуту. Устройство системы дает возможность сохранять энергию до шестисот килоджоулей и передавать мощность до восьмидесяти лошадиных сил или шестидесяти киловатт. Сохраненный запас энергии применяется в кратковременном скоростном рывке во время передвижения или начале движения.

Применяется в машинах «Формула 1», начиная с две тысячи девятого года. Что касается серийного применения, то оно только в планах разработчиков.

Существует мнение, что первыми к серийному использованию придут разработчики от компании «Вольво». Разработчики компании «Вольво» заявляют о том, что при использовании процесса рекуперации топливные затраты уменьшаются на двадцать процентов, а также значительно сокращаются вредные выбросы.

Рекуперация в автомобиле

При движении на автомобиле, особенно в условиях города, почти постоянно приходится разгоняться и тормозить. При разгоне мощность мотора тратится на увеличение скорости, а при торможении кинетическая энергия разогнавшегося авто просто теряется. Вот для того, чтобы частично ее использовать, существует система рекуперации энергии, благодаря которой осуществляется зарядка АКБ.

Наиболее простым способом это реализуется на гибридном автомобиле. При обычном режиме движения вспомогательный ДВС вращает генератор. Тяговые моторы получают от него питающее напряжение и крутят колеса. Когда машина тормозит, то генератор отключается, и уже колеса крутят тяговые моторы, а они начинают работать как генератор и вырабатывают электроэнергию, которая сохраняется аккумулятором. Вот таким образом в системе рекуперации, энергия торможения становится электроэнергией.

Подобный подход к использованию торможения возможен не только на гибридном автомобиле. Например, на многих машинах семейства bmw реализуется аналогичный способ, только несколько измененный. На некоторых моделях bmw при разгоне генератор не работает, что позволяет уменьшить нагрузку на двигатель, а также снизить потребление горючего. Когда же водитель начинает процесс торможения, то подключается генератор и начинает подзарядку АКБ.

Применение подобным образом рекуперации энергии торможения в автомобиле, для зарядки аккумуляторов, с питанием от них в дальнейшем бортовой электроники, достаточно традиционно. Как уже отмечалось, это позволяет добиться экономии топлива и повысить динамические характеристики, за счет расходования мощности двигателя исключительно на движение. Однако, это не единственный подход, который реализуют изготовители для рационального использования энергии на автомобиле в процессе торможения.

Система рекуперации энергии торможения (KERS)

Система рекуперативного торможения или система рекуперации кинетической энергии KERS (Kinetic Energy Recovery System) впервые была разработана и внедрена на гоночные болиды «Формулы-1».

Основной задачей её внедрения было улучшение динамических характеристик болида при разгоне и торможении (притормаживании) с последующим набором скорости. На начальном этапе разработки системы стоимость работ зашкаливала и многие команды «Формулы-1», не смотря на свой солидный бюджет, были вынуждены отказаться от неё.

Однако уже появившаяся на свет относительно «сырая» конструкция заинтересовала разработчиков автомобилей по всему миру. Разработчики увидели в системе рекуперации KERS большой потенциал в области использования кинетической энергии выделяемой при торможении. Ранее эта энергия преобразовывалась в тепловую, посредством трения тормозных механизмов и выбрасывалась в атмосферу.

С этого момента появилась задача — приспособить систему рекуперации KERS для работы на различных модификациях гибридных автомобилей и максимально снизить стоимость конструкции для массового использования.

Основное преимущество системы рекуперации KERS — это использование кинетической энергии, появляющейся в процессе торможения. В зависимости от типа транспортного средства возможны различные варианты применения этой энергии.

В настоящее время разработаны различные вариации системы рекуперации KERS. Основными являются:

  • механическая (кинетическая энергия при торможении накапливается и в последующем распределяется механическим способом);
  • электрическая (кинетическая энергия при торможении преобразуется в электрическую посредством электродвигателя, работающего в режиме «генератора» и сохраняется в накопителе электрической энергии).

Принцип работы механической системы KERS доступно показан на видео-модели:

Необходимо принимать во внимание, что механическая система рекуперации KERS гоночного болида «Формулы-1» и механическая система рекуперации KERS обычного легкового автомобиля — это две принципиально разные конструкции по своему исполнению. Второй вариант исполнения механической системы разрабатывает компания Volvo:. https://ecoconceptcars.ru/2011/08/mexanicheskaya-sistema-kers-ot-volvo.html

https://ecoconceptcars.ru/2011/08/mexanicheskaya-sistema-kers-ot-volvo.html

На видео-материалах отчетливо представлено в каких режимах работает система рекуперации. Варианты накопления энергии механическим способом могут быть различными, но принцип один – накопить при торможении и отдать при старте.

Принцип работы электрической системы рекуперации KERS показан на ресурсе и видео-модели Toyota Hybrid System :

https://systemsauto.ru/brake/regenerative_braking.html

Такой вариант исполнения применяется в основном на гибридных моделях автотранспорта. При торможении гибридного автомобиля система обеспечивает работу тягового электродвигателя в режиме «генератора» — идет процесс отдачи энергии в бортовую сеть и заряд накопителей энергии автомобиля. Подобным образом подзаряжаются накопители энергии электромобилей.

В спортивных болидах система KERS устроена следующим образом:

механическая

электрическая

https://www.youtube.com/watch?v=-yE3khtKZGg.

В качестве промежуточного результата адаптации системы рекуперации KERS на обычные автомобили, можно привести технологию i-ELOOP от компании Mazda:

https://www.carexpert.ru/testdrive/mazda/mazd6_2012/mazd6a970.htm (раздел «Суперконденсатор»).

Ссылки:

https://icarbio.ru/articles/kers.html

https://www.popmech.ru/article/6541-bolshaya-krasnaya-knopka/

Система рекуперации на автомобилях со «Старт-Стопом»

Любому автомобилисту известно, что при запуске двигателя происходит наибольший расход энергии аккумулятора. Транспортные средства, оборудованные системой «Старт-Стоп», отличаются тем, что после каждой остановки мотор автоматически глушится и потом при возобновлении движения заводится. То есть, батарея быстро теряет свою емкость и «требует» подзарядки. А времени, чтобы это сделать (с помощью штатного генератора) в условиях коротких пробегов и частых остановок на светофорах и в пробках, может просто не хватить. И вот тут электрическая система рекуперации смогла бы обеспечить дополнительный заряд аккумулятора. Существенным минусом ее применения на автомобилях «Старт-Стоп» является удорожание самого транспортного средства за счет установки специального генератора (подключаемого непосредственно к трансмиссии в момент торможения) и усложнение всей электронной «начинки».

Использование в автомобилестроении

Использование на легковых и грузовых автомобилях

С развитием рынка гибридных и электроавтомобилей система рекуперации зачастую используется для увеличения дальности пробега автомобиля на электрическом заряде.
Наиболее распространенными автомобилями этих классов является Toyota Prius, Chevrolet Volt, Honda Insight, Tesla Model S,3,X,Y

Есть отдельные случаи применения системы рекуперации в автомобиле с привычным бензиновым двигателем для сокращения расхода топлива. Такая система разрабатывалась на а/м Ferrari для обеспечения функционирования внутренних мультимедийных и климатических систем автомобиля от отдельной батареи, заряжаемой рекуперируемой энергией.

Система рекуперации энергии при торможении для электромобилей и электровелосипедов подвергается критике. Тормозной путь автомобиля очень мал по сравнению с проезжаемым путём и составляет от нескольких метров до несколько десятков метров (водитель обычно относительно резко тормозит у самого светофора или места назначения, или вообще подъезжает к месту назначения накатом). За такое короткое время аккумуляторы не успевают сколь-нибудь значительно зарядиться рекуперативным током, даже в городском цикле при частых торможениях. Экономия энергии за счёт рекуперации в лучшем случае составляет доли процента, и поэтому система рекуперативного торможения электромобиля неэффективна и не оправдывает усложнения конструкции. К тому же рекуперативное торможение не освобождает от необходимости обычной колодочной тормозной системы, так как на малых оборотах двигателя в режиме генератора его противо-ЭДС мала и недостаточна для полной остановки автомобиля. Также рекуперативное торможение не решает проблему стояночного тормоза (за исключением искусственного динамического удержания ротора на месте, на что расходуется значительная энергия). В современных электромобилях имеется возможность настройки педали «газа» — при её отпускании электромобиль либо продолжает двигаться по инерции накатом, либо переходит в режим рекуперативного торможения.

Однако рекуперация эффективна для электротранспорта с его частыми участками разгона-торможения, где тормозной путь большой и соизмерим с расстоянием между станциями (метро, пригородные электропоезда).

Использование в автоспорте

В на некоторых болидах использовалась система рекуперации кинетической энергии (KERS). Рассчитывалось, что это подстегнёт разработки в области и дальнейшие совершенствования данной системы.

Впрочем, у Формулы-1 с её мощным двигателем разгон на малых скоростях ограничивается сцеплением шин, а не крутящим моментом. На высоких же скоростях использование KERS не столь эффективно. Так что по результатам сезона-2009 оснащённые данной системой болиды не демонстрировали превосходства над соперниками на большинстве трасс. Однако это может объясняться не столько неэффективностью системы, сколько трудностью её применения в условиях строгих ограничений на вес машины, действовавших в 2009 году в Формуле-1.
После соглашения команд не использовать KERS в 2010 году для сокращения издержек, в сезоне 2011 года использование системы рекуперации было продолжено.

По состоянию на 2012 год на систему KERS налагаются следующие ограничения: передаваемая мощность не более 60 кВт (около 80 л.с.), ёмкость хранилища не более 400 кДж. Это означает, что 80 л.с. можно использовать не более 6.67 с на круг за один или несколько раз. Таким образом, время круга можно уменьшить на 0.1-0.4 с.

Техническим регламентом Формулы-1, утверждённым FIA на 2014 год, предусмотрен переход на более эффективные турбомоторы со встроенной системой рекуперации (ERS). Применение двойной системы рекуперации (кинетической и тепловой) в сезонах 2014—2015 годов стало гораздо более актуально из-за введения жёстких регламентных ограничений на расход топлива — не более 100 кг на всю гонку (в прошлые годы 150 кг) и мгновенный расход не более 100 кг в час. Неоднократно можно было наблюдать, как во время гонки при выходе из строя системы рекуперации машина начинала быстро терять позиции.

Рекуперативное торможение используется также в гонках на выносливость. Такой системой оснащены спортпрототипы класса LMP1 заводских команд и , .

Преобразователи частоты — Рекуперация электроэнергии

Современная преобразовательная техника позволяет получать экономию электроэнергии не только от оптимизации управления электродвигателями, но и имеет возможность давать дополнительную экономию за счет рекуперации электроэнергии.

Рекупера́ция(от лат. recuperatio «обратное получение»)возвращение части материалов или энергии для повторного использования в том же технологическом процессе.

Вместе с преобразователями частоты, могут быть применены модули рекуперации. Они применяются при управлении кинематическими системами, накапливающими при разгоне и торможении большое количество энергии.

Применение модулей рекуперации позволяет в процессе торможения вернуть в сеть механическую энергию с вала двигателя.

 

Модуль рекуперации подключается входом к звену постоянного тока, а выходом непосредственно, к питающей частотный преобразователь сети. Если к звену постоянного тока подключено несколько преобразователей, то достаточно одного модуля рекуперации.

Существуют преобразователи частоты, которые представляет собой инвертор со встроенной функцией возврата запасенной энергии от двигателя в сеть.

Идея возврата энергии в сеть, позволяет отказаться от громоздких тормозных резисторов и значительно увеличить скорость торможения двигателя.

При этом преобразователь частоты обеспечивает работу в режимах управления двигателем или рекуперации энергии без применения дополнительного оборудования, что в свою очередь обеспечивает:

1. Сохранение рабочего пространства – не требуется дополнительного оборудования (тормозной модуль, тормозные резисторы) для эффективного торможения двигателя

2. Сохранение энергии и расходов – рекуперируемая преобразователем частоты энергия возвращается обратно в питающую сеть

3. Нет выделения тепла, так как тормозные резисторы не применяются.

Преобразователи частоты с рекуперацией электроэнергии в сеть, чаще всего используют для решения задач, связанных с циклически чередующимися процессами ускорения и замедления.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: