Глава II. Практическая часть
2.1. Сборка установки качера Бровин
Рассмотрим этапы сборки данного прибора в домашних условиях.
Базовые элементы Качера:
- катушка индуктивности (вторичная обмотка);
- индуктор (первичная обмотка);
- плата.
- корпус
Схема, которой я руководствовался при сборке, выглядит следующим образом:
Рис. 1
Детали установки:
- Полихлорвиниловая (ПВХ) труба диаметром не меньше 25 мм и длиной 30 см(от этого будет зависеть дальность свечения лампочек). Я использовал трубу диаметром около 55 мм.
- Для изготовления вторичной обмотки качера я использовал медную проволоку, покрытую двойным слоем лака и диаметром 0,20 мм. Её следует намотать на трубу, не менее 1500 витков. (на моем экземпляре качера намотано около 2000 витков.) Через каждые несколько сантиметров я наносил на свежие витки клей, иначе обмотка может сбиться и перепутаться.
- Для изготовления первичной обмотки мне потребовался медный провод диаметром 0,5 см, его надо намотать вокруг вторичной катушки. Необходимо сделать около 4 витков. Все обмотки наматываем в одну сторону! Устанавливаем и закрепляем трубу с обмоткой на фанерке или доске, первичную обмотку растягиваем на 1/3 вторичной. Обмотки не должны соприкасаться! Потом вплавляем в трубу сверху металлическую проволоку, размером со швейную иглу и припаиваем к ней конец обмотки. Далее прикручиваем к платформе рядом с катушками радиатор для транзистора, промазываем основание теплопроводной пастой и прикручиваем транзистор к радиатору металлической панелькой.
Для изготовления платы мне понадобились следующие радиодетали:
- дроссель,
- конденсатор неполярный (1000 v 3000 μF),
- 2 резистора (2,2 кОм и 150 Ом),
- транзистор NPN, чем мощнее, тем лучше (их можно найти в обычном блоке питания ПК или на плате старых ламповых телевизоров).
Все монтируется, как показано на схеме (рис. 1). Припаиваем провода питания.
Далее я смастерил корпус для качера из ДВП. Кнопку включения питания разместил на верхней панели и зафиксировал ее термоклеем. Корпус и катушку покрыл бесцветным лаком. Конструкция готова! (рис. 2)
Рис. 2
Данное устройство необходимо подключить к блоку питания с напряжением от 12 до 38 v, который я тоже сконструировал самостоятельно (рис. 3)
Рис. 3
Проверка качера осуществляется поднесением люминесцентной лампочки к вторичной обмотке, при правильном соединении она загорится. При касании вторичной обмотки металлическим предметом между ними будет разряд. Если качер не работает, то нужно проверить правильность сборки схемы или попробовать поменять концы первичной обмотки.
2.2. Эффекты, наблюдаемые при работе качера Бровина
Рассмотрим эффекты, наблюдаемые при работе Качера Бровина, который я сконструировал в домашних условиях.
- Поднесем лампу дневного света к вторичной обмотке, мы видим, что она загорается. (рис. 4) Если поднести к качеру газоразрядную лампу, то она тоже начинает светиться. (рис. 5) Такой же эффект наблюдается и с другими подобными лампами. Так же в обычной лампе накаливания можно увидеть так называемый тлеющий разряд. (рис. 6)
Рис. 4
Рис. 5
Рис. 6
- Во время работы качер создаѐт красивые эффекты, связанные с образованием различных видов газовых разрядов – совокупность процессов, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии. Разряды качера Бровина:
Стример (от англ. Streamer) — тускло светящиеся тонкие разветвлѐнные каналы, которые содержат ионизированные атомы газа и отщеплѐнные от них свободные электроны. Стример — видимая ионизация воздуха (свечение ионов), создаваемая ВВ – полем Качера. (рис. 7)
Рис. 7
Дуговой разряд— образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлѐнный предмет, между ним и терминалом может загореться дуга. Иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние. (рис.
Рис. 8
Преимущества, недостатки и биологическое воздействие
Преимущества
Преимущества беспроводной передачи энергии микроволновым излучением в том, что способ полностью устраняет существующие кабели линий электропередачи высокого напряжения, вышки и подстанции между генерирующей станцией и потребителями и облегчает соединение электрогенерирующих станций в глобальном масштабе.
Способ имеет больше свободы выбора приемника и передатчиков. Даже мобильные передатчики и приемники можно выбрать для этой системы. Стоимость передачи и распределения станет меньше, а стоимость электроэнергии для потребителя также будет снижена. Потери передачи являются незначительными в беспроводной передаче энергии, поэтому эффективность этого способа значительно выше, чем проводная.
Недостатки
Капитальные затраты на практическую реализацию передачи энергии микроволновым излучением кажутся очень высокими и другим недостатком концепции является интерференция СВЧ с существующими системами связи.
Существуют распространенные убеждения, что биологические воздействия микроволнового излучения опасны. Но исследования в этой области неоднократно доказывают, что уровень микроволнового излучения не будет выше дозы, полученной при открытии дверцы микроволновой печи, то есть он немного выше, чем выбросы, создаваемые сотовыми телефонами. Сотовые телефоны работают с высокими плотностями мощности. Таким образом, воздействие микроволновым излучением также будет ниже существующих руководящих принципов безопасности.
Технология
Принцип индуктивной связи Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью. Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.
Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.
Концепция резонанса индуктивной связи
Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.
Существует также концепция беспроводной ионизированной связи.
Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.
Пропускная способность линий электропередач
Напряжение в конце линии неизбежно ниже, чем в её начале. Вольтаж теряется на сопротивлении проводов ЛЭП. Именно эта разница напряжений уходит впустую на обогрев вселенной.
Такая проблема приводит к тому, что невозможно создать линию электропередач бесконечной длины и передать по ней неограниченную мощность. Поэтому введено понятие – пропускная способность ЛЭП. Данная характеристика в первую очередь зависит от длины линии, металла, из которого сделаны её провода и их сечения. Потери в меди менее ощутимы, чем у алюминия. Пропускная способность линии тем выше, чем толще её провода.
История развития
Развитие передачи электроэнергии без проводов на расстояние связано с прогрессом в области радиотехники, так как оба процесса имеют одинаковую природу. Изобретения в обеих областях связаны с исследованием метода электромагнитной индукции и ее воздействия на образование электрического тока.
В 1820 году А.М. Ампер открыл закон взаимодействия токов, который заключался, в том, что если по двум близко расположенным проводникам ток течет в одном направлении, то они притягиваются друг к другу, а если в разных, то отталкиваются.
М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное (меняющееся по величине и направлении во времени) магнитное поле, порождаемое протеканием электрического тока, наводит (индуцирует) токи в близлежащих проводниках. Т.е. происходит передача электроэнергии без проводов. Подробно закон Фарадея мы рассматривали в статье ранее.
Ну а Дж. К. Максвелл еще через 33 года, в 1864 году перевел экспериментальные данные Фарадея в математический вид, собственно уравнения Максвелла являются основополагающими в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.
Существование электромагнитных волн подтвердил в 1888 Г. Герц, в ходе своих экспериментов с искровым передатчиком с прерывателем на катушке Румкорфа. Таким образом производились ЭМ волны с частотой до пол гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но те должны быть настроены в резонанс с передатчиком. Радиус действия установки был в районе 3-х метров. Когда в передатчике возникала искра, такие же возникали и на приемниках. Фактически это и есть первые опыты по передачи электроэнергии без проводов.
Глубокие исследования вел известный ученый Никола Тесла. Он в 1891 году изучал переменный ток высокого напряжения и частоты. В результате чего были сделаны выводы:
Для каждой конкретной цели нужно настраивать установку на соответствующую частоту и напряжение. При этом высокая частота не является обязательным условием. Лучшие результаты удалось добиться при частоте 15-20 кГц и напряжении передатчика 20кВ. Чтобы получить ток высокой частоты и напряжения использовался колебательный разряд конденсатора. Таким образом, можно передавать как электроэнергию, так и производить свет.
Ученный на своих выступлениях и лекциях демонстрировал свечение ламп (вакуумных трубок) под воздействием высокочастотного электростатического поля. Собственно основными заключениями Теслы было то, что даже в случае использования резонансных систем много энергии с помощью электромагнитной волны передать не получится.
Параллельно целый ряд ученных до 1897 года занимались подобными исследованиями: Джагдиш Боше в Индии, Александр Попов в России и Гульельмо Маркони в Италии.
Каждый из них внес свой вклад в развитие беспроводной передачи электроэнергии:
- Дж. Боше в 1894 году, зажигал порох, передав электроэнергию на расстояние без проводов. Это он сделал на демонстрации в Калькутте.
- А. Попов в 25 апреля (7 мая) 1895 года с помощью азбуки Морзе передал первое сообщение. В России до сих пор этот день, 7 мая, является Днём Радио.
- В 1896 году Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние в 1,5 км, позже на 3 км на Солсберийской равнине.
Стоит отметить, что работы Тесла, недооценённые в свое время и потерянные на века, превосходили по параметрам и возможностям работы его современников. В тоже время, а именно в 1896 году его аппараты передавали сигнал на большие расстояния (48 км), к сожалению это было небольшим количеством электроэнергии.
И к 1899 году Тесла приходит к выводу:
Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха.
Эти выводу приведут к другим исследованиям, в 1900 году ему удалось запитать лампу от катушки, вынесенной в поле, а в 1903 году была запущена башня Вондерклифф на Лонг-Айленде. Она состояла из трансформатора с заземленной вторичной обмоткой, а на её вершине стоял медный сферический купол. С её помощью получилось зажечь 200 50-ватных ламп. При этом передатчик находился за 40 км от неё. К сожалению, эти исследования были прерваны, финансирование было прекращено, а бесплатная передача электроэнергии без проводов была экономически не выгодной бизнесменам. Башню разрушили в 1917 году.
В наши дни
Технологии беспроводной передачи электроэнергии сильно шагнули вперед, в основном в области передачи данных. Так значительных успехов достигла радиосвязь, беспроводные технологии типа Bluetooth и Wi-fi. Особых нововведений не произошло, в основном изменялись частоты, способы шифровки сигнала, представление сигнала перешло из аналогового в цифровой вид.
Если вести речь о передаче электроэнергии без проводов для питания электрооборудования, стоит упомянуть о том, что в 2007 году исследователи из Массачусетского института передали энергию на 2 метра и зажгли 60-ваттную лампочку таким образом. Эта технология получила названия WiTricity, в её основе электромагнитный резонанс приемника и передатчика. Стоит отметить, что приемник получает порядка 40-45% электроэнергии. Обобщенная схема устройства для передачи энергии через магнитное поле изображена на рисунке ниже:
На видео пример применения этой технологии для зарядки электромобиля. Суть заключается в том, что на дно электромобиля крепят приемник, а в гараже или на другом месте устанавливают передатчик на полу.
Вы должны поставить машину так, чтобы приемник располагался над передатчиком. Устройство передает достаточно много электроэнергии без проводов – от 3,6 до 11 кВт в час.
Компания в перспективе рассматривает обеспечение электричеством такой технологией и бытовой техники, а также всей квартиры в целом. В 2010 году компания Haier представила беспроводной телевизор, который получает питание с помощью аналогичной технологии, а также видеосигнал без проводов. Подобные разработки ведут и другие передовые компании, такие как Intel, Sony.
В быту широко распространены технологии беспроводной передачи электроэнергии, например, для зарядки смартфона. Принцип аналогичный – есть передатчик, есть приемник, КПД порядка 50%, т.е. для заряда током в 1А передатчик будет потреблять 2А. Передатчик обычно в таких комплектах называется базой, а та часть, что подключается к телефону – приемником или антенной.
Другой нишей является беспроводная передача электричества с помощью микроволн или лазера. Это обеспечивает больший радиус действия, нежели пара метров, которые обеспечивает магнитная индукция. В микроволновом способе на принимающее устройство устанавливают ректенну (нелинейная антенна для преобразования электромагнитной волны в постоянный ток), а передатчик направляет своё излучение в эту сторону. В таком варианте беспроводной передачи электричества отсутствует необходимость прямой видимости объектов. Минусом является то, что микроволновое излучение небезопасно для окружающей среды.
Рекомендуем просмотреть видео, на котором более подробно рассмотрен вопрос:
В заключение хотелось бы отметить — беспроводная передача электричества, безусловно, удобна для использования в повседневной жизни, но у неё есть свои плюсы и минусы. Если говорить об использовании таких технологий для заряда гаджетов, то плюсом является то, что вам не придется постоянно вставлять и вынимать из разъёма вашего смартфона штекер, соответственно разъём не выйдет из строя. Минусом является низкий КПД, если для смартфона потери энергии не существенны (несколько Ватт), то для беспроводной зарядки электромобиля – это весьма большая проблема. Основной целью развития в этой технологии является повысить КПД установки, ведь на фоне повсеместной гонки за энергосбережением использование технологий с низким КПД весьма сомнительно.
Похожие материалы:
- Закон Ома простым языком
- Причины потерь электроэнергии на больших расстояниях
- Что такое умные лампы
* * *
Ждать осталось сравнительно недолго. Если японцы сдержат обещания, в 2020 году вся домашняя техника, компьютеры и портативные устройства смогут избавиться от гнета проводов, поработивших человечество. Покупателю нужно будет всего лишь привезти, скажем, новый телевизор домой, повесить его на стену и начать смотреть кино буквально сразу же — не задумываясь о том, за какой ширмой припрятать уродливый черный кабель питания. На улицах, в квартирах, в кафе будут встроены беспроводные передатчики энергии, которые позволят людям забыть о разрядившихся батареях. Конечно, на окончательное воплощение подобных идей в жизнь уйдет далеко не десять лет, но все шансы дожить до светлого будущего у нас есть. Тем более что вполне работоспособные технологии уже существуют. Жаль только, что Никола Тесла не увидит этого дня…
Беспроводные зарядки имеют низкое КПД
Сегодня существует три основных варианта мощности беспроводных Qi-зарядок: 5 Вт, 7,5 Вт, 10 Вт. Для сравнения, самые распространенные проводные — 5 Вт, 10 Вт и 18 Вт.
Коэффициент полезного действия проводных блоков питания, преобразующих переменный ток в постоянный с заданными параметрами, балансирует в пределах от 50 до 85%. Остальное выделяется теплом и выражается нагревом элементов электроцепи.
Минимальным условием для работы Qi хотя бы с 5 Вт — зарядное устройство на 10 Вт. Иначе ничего не выйдет, зарядка не заработает.
При этом для работы Qi с мощностью 10 Вт необходим блок питания с поддержкой QC 3.0 на 18 Вт или мощнее (чаще предлагается использовать PD на 24 Вт).
КПД преобразования составляет всего 55%.
Сама передача от зарядки к устройству тоже является источником потерь: телефон в среднем принимает 4,2 Вт из 5Вт (КПД 85%) и 9,1Вт из 10Вт (КПД около 90%).
Из 18 Вт сделать 9,1 Вт с КПД 50% — это теперь называется «зеленая экономичная энергетика»?
Неужели нет более удачных технологий? Есть. Теоретически проблема проста: повышаем напряжение, уменьшаем ток, снижаем потери.
Только в электронике аккумулятор на 4,35 В, поэтому придётся оснащать смартфон понижающим преобразователем. Который должен быть рассчитан
- на конкретные параметры зарядки
- с запасом по напряжению
- и обладать большими потерями из-за преобразования и особенностей использованных для него транзисторов
Высокомощные беспроводные интерфейсы, активно продвигаемые Xiaomi и другими китайскими брендами предлагают более высокие токи.
За счет этого, а так же дорогой электроники (и специфичного распределения себестоимости) им удаётся достичь КПД до 55-70%.
Однако им требуются высокомощные Power Delivery источники тока с мощностью 65 Вт и выше, которые сами по себе имеют достаточно высокие потери.
Поэтому чаще всего производители комплектуют Qi-зарядку собственным блоком питания. В итоге общая стоимость аксессуара на свободном рынке может достигать 20-40% от стоимости самого гаджета. Отдельно ничего не купить. Так зачем, если скорее всего с новым смартфоном придётся покупать более мощное устройство?
Но ведь прототипы уже существуют? Прогресс не остановить!
Как ни странно, в странах, где актуален научный подход и правит сухой математический анализ, отношение к «зеленому электричеству» и его беспроводной передаче своеобразное.
Так, министерство промышленности и информационных технологий Китая вынесло некоторое время назад на обсуждение «Временное постановление о радиоуправлении устройств беспроводной зарядки (передачи энергии)».
В нем предлагается с 1 января 2022 года запретить производство, импорт, продажу и использование беспроводных зарядных устройств мощностью более 50 Вт. Вероятно, документ уже вступил в действие.
Несмотря на обилие стартапов, обещающих дешёвую технологию передачи электричества без проводов на расстоянии, реальный продукт не выпускает никто.
Стоит задуматься, ведь первые рабочие прототипы беспилотников, снабжаемых питанием с земли лазерным лучом были успешно испытаны в 2007-2009 годах.
Относительно успешными оказываются только стартапы, предлагающие менять всю инфраструктуру. Как думаете, много стран сможет приобрести дорогу с беспроводной зарядкой от Electreon?
Тем более, что вопросов к эксплуатации этой технологии не меньше, чем к Николе Тесла.
Одно пока можно сказать с уверенностью: когда решатся все существующие НО, мир ждёт новая техническая революция. И это будет совсем другой мир.
iPhones.ru
Фантастика ближе, чем кажется. Но может не наступить никогда.
Маршрут транспортировки электричества
Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.
Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).
Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.
Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.
Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.
От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д
Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт)
Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.
Советуем изучить Дезинфекционное освещение для обеззараживания и лечения заболеваний
Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.
Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:
Более подробно об этом вопросе рассказывают эксперты:
Как электричество поступает от источника к потребителю
Digitrode
Концепция беспроводной передачи электроэнергии не нова. Она была впервые продемонстрирована Николой Теслой в 1890 году. Никола Тесла использовал электродинамическую индукционную или резонансную индуктивную связь, зажигая три лампочки на расстоянии 60 футов от источника питания. В этом проекте мы также создадим мини-катушку Тесла для передачи энергии.
Беспроводная передача электроэнергии – это процесс подачи энергии через воздушный зазор без использования каких-либо проводов или физического соединения. В этой беспроводной системе передающее устройство генерирует изменяющееся во времени высокочастотное электромагнитное поле, которое передает энергию на приемное устройство без какого-либо физического соединения. Приемное устройство извлекает энергию из магнитного поля и подает ее на электрическую нагрузку. Поэтому для преобразования электричества в электромагнитное поле в качестве катушки передатчика и приемной катушки используются две намотанные из проводов катушки. Катушка передатчика питается переменным током и создает магнитное поле, которое в дальнейшем преобразуется в полезное напряжение на катушке приемника. В этом примере мы создадим базовую цепь беспроводного передатчика с низким энергопотреблением для зажигания светодиода.
Схема для беспроводной передачи электроэнергии для свечения светодиода проста, и ее можно увидеть на следующем изображении. Она состоит из двух частей: передатчика и приемника.
На стороне передатчика катушка подключена через коллектор транзистора, 17 обмоток с обеих сторон. И приемник построен с использованием трех компонентов – транзистора, резистора и катушки индуктивности с воздушным сердечником с центральным ответвлением или медной катушки. Сторона приемника имеет светодиод, подключенный через 34 витка медной катушки. Здесь используется транзистор NPN, можно взять, например, BC547.
Катушка является важной частью беспроводной передачи энергии и должна быть аккуратно собрана. В этом проекте катушки сделаны с использованием медной проволоки 29AWG
Формирование катушки с центральным ответвлением выполняется на стороне передатчика. Для намотки катушки требуется цилиндрический объект, например, трубка из ПВХ или пластмассовая банка.
Для передатчика намотайте провод до 17 витков, затем организуйте петлю для подключения центрального ответвления и снова сделайте 17 витков катушки. А для приемника сделайте 34 витка обмотки катушки без центрального ответвления.
Обе схемы в данном случае реализованы на макетных платах и питаются от батареи 1,5 В. Цепь не может использоваться для источника питания более 1,5 В, так как транзистор может нагреваться с чрезмерным рассеиванием мощности.
В секции передатчика транзистор генерирует высокочастотный переменный ток через катушку, а катушка создает вокруг нее магнитное поле. Поскольку катушка повернута по центру, две стороны катушки начинают заряжаться. Одна сторона катушки соединена с резистором, а другая сторона соединена с выводом коллектора NPN-транзистора. Во время состояния зарядки базовый резистор начинает проводить, что в конечном итоге включает транзистор. Затем транзистор разряжает индуктор, когда эмиттер соединен с землей. Эта зарядка и разрядка индуктора создает очень высокочастотный сигнал колебаний, который затем передается в виде магнитного поля.
Со стороны приемника это магнитное поле передается в другую катушку, и по закону индукции Фарадея, катушка приемника начинает генерировать напряжение ЭДС, которое дополнительно используется для свечения светодиода.
Эта небольшая схема может работать должным образом, но имеет огромное ограничение. Эта схема не подходит для передачи высокой мощности и имеет ограничение по входному напряжению. КПД тоже очень низкий. Чтобы преодолеть это ограничение, могут быть организованы двухтактные топологии с использованием биполярных транзисторов или полевых транзисторов. Однако для большей эффективности лучше использовать надлежащие микросхемы драйверов беспроводной передачи. Чтобы улучшить дальность передачи, правильно намотайте катушку и увеличьте количество витков в катушке.
digitrode.ru