Производство электроэнергии в россии. производство, передача и использование электроэнергии

Основные технологические процессы в электроэнергетике

Нормативы потребления электроэнергии на человека без счетчика

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

Электростанция Топливо Генерация
ТЭС Уголь, мазут Получение пара от сгорания топлива, который движет турбины генераторов
ГЭС Потенциальная энергия потока воды Движение турбин под напором воды
АЭС Урановые сердечники Получение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

К истокам появления

В 1893 году проходила выставка в Чикаго. На ней была демонстрация беспроводного освещения, в которой все действовало за счет люминесцентных ламп. Это работа принадлежала Николе Тесла.

Сейчас эксперимент сможешь повторить и ты – просто встань с лампой дневного света под линией с высоким напряжением. А тогда это было больше похоже на сеанс магии, поэтому изобретатель получил такую популярность.

Сегодня не каждый ученый согласится, что именно Тесле принадлежит идея создания беспроводного электричества. Они считают, что его работы – это доработка уже существующей идеи. Например, за 73 года до выставки, Андре Ампер записал закон, который указывает, что при использовании электротока возникает магнитное поле. Через одиннадцать лет, Майкл Фарадей открыл закон индукции. Был проведен опыт, который показал, что генерируемое в одном проводнике магнитное поле индуцирует ток в другой проводник.

В 1864 году произошло объединение всех теорий. Работа принадлежит Джеймсу Максвеллу. Он пришел к уравнению, которое описывало электромагнитное поле, а также связь с электрозарядами и токами в вакууме.

Спустя двадцать семь лет Тесла модернизировал передатчик волн, который изобрел Герц немного ранее. Он запатентовал его в качестве устройства для радиочастотного энергоснабжения.

Сроки окупаемости собственной электростанции

Расчеты показывают, что заказчик, покупая электроэнергию у сетевой компании в объеме, к примеру, 2 МВт, вынужден тратить порядка 28 млн. рублей каждый год. Покупая тепло — тратить еще до 10 млн. рублей в год. В случае использования собственной электростанции все эксплуатационные расходы, включая затраты на природный газ, плановое техническое обслуживание, расходные материалы и запасные части, не превысят 8–14 млн. рублей в год.

Таким образом, можно сделать вывод о том, что только на тарифах, не учитывая первоначальные затраты на подключение, предприниматели, могут экономить внушительную сумму. Элементарные расчеты показывают, что срок окупаемости электростанции составит 3-4 года, а иногда (например, когда стоимость подключения и выполнения условий на присоединение чрезмерно высока, либо дешев попутный нефтяной газ) собственный объект генерации энергии — автономная электростанция оправдает себя очень быстро.

Реальные проекты в наши дни

Из всего того, что на сегодня предлагает рынок электротехники, относятся к беспроводной передаче электроэнергии зарядные устройства для смартфонов, электрические зубные щётки. В них используется принцип электромагнитной индукции.


Бесконтактная зарядка смартфона

В авиастроении началось серийное производство летательных беспилотных аппаратов, питающихся за счёт беспроводной передачи электричества. Небольшой микроволновый вертолёт с ректенной может подниматься на высоту до 15 метров над землёй. Появились беспилотники, которые могут летать в зоне видимости лазерного луча.

Китайский производитель бытовой техники Haier Group с 2010 года выпускает беспроводные LCD телевизоры.

Основные типы электростанций

Все электрические станции таблица ниже классифицирует в первую очередь по источникам используемой энергии.

Среди них можно выделить следующие:

  • Тепловые (ТЭС). Работают на природном топливе, а основные типы электростанций могут быть конденсационными (КЭС) и теплофикационными (ТЭЦ). Первые вырабатывают только электричество, а вторые – электроэнергию и теплоту.
  • Гидравлические – ГЭС и гидроаккумулирующие – ГАЭС, функционирующие за счет энергии воды, падающей высоты.
  • Атомные – АЭС, работающие на ядерном топливе.
  • Дизельные – ДЭС. Бывают стационарными или мобильными. Существуют мини-электростанции малой мощности, используемые в частном секторе.
  • Солнечные, ветровые, приливные и геотермальные электростанции известны как альтернативные источники электроэнергии, работающим с естественными силами природы. Они имеют ряд недостатков, связанных с климатическими условиями и другими факторами.

Каждая перечисленная электростанция представляет собой традиционные или альтернативные виды энергетики. В первом случае электричество вырабатывается на тепловых, гидро- и атомных установках. На ТЭС вырабатывается примерно 70-75% всей электроэнергии, поэтому они размещаются в местах с высоким энергопотреблением и большим количеством природных ресурсов.

ГЭС привязаны к полноводным рекам, протекающим в равнинной или горной местности. АЭС строятся в местах с большим потреблением электроэнергии, при недостатке других видов энергоресурсов. Для того чтобы понять их роль и место в общей энергетической системе, следует рассмотреть более подробно типы электростанций, используемых в России.

Способы передачи электроэнергии

Знакомство с пиковыми и другими зонами тарификации электроэнергии

Наиболее распространены два способа передачи электроэнергии: с помощью воздушных и кабельных линий. Они отличаются между собой по дальности и среде, в которой находится проводник.

Воздушные линии – это, упрощённо, медные или алюминиевые проводники, подвешенные через изоляторы на металлические или железобетонные опоры. При таком методе возможна передача электричества на большие расстояния и между разными государствами.

Кабельная линия – прокладка проводов под землёй. Отдельные токоведущие жилы расположены, как правило, в резиновой или ПВХ изоляции. Если напряжение высокое, то имеется и броня из металлической ленты. Также она служит в качестве экрана для защиты от помех. Встречается преимущественно в пределах города или предприятия.


Прокладка кабелей

Дополнительная информация. Применяя кабельные линии, возможно транспортировать электроэнергию по дну водоёмов и даже морей. Это позволяет поставлять электричество на острова. Применение ЛЭП таких возможностей не подразумевает.

История

Прошлые затраты на производство возобновляемой энергии значительно снизились, при этом 62% от общего объема производства возобновляемой энергии, добавленного в 2020 году, имеют более низкие затраты, чем самый дешевый новый вариант ископаемого топлива.

Сниженная стоимость: с все более широким распространением возобновляемых источников энергии, затраты на возобновляемые источники энергии снизились, особенно на энергию, вырабатываемую солнечными панелями. Нормированная стоимость энергии (LCOE) — это мера средней чистой текущей стоимости производства электроэнергии для электростанции в течение ее срока службы.

Динамо-машины и двигатель установлены в компании Edison General Electric, Нью-Йорк, 1895 г.

Фундаментальные принципы производства электроэнергии были открыты в 1820-х — начале 1830-х годов британским ученым Майклом Фарадеем . Его метод, который используется до сих пор, заключается в том, что электричество генерируется движением проволочной петли или диска Фарадея между полюсами магнита . Центральные электростанции стали экономически практичными с развитием передачи энергии переменного тока (AC) с использованием силовых трансформаторов для передачи энергии высокого напряжения с низкими потерями.

Коммерческое производство электроэнергии началось в 1873 году, когда динамо-машина была соединена с гидравлической турбиной. Механическое производство электроэнергии положило начало Второй промышленной революции и сделало возможным несколько изобретений с использованием электричества, основными участниками которых стали Томас Альва Эдисон и Никола Тесла . Раньше единственным способом производства электричества были химические реакции или использование аккумуляторных элементов, а единственным практическим применением электричества был телеграф .

Производство электроэнергии на центральных электростанциях началось в 1882 году, когда паровой двигатель, приводящий в движение динамо-машину на станции Перл-Стрит, произвел постоянный ток, который питал общественное освещение на Перл-Стрит , Нью-Йорк . Новая технология была быстро принята во многих городах по всему миру, которые приспособили свои газовые уличные фонари к использованию электроэнергии. Вскоре электрическое освещение будет использоваться в общественных зданиях, на предприятиях и для питания общественного транспорта, такого как трамваи и поезда.

Первые электростанции использовали гидроэнергию или уголь. Сегодня используются различные источники энергии, такие как уголь , атомная энергия , природный газ , гидроэлектроэнергия , ветер и нефть , а также солнечная энергия , приливная энергия и геотермальные источники.

IV. Передача электроэнергии

Передача электроэнергии от электростанции к потребителям – одна из важнейших задач энергетики.
Электроэнергия передаётся преимущественно по воздушным линиям электропередачи (ЛЭП) переменного тока, хотя наблюдается тенденция ко всё более широкому применению кабельных линий и линий постоянного тока.

Необходимость передачи электроэнергии на расстояние обусловлена тем, что электроэнергия вырабатывается крупными электростанциями с мощными агрегатами, а потребляется сравнительно маломощными электроприёмниками, распределёнными на значительной территории. Тенденция к концентрации генерирующих мощностей объясняется тем, что с их ростом снижаются относительные затраты на сооружение электростанций и уменьшается стоимость вырабатываемой электроэнергии.
Размещение мощных электростанций производится с учётом целого ряда факторов, таких, например, как наличие энергоресурсов, их вид, запасы и возможности транспортировки, природные условия, возможность работы в составе единой энергосистемы и т.п. Часто такие электростанции оказываются существенно удалёнными от основных центров потребления электроэнергии. От эффективности передачи электроэнергии на расстояние зависит работа единых электроэнергетических систем, охватывающих обширные территории.
Передавать электроэнергию от мест её производства к потребителям необходимо с минимальными потерями. Главная причина этих потерь – превращение части электроэнергии во внутреннюю энергию проводов, их нагрев.

Согласно закону Джоуля-Ленца, количество теплоты Q, выделяемое за время t в проводнике сопротивлением R при прохождении тока I , равно:

Из формулы следует, что для уменьшения нагрева проводов необходимо уменьшать силу тока в них и их сопротивление. Чтобы уменьшить сопротивление проводов, увеличивают их диаметр, однако, очень толстые провода, висящие между опорами линий электропередач, могут оборваться под действием силы тяжести, особенно, при снегопаде. Кроме того, при увеличении толщины проводов растёт их стоимость, а они сделаны из относительно дорогого металла – меди. Поэтому более эффективным способом минимизации энергопотерь при передаче электроэнергии служит уменьшение силы тока в проводах.
Таким образом, чтобы уменьшить нагрев проводов при передаче электроэнергии на дальние расстояния, необходимо сделать силу тока в них как можно меньше.
Мощность тока равна произведению силы тока на напряжение:

Следовательно, для сохранения мощности, передаваемой на дальние расстояния, надо во столько же раз увеличить напряжение, во сколько была уменьшена сила тока в проводах:

Из формулы следует, что при постоянных значениях передаваемой мощности тока и сопротивления проводов потери на нагрев в проводах обратно пропорциональны квадрату напряжению в сети. Поэтому для передачи электроэнергии на расстояния в несколько сотен километров используют высоковольтные линии электропередач (ЛЭП), напряжение между проводами которых составляет десятки, а иногда сотни тысяч вольт.
С помощью ЛЭП соседние электростанции объединяются в единую сеть, называемую энергосистемой. Единая энергосистема России включает в себя огромное число электростанций, управляемых из единого центра и обеспечивает бесперебойную подачу электроэнергии потребителям.

Атомные электростанции России

Крупнейшая АЭС России расположена в Саратовской области. Ежегодная мощность Балаковской АЭС составляет 30 млрд кВт/ч электроэнергии. На Белоярской АЭС (Свердловская обл.) сейчас работает только 3-й блок. Но и это позволяет назвать ее одной из самых мощных. 600 МВт электроэнергии получают благодаря реактору на быстрых нейтронах. Стоит отметить, что это был первый в мире энергоблок с быстрыми нейтронами, установленный для получения электричества в промышленных масштабах.

На Чукотке установлена Билибинская АЭС, которая вырабатывает 12 МВт электроэнергии. А Калининскую АЭС можно считать недавно построенной. Ее первый блок был введен в эксплуатацию в 1984 году, а последний (четвертый) лишь в 2010-м. Суммарная мощность всех энергоблоков составляет 1000 МВт. В 2001 году была построена и введена в эксплуатацию Ростовская АЭС. С момента подключения второго энергоблока — в 2010 году — ее установленная мощность превысила 1000 МВт, а коэффициент использования мощности составил 92,4%.

Нетрадиционные способы производства электроэнергии

Производство электроэнергии возможно и другими методами. Большинство из них тоже являются вариантами природопользования, что решает вопрос с топливом. Однако они не так распространены из-за невысокой производительности.

  • Ветроэнергетика – используют силу потока воздуха. Ветер крутит лопасти турбин, вырабатывается электричество. Существенный минус установки: полная зависимость от силы ветра. Плюс: даровая энергия и абсолютная экологичность. В Дании 48% электричества получают с помощью автономных ветровых установок.
  • Биотопливо – модифицированная тепловая станция, использует в качестве топлива отходы: стружку, паллеты, лузгу, солому, синтез-газ и прочее.
  • Гелиоэнергетика – производство электроэнергии обеспечивает излучение солнца. Принцип работы разный. Солнечный коллектор нагревает воду для отопления. При нагреве воды до пара можно использовать последний для получения электричества. В энергетической башне пары воздуха сильно нагреваются в очень большом парнике. Кинетическую энергию восходящего потока воздуха преобразователь превращает в электричество.
  • Геотермальная станция – рациональный, пассивный вариант. Для нагрева воды для отопления и даже для получения тока используется разница между температурой почвы выше и ниже уровня замерзания.

Как используется электроэнергия

Ее львиная доля идет на снабжение электричеством предприятий промышленности. Производство потребляет до 70% всей вырабатываемой в стране электроэнергии. Эта цифра значительно разнится для отдельных регионов в зависимости от климатических условий и уровня индустриального развития.

Другая статья расходов — снабжение электротранспорта. От электросетей ЭЭС работают подстанции городского, междугороднего, промышленного электротранспорта, использующего постоянный ток. Для транспорта на переменном токе применяются понижающие подстанции, которые тоже потребляют энергию электростанций.

Другой сектор потребления электроэнергии — коммунально-бытовое снабжение. Потребителями здесь являются здания жилых районов любых населенных пунктов. Это дома и квартиры, административные здания, магазины, заведения образования, науки, культуры, здравоохранения, общественного питания и т. д.

Передача и распределение электроэнергии

За процесс передачи и распределения электрической энергии отвечают несколько основных типов систем, работающих в связке, которые образуют электроэнергетическую сеть:

  • подстанция;
  • распределительное устройство;
  • ЛЭП или линии электропередачи.

Электроэнергетическая сеть — это комплекс электрических установок, предназначенных для передачи и распределения полученной энергии. Она состоит и токопровода, распределителя, кабельных и воздушных ЛЭП, действующих в определенной локации.

Подстанция служит для трансформации и распределения электрической энергии. Она состоит из трансформаторов (либо иных преобразователей энергии) и оборудования для распределения, мощного аккумулятора, других дополнительных устройств и сооружений.

Распределительное оборудование представляет собой установку, которая служит для приема и распределения энергии. Она состоит из следующих коммутационных устройств:

  • Сборные/соединительные шины.
  • Компрессоры.
  • Аккумуляторы.
  • Защитные устройства.
  • Средства автоматизации.
  • Измерительные приборы.

ЛЭП или линии электропередач воздушных и кабельных видов напряжения. Они представляют собой электрическую установку, которая служит для транспортировки электроэнергии на дальние расстояния, с одним и тем же напряжением, без дополнительного преобразования.

Для всех видов электроэнергии существуют индивидуальные методы монтажа, подключения, эксплуатации и расчета, в зависимости от признаков и источников энергии.

Солнечная энергия

По сути дела, все природные топливные ископаемые были образованы миллионы лет назад с участием и под воздействием солнечных лучей. Таким образом, можно сказать, что человечество давно и активно пользуется продуктами, получаемыми от солнца. Собственно говоря, и наличием рек и озер мы обязаны этому неиссякаемому источнику, который обеспечивает кругооборот воды. Однако под современной солнечной энергетикой понимается не это. Относительно недавно ученые смогли разработать и произвести специальные батареи. Они вырабатывают электричество при попадании на их поверхность солнечных лучей. Данная технология относится к альтернативному способу получения электроэнергии.

Солнце, пожалуй, является самым мощным источником из всех ныне известных. За три дня планета Земля получает столько энергии, сколько не содержится во всех разведанных и потенциальных месторождениях всех видов тепловых ресурсов. Однако поверхности земной коры достигает лишь 1/3 этой энергии, а большая часть рассеивается в атмосфере. И все же речь идет о колоссальных объемах. По подсчетам специалистов, один небольшой водоем получает столько энергии, сколько вырабатывает довольно крупная тепловая электростанция.

В мире имеются установки, которые используют энергию солнечных лучей для получения пара. Он приводит во вращение генератор и вырабатывается электричество. Однако подобные установки являются большой редкостью.

Независимо от того, по какому принципу вырабатывается электроэнергия, установка должна оснащаться коллектором – устройством для концентрации солнечных лучей. Наверняка многие видели собственными глазами солнечные батареи. Создается впечатление, что они находятся под темным стеклом. Оказывается, подобное покрытие и являет собой простейший коллектор. Принцип его работы основывается на том, что темный прозрачный материал пропускает солнечные лучи, но задерживает и отражает инфракрасное и ультрафиолетовое излучение. Внутри батареи расположены трубки с рабочим веществом. Так как тепловое излучение не пропускается сквозь темную пленку, то температура рабочих жидкостей значительно превышает температуру окружающей среды. Следует отметить, что подобные решения эффективно работают лишь в тропических широтах, где нет необходимости поворачивать коллектор вслед за солнцем.

Еще одна разновидность покрытия – вогнутое зеркало. Такое оборудование является весьма дорогостоящим решением, поэтому оно и не нашло широкого применения. Такой коллектор может обеспечить нагрев до трех тысяч градусов по Цельсию.

Данное направление бурно развивается. В Европе уже никого не удивишь домами, отключенными от электрических сетей. Однако в промышленных масштабах электроэнергия этим методом не вырабатывается. На крышах таких домов красуются солнечные батареи. Это весьма сомнительное вложение. В лучшем случае, установка такого оборудования окупится лишь за десть лет эксплуатации.

Системы передачи

Мощность от генераторных установок переносится сначала через системы передачи, которые состоят из линий электропередачи, которые несут электроэнергию при различных уровнях напряжения . Система передачи соответствует сетевой сетчатой ​​топологической инфраструктуре, соединяющей генерацию и подстанции вместе в сетку, которая обычно определяется при 100 кВ и более.

Рисунок 3 — Электрическая система

Электричество перетекает по высоковольтным (высоковольтным) линиям передачи на ряд подстанций, где напряжение уходит на трансформаторы до уровней, соответствующих системам распределения.

Уровни напряжения в сети переменного тока

Предпочтительные среднеквадратичные уровни напряжения в стандарте IEC 60038: 2009 соответствуют международным стандартам:

  • 362 кВ или 420 кВ; 420 кВ или 550 кВ; 800 кВ; 1, 100 кВ или 1200 кВ для трехфазных систем с самым высоким напряжением для оборудования, превышающего 245 кВ.
  • 66 (альтернативно, 69) кВ; 110 (альтернативно, 115) кВ или 132 (альтернативно, 138) кВ; 220 (альтернативно, 230) кВ для трехфазных систем с номинальным напряжением свыше 35 кВ и не более 230 кВ.
  • 11 (альтернативно, 10) кВ; 22 (альтернативно, 20) кВ; 33 (альтернативно, 30) кВ или 35 кВ для трехфазных систем с номинальным напряжением свыше 1 кВ и не более 35 кВ. Существует отдельный набор ценностей, характерный для североамериканской практики.

В случае систем с номинальным напряжением от 100 до 1000 В включительно, 230/400 В является стандартным для трехфазных четырехпроводных систем (50 Гц или 60 Гц), а также 120/208 В для 60 Гц . Для трехпроводных систем напряжение 230 В между фазами является стандартным для 50 Гц и 240 В для 60 Гц. Для однофазных трехпроводных систем с частотой 60 Гц стандарт 120/240 В является стандартным.

Среднее напряжение (MV) в качестве концепции не используется в некоторых странах (например, в Соединенном Королевстве и Австралии), это «любой набор уровней напряжения, лежащих между низким и высоким напряжением», и проблема заключается в том, что фактическая граница между Уровни MV и HV зависят от местных практик.

Линии электропередачи развертываются с тремя проводами вместе с заземляющим проводом. Практически все системы передачи переменного тока являются трехфазными системами передачи.

Электричество из дерева

Если сжать древесину, а потом вернуть в исходное состояние, она вырабатывает электрическое напряжение — правда, очень низкое. Ученые из Швейцарии провели несколько экспериментов и в 2021 году сумели превратить древесину в мини-генератор.

Исследователи изменили химический состав древесины. Они поместили ее в смесь перекиси водорода и уксусной кислоты, растворили один из компонентов древесной коры — лигнин — и оставили только целлюлозу. В результате древесина превратилась в «губку», которая после сжатия самостоятельно возвращается в исходную форму. По словам ученых, такая губка генерирует электрическое напряжение в 85 раз выше, чем обычное дерево.

Так выглядит древесина после растворения лигнина

(Фото: САУ Nano / Empa)

Как это применять: пока исследователи проводят испытания получившегося материала. Они уже выяснили, что энергии 30 деревянных брусков длиной 1,5 см хватит для питания ЖК-дисплея.

Электростанции – основа отрасли

Производство электроэнергии в России обеспечивается почти 600 электростанциями. Мощность каждой превышает 5 МВт. Общая мощность всех электростанций составляет 218 ГВт. Как же мы получаем электроэнергию? В России используются такие типы электростанций:

  • тепловые (их доля в общем объеме производства около 68,5%);
  • гидравлические (20,3%);
  • атомные (почти 11%);
  • альтернативные (0,2%).

Когда речь заходит об альтернативных источниках электроэнергии, на ум приходят романические картинки с ветряками и солнечными батареями. Тем не менее, в определенных условиях и местностях это наиболее выгодные виды производства электроэнергии.

Электроэнергетика – определение и характеристика

Электроэнергетика — база функционирования экономики и жизнеобеспечения общества. От стабильной работы станций зависит электрификация страны. Постоянно ведутся работы развитию, расширению географии производства и использования электроэнергии. 

Динамику мирового производства электрической энергии можно проследить по показателям (млрд. кВт*ч в год): 

  • 1890 — 9;
  • 1960 — 2300;
  • 1980 — 8250;
  • 1990 — 11800;
  • 2005 — 18138,3;
  • 2015 — 24255;
  • 2019 — 27044.

Лидерами по производству электроэнергии в мире являются Китай (25 % от мирового производства) и США (18 % от мирового производства), а также Индия, Россия, Япония.

Передача и использование электрической энергии

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, так как при этом возникает необходимость многократного преобразования электрического напряжения.

Как известно, тепловые потери в проводниках пропорциональны квадрату силы тока, поэтому для их уменьшения целесообразно передавать электроэнергию при малой силе тока. Уменьшение силы тока в n раз снижает тепловые потери в проводах в раз. Напряжение при этом следует повышать для сохранения передаваемой мощности, поэтому на практике применяют высоковольтные линии электропередачи.

Напряжение питания отдельных потребителей должно быть низким для упрощения их конструкции и безопасности обслуживания, что легко достигается при применении трансформаторов.


Рассмотрим блок-схему передачи и распределения электроэнергии (рис. 207): генератор переменного тока

  • повышающий трансформатор
  • высоковольтные линии электропередачи
  • понижающие трансформаторы  потребитель.

В современном обществе потребление электроэнергии распределяется примерно следующим образом:

  • промышленность — 70 %;
  • транспорт — 15 %;
  • сельское хозяйство — 10 %;
  • бытовое потребление — 5 %.

В настоящее время все большее распространение получают линии передач, использующие постоянный ток. Это происходит потому, что, хотя преобразование постоянного напряжения сложнее и дороже, постоянный ток по сравнению с переменным обладает рядом преимуществ.

  • Во-первых, постоянный ток, в отличие от переменного, не создает переменные магнитные поля, которые индуцируют токи в близлежащих проводах, что приводит к потерям мощности.
  • Во-вторых, постоянный ток можно передавать при более высоком напряжении — у постоянного тока эффективное напряжение равно амплитудному, и не следует опасаться электрического пробоя изолятора или воздуха при амплитудном напряжении.

Электроэнергия вырабатывается на электростанциях. В зависимости от вида первоначально используемого носителя энергии все современные электростанции делятся на тепловые, атомные и гидроэлектростанции. Приведем их некоторые данные:

  • тепловые электростанции (ТЭС) работают на угле, нефти, мазуте, газе и др. (КПД );
  • гидроэлектростанции (ГЭС) используют энергию падающей воды (КПД
  • атомные электростанции (АЭС) работают на энергии, выделяющейся при расщеплении ядер урана и плутония (КПД

Работа электростанций вследствие их значительной мощности существенным образом влияет на состояние окружающей среды и приводит к появлению следующих экологических проблем:

  • ТЭС — загрязнение атмосферы продуктами сгорания, изменение природного теплового баланса из-за рассеяния тепловой энергии;
  • ГЭС — изменение климата, нарушение экологического равновесия, уменьшение пахотных площадей;
  • АЭС — опасность радиоактивного загрязнения среды при авариях, проблемы захоронения радиоактивных отходов.

В настоящее время существуют экологически чистые электростанции, иcпользующие энергию Солнца, ветра или морских приливов. Их доля в производстве электроэнергии невелика, однако она непрерывно возрастает.

Основные формулы:

Формула Томсона:
Действующее (эффективное) значение силы переменного тока и напряжения:
Емкостное сопротивление:
Индуктивное сопротивление:
Закон Ома для переменного тока:
Сдвиг фаз:  
Мощность переменного тока:
Коэффициент трансформации:

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Условия равновесия тел в физике
  • Равновесие тел в физике
  • Давление в жидкостях и газах в физике
  • Закон Паскаля
  • Магнитные свойства вещества
  • Явление самоиндукции
  • Закон электромагнитной индукции
  • ЭДС индукции в движущемся проводнике 

Пропускная способность линий электропередач

Напряжение в конце линии неизбежно ниже, чем в её начале. Вольтаж теряется на сопротивлении проводов ЛЭП. Именно эта разница напряжений уходит впустую на обогрев вселенной.

Такая проблема приводит к тому, что невозможно создать линию электропередач бесконечной длины и передать по ней неограниченную мощность. Поэтому введено понятие – пропускная способность ЛЭП. Данная характеристика в первую очередь зависит от длины линии, металла, из которого сделаны её провода и их сечения. Потери в меди менее ощутимы, чем у алюминия. Пропускная способность линии тем выше, чем толще её провода.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: