Качество электроэнергии. требования к качеству электроэнергии

Что влияет на характеристики питающей сети?

Качество электроэнергии зависит от огромного числа факторов, изменяющих показатели сверх установленных нормативами пределов. Так, напряжение может оказаться завышенным из-за аварии на подстанции. Заниженные значения появляются в вечернее время суток или в летний сезон, когда люди возвращаются домой и включают телевизоры, электрические плиты, сплит-системы.

Качество электроэнергии согласно ГОСТам может незначительно колебаться. В очень плохих питающих сетях потребителям приходится пользоваться стабилизаторами напряжения. Контроль над характеристиками возложен на Роспотребнадзор, куда можно обращаться при возникающих несоответствиях.

Качество электроэнергии может зависеть от следующих факторов:

  • Суточных колебаний, связанных с неравномерным подключением потребителями либо с влиянием приливов и отливов на морских станциях.
  • Изменениями воздушной среды: влажности, образование льда на питающих проводах.
  • Изменением ветра, когда питание вырабатывают ветровики.
  • Качеством проводки, со временем она изнашивается.

Советуем изучить — Электростатика в картинках

Способы повышения качества электрической энергии

Для управления качеством электрической энергии необходимо внедрять в структуру систем энергоснабжения:

  1. УКРМ (устройств компенсации реактивной мощности), для гарантированной высокопропускной способности электрической сети в обычном и послеаварийном режиме.
  2. Внедрение в работу силовых трансформаторов с наличием РПН (регулировка под нагрузкой), устройство способно регулировать уровень напряжения в сети при его падении при увеличении нагрузки, или при высоком уровне напряжения, без вывода трансформатора в ремонт.
  3. Применение в сети синхронных компенсаторов, рекомендуется их установка на силовых подстанциях в зависимости от баланса реактивной мощности в рассматриваемом узле.
  4. При напряжении до 1000 В и значениях мощности около 100кВт наиболее выгодно использовать асинхронные двигатели, более 300 кВт – рекомендуется применять синхронные машины, при величине напряжении 6 — 10 кВ– асинхронные машины, свыше 400 кВт – синхронные. Так как синхронные двигатели являются источниками реактивной энергии, целесообразно подключение конденсаторных батарей.
  5. Конденсаторных батарей (БСК) совместно с фильтрокомпенсирующими устройствами.
  6. Использование в сети линейных регуляторов или последовательных трансформаторов для регулировки напряжения в отдельных линиях и вторичных обмотках автотрансформаторов.
  7. Применение автотрансформаторов связи сетей различных номинальных напряжений с РПН, расположенным на линейном конце обмотки среднего напряжения, им можно регулировать под нагрузкой коэффициент трансформации.
  8. Для обеспечения КЭ регуляторы РПН должны работать автоматически, характеризуются устойчивостью работы, зоной нечувствительности, точностью регулирования и выдержкой времени.

Компенсирующие устройства помогают решить такие задачи как:

  1. Оптимизация перетоков индуктивной (реактивной) мощности в высоковольтных сетях.
  2. Сведение к минимуму наличия потерь мощности и энергии.
  3. Поддержание статической и динамической устойчивости в узлах повышенной нагрузки.

Колебание напряжения

Одним из параметров качества электроэнергии является колебание напряжения.

Колебания напряжения характеризуются следующими показателями:

  • размахом изменения напряжения;
  • дозой фликера.

Значения колебания напряжения имеют те же самые нормы, что и отклонение напряжения с единственным отличием: длительность процесса менее одной минуты. Нормально допустимым колебанием

напряжения считается диапазон в 5%, то есть: +/-5% (от 209 В до 231 В).Предельно допустимым колебанием напряжения считается диапазон в 10%, то есть: +/-10% (от 198 В до 242 В).

Замечание:

не следует путать требования ГОСТа к качеству электроэнергии в сети (ГОСТ Р 54149-2010 «Электрическая энергия. Совместимость технических средств электромагнитная») и ГОСТов, описывающих качество электропитания для электрических приборов (напр. ГОСТ Р 52161.2.17-2009 «Безопасность бытовых и аналогичных электрических приборов»). ГОСТ качества электроэнергии предъявляет требования по сути к поставщику электрической энергии, и именно на этот ГОСТ можно опереться, если нужно предъявить требования к поставщику при плохом электроснабжении. А требования к качеству электропитания в паспортах приборов определяют требование к приборам работать нормально в более широком диапазоне значений параметров тока. Для приборов, как правило, закладывается диапазон по напряжению от -15% до +10% от номинального.

Показатели качества электрической энергии

Стандартом устанавливаются следующие показатели качества электроэнергии (ПКЭ):

При определении значений некоторых ПКЭ стандартом вводятся следующие вспомогательные параметры электрической энергии:

Часть ПКЭ характеризует установившиеся режимы работы электрооборудования энергоснабжающей организации и потребителей ЭЭ и дает количественную оценку по КЭ особенностям технологического процесса производства, передачи, распределения и потребления ЭЭ. К этим ПКЭ относятся: установившееся отклонение напряжения, коэффициент искажения синусоидальности кривой напряжения, коэффициент n-ой гармонической составляющей напряжения, коэффициент несимметрии напряжений по обратной последовательности, коэффициент несимметрии напряжений по нулевой последовательности, отклонение частоты, размах изменения напряжения.

Оценка всех ПКЭ, относящихся к напряжению, производится по действующим его значениям.

Для характеристики вышеперечисленных показателей стандартом установлены численные нормально и предельно допустимые значения ПКЭ или нормы.

Другая часть ПКЭ характеризует кратковременные помехи, возникающие в электрической сети в результате коммутационных процессов, грозовых атмосферных явлений, работы средств защиты и автоматики и в после аварийных режимах. К ним относятся провалы и импульсы напряжения, кратковременные перенапряжения. Для этих ПКЭ стандарт не устанавливает допустимых численных значений. Для количественной оценки этих ПКЭ должны измеряться амплитуда, длительность, частота их появления и другие характеристики, установленные, но не нормируемые стандартом. Статистическая обработка этих данных позволяет рассчитать обобщенные показатели, характеризующие конкретную электрическую сеть с точки зрения вероятности появления кратковременных помех.

Для оценки соответствия ПКЭ указанным нормам (за исключением длительности провала напряжения, импульсного напряжения и коэффициента временного перенапряжения) стандартом устанавливается минимальный расчетный период, равный 24 ч.

В связи со случайным характером изменения электрических нагрузок требование соблюдения норм КЭ в течение всего этого времени практически нереально, поэтому в стандарте устанавливается вероятность превышения норм КЭ. Измеренные ПКЭ не должны выходить за нормально допустимые значения с вероятностью 0,95 за установленный стандартом расчетный период времени (это означает, что можно не считаться с отдельными превышениями нормируемых значений, если ожидаемая общая их продолжительность составит менее 5% за установленный период времени).

Другими словами, КЭ по измеренному показателю соответствует требованиям стандарта, если суммарная продолжительность времени выхода за нормально допустимые значения составляет не более 5% от установленного периода времени, т.е. 1 ч 12 мин, а за предельно допустимые значения – 0 % от этого периода времени.

Рекомендуемая общая продолжительность измерений ПКЭ должна выбираться с учетом обязательного включения рабочих и выходных дней и составляет 7 суток .

В стандарте указаны вероятные виновники ухудшения КЭ. Отклонение частоты регулируется питающей энергосистемой и зависит только от нее. Отдельные ЭП на промышленных предприятиях (а тем более в быту) не могут оказать влияния на этот показатель, так как мощность их несоизмеримо мала по сравнению с суммарной мощностью генераторов электростанций энергосистемы. Колебания напряжения, несимметрия и несинусоидальность напряжения вызываются, в основном, работой отдельных мощных ЭП на промышленных предприятиях, и только величина этих ПКЭ зависит от мощности питающей энергосистемы в рассматриваемой точке подключения потребителя. Отклонения напряжения зависят как от уровня напряжения, которое подается энергосистемой на промышленные предприятия, так и от работы отдельных промышленных ЭП, особенно с большим потреблением реактивной мощности. Поэтому вопросы КЭ следует рассматривать в непосредственной связи с вопросами компенсации реактивной мощности. Длительность провала напряжения, импульсное напряжение, коэффициент временного перенапряжения, как уже отмечалось, обуславливаются режимами работы энергосистемы.

В таблице 2.1. приведены свойства электрической энергии, показатели их характеризующие и наиболее вероятные виновники ухудшения КЭ .

Свойства электрической энергии

Показатель КЭ

Наиболее вероятные виновники ухудшения КЭ

Установившееся отклонение напряжения

Продолжительность спада входной величины

Измеренный параметр описывают как провал напряжения, укладывающийся в границы ±0,1Unominal за интервал в несколько десятков миллисекунд. Для сети 220 В изменение показателя допускается до 22 В, если 380 В, то не более 38 В. Глубина спада рассчитывается согласно выражению: ΔUn=(Unominal−Umin)/Unominal.

Продолжительность спадла рассчитывается согласно выражению: Δtn=tk−tn, здесь tk — это период, когда напряжение уже восстановилось, а tn — точка начала отсчета, момент когда произошло падение напряжения.

Контроль качества электроэнергии обязывает учитывать частоту появления провалов, определяемую по формуле: Fn=(m(ΔUn,Δtn)/M)*100%. Здесь:

  • m(ΔUn,Δtn) определяется как количество спадов в установленное время при глубине ΔUn и продолжительности Δtn.
  • М — общий счет спадов в течение выбранного периода.

Электромагнитной совместимостью электрооборудования

Если говорить об электрической совместимости в самом широком смысле, то сюда следует отнести все материальные проявления и идеальные последствия, связанные с заряженными частицами и электромагнитными полями.

В более узком смысле под электромагнитной совместимостью понимают совокупность электрических, магнитных и электромагнитных полей, которые генерируют электрообъекты, созданные человеком, и которые воздействуют на мертвую (физическую) и живую (биологическую) природу, на техническую, информационную, социальную реальности.

Для технических устройств ухудшение электромагнитной обстановки может обостриться настолько, что возможно нарушение их функционирования, ухудшения качества электроэнергии, повреждения устройств релейной защиты и автоматики.

Понятие качества электрической энергии отличается от понятия качества других товаров. Качество электроэнергии проявляется через качество работы каждого электроприемника. Поэтому, если он работает неудовлетворительно, а в каждом конкретном случае анализ качества потребляемой электроэнергии дает соответствие ГОСТ, то виновато качество изготовления или эксплуатации.

В целом ПКЭ определяют степень искажения напряжения электрической сети за счет кондуктивных помех (распределяющихся по элементам электрической сети), вносимых как энергоснабжающей организацией, так и потребителями.

1.2. Отклонение частоты и причины его возникновения

Отклонение частоты в электрической системе, Гц, характеризу­ет разность между действительным и номинальным значениями частоты переменного тока в системе электроснабжения и опре­деляется по выражению

δf = f — fном (1)

Допустимые нормы по отклонению частоты составляют

δfнорм= ± 0,2 Гц, δfпред =± 0,4 Гц

Частота переменного тока в электрической системе определяет­ся скоростью вращения генераторов электростанций. Номинальное значение частоты в ЕЭС России 50 Гц в электрической системе мо­жет быть обеспечено при условии наличия резерва активной мощ­ности. В каждый момент времени в электрической системе должно забыть обеспечено равенство (баланс) между мощностью генераторов электростанций и мощностью, потребляемой нагрузкой с учетом потерь мощности на передачу в электрической сети . Ввод резервной мощности возможен в системе за счет допол­нительного расхода энергоносителя турбин электростанций.

Что понимают под качеством электроэнергии

Качество электроэнергии по ГОСТ 32144-2013 означает степень соответствия характеристик электрической энергии (ЭЭ) совокупности нормированных показателей КЭ, определяющих ее по одному или нескольким параметрам

КЭ важно для нормальной и стабильной работы электрооборудования

Низкое качество электроэнергии:

  • негативно влияет на функциональность;
  • сокращает срок службы приборов, а также повышает расход ресурса и увеличивает оплату его потребления;
  • снижает надежность электроснабжения;
  • создает условия для технологического и экономического ущерба как у поставщиков, так и у потребителей.

Цели проверки

Полученные результаты позволяют добиться соблюдения заданных в договоре поставщика параметров. Анализ обеспечивает получение данных для составления развернутого отчета о работе системы. Экспертиза выявляет перечень отклонений или их отсутствие. Полученный документ дает основания, для предъявления поставщику обоснованных претензий о несоответствии качества энергии общепринятым нормам. В результате вторая сторона договора устранит все проблемы, и выявленные нарушения в оговоренный промежуток времени.

Измерения обеспечивают расчет коэффициента рациональности использования электричества. Благодаря этому производство выходит на технологичный уровень работы с минимальным расходом ресурсов. При необходимости, из электрической сети устраняются объекты, работающие неэффективно или во вред всей системе.

Проводить исследования стоит для реальных и запланированных систем энергоснабжения. Экспертизу приурочивают к энергетическому аудиту промышленного объекта. Итоги проверки, дают данные для повышения уровня энергетической эффективности в промышленной сфере.

Полученные значения сохраняются и используются при проведении следующего аудита. Специалисты сравнивают данные и делают соответствующие выводы о работе системы.

Размах изменения питающей сети

Нормы качества электроэнергии содержат надзор за таким параметром, как колебание составляющих напряжения. Он устанавливает разницу между верхним порогом амплитуды и нижним. Учитывая, что допуски отклонения параметра от установленного укладываются в предел ±5 %, то размах предельный режим не может превышать ±10 %. Питающая сеть 220 В не может колебаться более или менее 22 В, а 380 В работает нормально в границах ±38 В.

Результирующий размах колебаний напряжения рассчитывается по следующему выражению ΔU = Umax−Umin, в нормативах результаты указываются в % согласно расчетам ΔU = ((Umax−Umin)/Unominal)*100%.

Способы измерения

Приведённые выше показатели электроэнергии можно измерить тремя основными способами.

  1. Измеряющими приборами. Сюда входят токоизмерительные клещи с блоком индикации. Они определяют номинальное значение и необходимы для ежедневного контроля напряжения.
  2. Анализирующими приборами. Их отличие состоит в способности выявлять и анализировать фазный дисбаланс и оценивать потери энергии. При этом они также могут определять номинальное значение. Преимущественно используются для разового измерения.
  3. Регистрирующими приборами. Стационарные: выполняют функции, аналогичные измеряющим, однако более медленно. Дают возможность создавать графики и отслеживать изменения при помощи них.

Итак, в данной статье были рассмотрены основные показатели электроэнергии, ее качества и способны их измерения. Надеемся, размещённая информация была для Вас полезной и познавательной!

Многофункциональные измерительные приборы

Современные многофункциональные приборы обеспечивают получение результатов не только в цифровом формате, но и в денежном эквиваленте. Модели отличаются рядом показателей:

  • задачи;
  • область применения;
  • функционал.

Модели нового поколения ускоряют процесс получения значений по прогнозированию, фиксации, устранению и предотвращению возникновения новых проблем в работе системы. С помощью специальных аппаратов, специалисты определяют механические и электрические параметры.

Отсутствие контроля приводит к частым неполадкам, сбоям энергосистемы и чрезмерным расходам электричества. Общего показателя эффективности работы сети недостаточно для проведения глубинного анализа. Большие предприятия обращаются в сертифицированные службы для осуществления контроля над всеми компонентами рабочей зоны.

Важно анализировать нагрузки в динамике. Это позволит выявить уровень износа электросети и своевременно провести мероприятия по устранению потенциальных угроз. При выявлении вины поставщика, потребитель будет лишен необходимости брать на себя обязанность по решению проблем

При выявлении вины поставщика, потребитель будет лишен необходимости брать на себя обязанность по решению проблем.

Коэффициент несимметрии

Это один из основных параметров при оценке качества работы в трехфазных и двухфазных сетях. Превышение коэффициента, наблюдается при неравномерном распределении нагрузки по фазам. Параметр регламентирован ГОСТом и используется при проведении любых проверок сети.

Не все процессы происходят систематически. Существует ряд характеристик, которые фиксируются в случайных ситуациях. Для их возникновения требуются определенные условия и совпадения по сопутствующим изменениям.

Прерывание напряжения случается во время аварий или плановых ремонтных работ. Провалы возникают при подключении оборудования высокой мощности, или коротких замыканиях. Перенапряжения фиксируются по ряду причин:

  • короткие замыкания;
  • резкое снижение нагрузки;
  • обрывы нейтральных проводников;
  • замыкания на землю.

При воздействии молний происходят импульсивные перенапряжения.

Минимальный интервал измерений составляет неделю. За 7 дней прибор собирает достаточное количество информации для подготовки точных результатов. Математический алгоритм исключает риск ошибки и позволяет автоматизировать процесс измерений. В результате пользователь получает усредненные значения и определяет основные проблемы в работе сети.

ЗАЧЕМ ПРОВОДИТЬ ЗАМЕРЫ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ (ПКЭ)?

Все организации, независимо от форм собственности и организационно-правовых форм, индивидуальные предприниматели и граждане — владельцы электроустановок напряжением выше 1000 В, а также потребители, эксплуатирующие действующие электроустановки напряжением до 220 кВ включительно, обязаны производить замеры показателей качества электрической энергии не реже, чем 1 раз в 2 года.

К онтроль замеров показателей качества электрической энергии входит в состав обязанностей ответственного за электрохозяйство (пункт 1.2.6 Правил технической эксплуатации электроустановок потребителей).

Помимо того, что замеры ПКЭ нужно проводить по ПТЭЭП , согласно статье 542 ГК РФ, качество поставляемой электрической энергии должно соответствовать требованиям, установленным государственными стандартами, а именно требованиям ГОСТ Р 54149—2010 «Электрическая энергия. Совместимость технических средств электромагнитная. НОРМЫ КАЧЕСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ ОБЩЕГО НАЗНАЧЕНИЯ», вступившим в силу с 1 января 2013 года и действующим по настоящее время. Согласно п.2 данной статьи «В случае нарушения энергоснабжающей организацией требований, предъявляемых к качеству энергии, абонент вправе отказаться от оплаты такой энергии. «. Дело состоит только в том, что для подтверждения отклонений ПКЭ от установленных норм, необходимо произвести замеры этих показателей!

Признаками некачественной электроэнернии являются: низкое напряжение в сети (напряжение меньше 220 В), пониженное или повышенное напряжение на вводе в дом, неравномерность напряжения по фазам (несимметрия) и т.д.

Повышенный уровень напряжения приводит к повышению потребления электроэнергии и неоправденным переплатам. Скачки напряжения приводят к поломкам бытовой техники, причем такие неисправности не подлежат устранению по гарантии, так как производитель гарантирует работу техники только в определенных, предусмотренных ГОСТом условиях.

ШТРАФЫ ЗА ОТСУТСТВИЕ ЗАКЛЮЧЕНИЯ ПО КАЧЕСТВУ ЭЭ

Согласно статье 9.11 КоАП РФ, невыполение требований Правил технической эксплуатации электроустановок потребителей (ПТЭЭП) Правил устройства электроустановок (ПУЭ) влечет наложение административного штрафа на лиц, осуществляющих предпринимательскую деятельность без образования юридического лица, — от одной тысячи до двух тысяч рублей или административное приостановление деятельности на срок до 90 суток; на юридических лиц — от 10 тысяч до 20 тысяч рублей или административное приостановление деятельности на срок до 90 суток.

ВЫХОД ИЗ СИТУАЦИИ

Наша организация имеет собственную электролабораторию по всем видам измерений и испытаний электроустановок и электросетей, в том числе измерение показателей качества электрической энергии. Наши сотрудники в удобные для Вас сроки выполнят как отдельные виды, так и полный комплекс испытаний и измерений Ваших электроустановок. При обнаружении неисправностей или отклонений мы БЕСПЛАТНО предоставим Вам мероприятия по их решению и устранению.

Проблема № 2. Наличие высших гармоник в сети

Качество электроэнергии определяется амплитудой, частотой и наличием искажения формы сигнала, идущего от системы электроснабжения. «В то время как первые две характеристики в значительной мере зависят от электроснабжающей компании, форма волны (напряжения или тока) искажается потребителями. Ведь в настоящее время большинство типовых нагрузок на предприятиях являются нелинейными, например, работа частотно-регулируемых приводов, выпрямителей, ИБП, компьютеров, энергосберегающих ламп и т.д. Вышеперечисленные устройства потребляют ток источника, не соответствующий форме волны напряжения, в итоге она искажается высшими гармониками», — поясняет Виталий Побокин, главный инженер проектов . Высшие гармоники являются растущей проблемой для поставщиков и потребителей электроэнергии, так как ведут к:

  • снижению эффективности и увеличению энергопотребления;
  • перегреву кабелей, электродвигателей и трансформаторов;
  • повреждению чувствительного оборудования;
  • срабатыванию автоматических выключателей;
  • выгоранию предохранителей;
  • преждевременному износу оборудования;
  • перегреву и выходу из строя конденсаторов;
  • появлению сильных токов в нейтральных проводах;
  • возникновению резонанса в сети;
  • отказу в подключении к электроснабжающим сетям в случае слишком высокого уровня гармоник.

На сегодняшний день самым современным и эффективным решением по компенсации высших гармонических составляющих является использование активных фильтров (АФГ). Они строятся, например, на модулях IGBT (биполярный транзистор с изолированным затвором) и цифровых сигнальных процессорах (ЦСП).

Принцип применения АФГ прост: силовая электроника используется для генерирования гармонических токов, в противофазе тока гармоник, вызванных работой нелинейных нагрузок, таким образом, чтобы синусоида сохраняла максимально правильную форму.

Рис. 3. Схема подключения активного фильтра гармоник

При помощи трансформаторов тока измеряется ток нагрузки, который анализируется ЦСП для определения картины спектра гармоник. Полученные данные используются генератором тока для производства и инжекции в сеть именно такой гармонической величины (по амплитуде, форме и фазе), которая необходима для компенсации искажений нагрузки в следующем цикле синусоиды тока.

Так как активный фильтр работает на основе данных, получаемых от трансформатора, оборудование динамически адаптируется к изменениям в гармониках нагрузки. В связи с тем, что процессы анализа и генерирования контролируются программным обеспечением, устройство легко программируется на компенсацию только отдельных гармоник.

Рис. 4. Активные фильтры гармоник

Характеристики отдельного источника питания системы качества электроэнергии для трехфазной 4-проводной системы переменного тока

Простейшая схема, позволяющая получить различные уровни качества электроэнергии для однофазной нагрузки, показана на рис. 7. Система может выдавать 3 уровня качества электроэнергии на однофазную нагрузку при использовании трёхфазной 4-проводной системы переменного тока, одного преобразователя и аккумуляторных батарей. Этот центр управления качеством подобен изображённому на рис. 3 и является его однофазной версией. Устройство имеет несколько рабочих режимов.

Обычный режим работы. Система компенсирует трёхфазную асимметрию и гармоники напряжения, возникающие из-за нагрузки, а также токи гармоник нагрузки. Если имеется обратная мощность, генерируемая на стороне нагрузки, она накапливается в аккумуляторной батарее.

Режим компенсации кратковременных просадок напряжения. Кратковременные просадки напряжения в линиях наивысшего и высокого качества компенсируются добавлением реактивной мощности от преобразователя. Кратковременные просадки напряжения в линии нормального качества не компенсируются. Номинальный ток линии нормального качества может быть меньше, чем для других фаз, потому что эта линия не должна обеспечивать реактивный ток для компенсации кратковременных просадок напряжения.

Режим ИБП. Во время работы ИБП работает только линия наивысшего качества преобразователя, транзисторы двух других фаз закрыты. Преобразователь действует как ИБП параллельного типа, и энергия поступает от аккумуляторной батареи.

Таблица 7. Определение качества электроэнергии для центра управления качеством рис. 7

События Нормальное качество Высокое качество Наивысшее качество
Повышенное и пониженное напряжение О О О
Кратковременные просадки напряжения Х О О
Выбросы напряжения Х О О
Сдвиг фаз Х Х О
Скачки Х О О
Кратковременные прерывания Х Х О
Временные прерывания Х Х О
Длительные перерывы Х Х Х
Переходные процессы Х Х Х
Трёхфазная асимметрия напряжения Δ Δ Δ
Гармоники напряжения Δ Δ Δ
Гармоники тока О О О

Подробная конфигурация экспериментального устройства приведена на рис. 8. Основными компонентами конфигурации являются трёхфазный преобразователь, аккумуляторные батареи и тиристорный ключ в фазе с энергией наивысшего качества. В качестве контроллера, показанного на рис. 8, используется цифровой сигнальный процессор ЦСП. В обычном рабочем режиме трёхфазный ток преобразуется в координаты d-q. Измеряются и компенсируются обратная последовательность, нулевая последовательность и компоненты гармоник токов нагрузки. В режиме компенсации кратковременных просадок напряжения реактивная мощность для компенсации напряжения подаётся в фазы А и В. В режиме ИБП преобразователь становится обычным источником напряжения и работает только одна фаза А.

На рис. 9 показана компенсация асимметрии тока и симметрия вторичного тока. К линиям наивысшего и высокого качества подключена активная нагрузка 2,3 кВт, к линии нормального качества подключена активная нагрузка 1,3 кВт. Коэффициент асимметрии тока после компенсации – 4,0%. На рис. 10 показана компенсация кратковременных просадок напряжения на линиях наивысшего и высокого качества.

На рис. 11 показаны экспериментальные результаты работы ИБП. Время прерывания питания равно 200 мс. Отсутствие трёхфазного напряжения на первичной стороне компенсируется только в фазе А. Вся энергия на нагрузку фазы А поступает от батареи.

На рис. 12 показана обработка потока обратной мощности от нагрузок, генерирующих электроэнергию (распределенного генератора). Для моделирования распределённого генератора использовался источник тока. К фазам А и В подключена активная нагрузка 1 кВА. К фазе С подключен источник синусоидального тока 50 А (амплитуда) со сдвигом фазы относительно напряжения на 180º. Мощность распределённого генератора больше мощности нагрузок, подключенных к фазам А и В, поэтому будет поток обратной мощности, если не будут приняты меры для его блокирования. Нулевой вторичный ток на рис. 12 свидетельствует о том, что поток обратной мощности отключен от центра управления качеством и заряжает аккумуляторную батарею.

Для системы электроснабжения с разделением потребителей по требованиям к качеству электроэнергии важно определение уровней качества электроэнергии. Аспекты качества электроэнергии, как мы убедились, делятся на 3 категории: стабильность напряжения, бесперебойность подачи питания и форма напряжения

Согласно трем категориям были рассмотрены примеры определения уровня качества и показаны соответствующие конфигурации центра управления качеством.

Что такое качество электроэнергии?

Это вопрос без полностью принятого ответа, но, безусловно, ответ включает в себя сигналы тока и напряжения в сети переменного тока, наличие гармонических искажений, наличие пиков и кратковременных падений напряжений и другие искажения. Пожалуй, лучшим определением качества электроэнергии является такое обеспечение электроэнергией, когда потребитель успешно использует её распределительной сети без помех или прерываний. Распространенное определение качества электроэнергии граничит с понятием надежности системы, выбором диэлектриков на оборудовании и проводниках, длительными перебоями в работе, дисбалансом напряжения в трехфазных системах, силовой электроникой и их интерфейсом с электропитанием и многими другими областями. Более узкое определение фокусируется на проблемах искажения формы сигнала.

Одной из причин возобновления интереса к качеству электроэнергии на уровне распределительной сети является то, что эпоха отмены государственного регулирования вызвала вопросы о том, какие услуги электроснабжения могут быть распределены между поставщиками. Некоторые дополнительные услуги могут предоставляться некоторым клиентам на факультативной основе и за эти услуги можно взимать плату. Возможно, несколько конкурирующих сетевых компаний могут основывать свою конкуренцию на уровне качества электроэнергии. Это развивающаяся область. Кроме того, современная энергетика часто ориентирована на соотношение затрат и выгод. Индикаторы качества электроэнергии часто предоставляют способы измерения уровня электрического обслуживания и преимуществ модернизации цепей питания. Эти области привели к повышению качества электроэнергии, о чем свидетельствуют несколько новых учебников в этой сфере, один журнал, несколько конференций и ряд программ и отделов в инфраструктурах энергетических компаний.

Основные цели статьи:

  • описывают важные типы изменений качества электроэнергии;
  • определяют категории оборудования для мониторинга, которые могут использоваться для измерения изменений качества электроэнергии;
  • предлагают примеры различных методов представления результатов измерений качества электроэнергии;
  • описывают инструменты для анализа и представляют результаты измерения качества электроэнергии.

Будут описаны инструменты анализа для обработки результатов измерений. Эти инструменты могут представлять информацию как отдельные события (сигналы помех в энергосистеме), тенденции или статистические сводки. Сравнивая события с библиотеками типичных шаблонов изменения качества электроэнергии и коррелируя с системными событиями (например, переключением конденсаторов), можно определить причины изменений. Таким же образом измеренные данные должны быть сопоставлены с воздействиями, чтобы помочь определить чувствительность оборудования конечного использования к изменению качества электроэнергии. Это поможет определить оборудование, требующее кондиционирования воздуха, и предоставить спецификации для защиты, которые могут быть разработаны на основе характеристик изменения качества электроэнергии.

Принцип работы анализатора качества электроэнергии

Прибор выполняет функцию проверки величин и уровень соответствия требованиям. Принцип его работы основан на измерителе электрических величин. Аппарат фиксирует значения тока и напряжения за короткие интервалы времени.

  • постоянное отклонение напряжения;
  • пиковые нагрузки и токи;
  • природа переходных процессов в сети;
  • фиксация времени с наибольшими потреблениями электрической энергии;
  • искажения кривых тока;
  • падения и провалы.

Анализаторы выпускаются в мобильной и стационарной форме. Они могут использоваться систематически или эпизодически, в зависимости от поставленной цели. Комплексная проверка корректности работы оборудования – это залог длительной и эффективной работы техники на предприятии. Своевременное выявление неполадок позволяет устранить неисправность до возникновения серьезных проблем.

Контроль за работой техники осуществляется с целью выявления дефектов в электрической сети и их устранения. Для выполнения задания требуется подсоединить анализатор к системе. Места контроля – это точки подключения к потребительской сети. При работе с простыми системами допускается подсоединение в местах, расположенных максимально близко к этим точкам.

Полученная информация обрабатывается с помощью математических алгоритмов. Это позволяет достигнуть ряда целей:

  • рассчитать параметры работы;
  • проанализировать качество электроэнергии;
  • установить количество энергии.

Показатели измеряются на определенном отрезке времени. Низкое напряжение – это самая частая причина плохого качества энергии. Это значение анализируется дважды в год. Другие нормы определяются один раз в 12 месяцев.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: