Две фазы в розетке. причины. что делать?

Что делать, если в розетке две фазы?

Бывает и такая ситуация, когда в розетке две фазы и нет света. Как-то звонит мне мой приятель и просит подъехать помочь разобраться с электричеством у него дома и на всякий случай, чтобы я захватил индикатор. Проблема была в следующем: он вставляет индикатор в розетку,а тот показывает, что в обоих входах в розетке фазы. Я даю ему свой индикатор и он показывает тоже самое – две фазы. Значит, и мой индикатор “врёт”? Мы с ним прошлись по всем комнатам, повытаскивали из розеток все электроприборы и проверили, чтобы все выключатели были в положении выключено . А после этого опять проверили розетки – второй фазы как ни бывало. Я ему объяснил, что в квартире нет 0, а “вторая” фаза пришла на другой конец розетки через какой-нибудь включённый электроприбор или лампочку.

Это происходит, потому что все нулевые концы завязаны между собой схемой электропроводки, а где-то, через включённый выключатель, фаза через нить накала лампочки соединилась с нулевым проводом, и получается, что в розетке две фазы. Если её попытаться замерить с (настоящим) 0, то напряжение на ней будет далеко не 220 В. а меньше за счёт сопротивления нити накала одной или нескольких лампочек. А дело было в перегоревшей пробке. Заменили пробку – и всё встало на свои места. На схеме хорошо видно, как фаза приходит на 0. В общем, когда в розетке “две фазы”- значит нет 0. Ещё небольшая приписка -“вторая фаза ” в такой момент – опасна и обращаться с ней как с 0 нельзя!

Преимущества и недостатки трехфазной системы электроснабжения

Не секрет, что трехфазное электроснабжение частного дома стает всё более актуально, и это связанно не только с величиной напряжения. Давайте разберёмся во всех преимуществах 380 Вольт и вот их перечень:

  1. Подключение самых распространённых в быту и на производстве асинхронных электродвигателей с короткозамкнутым ротором. При подключении к однофазной цепи теряется их мощность, крутящий момент, а также КПД. Ведь они первоначально были рассчитаны на три фазы. Применение таких электромашин в частном доме может понадобиться при обустройстве точильного, сверлильного или деревообрабатывающего станка и других видов техники. Владелец, который обладает навыками работы на таком оборудовании, всегда найдёт ему применение. На даче всегда пригодится мощный насос, поэтому провести 380 Вольт и тут не помешает.
  2. Подключив три фазы, владелец частного дома получает, по большому счёту, сразу три независимые однофазные сети, которыми может распоряжаться по своему усмотрению. Для этого того чтобы получить однофазное напряжение 220 Вольт, нужно подключить один провод к фазе, а другой к нулю. Оно будет называться фазным. Напряжение между двумя фазами равняется 380 Вольт и называется линейное.
  3. При поломке или аварийной ситуации на распределительной подстанции может отгореть одна или даже две фазы. При этом у владельца частного дома с тремя фазами как минимум освещение и холодильник будет работать. При этом нужно помнить, что для трёхфазных двигателей работа на две фазы повлечёт за собой неминуемый выход его из строя.

Учтите, и тут есть свои подводные камни. Трехфазная сеть нужна в том случае, если недостаточно мощности однофазной сети. И даже если однофазной недостаточно не нужно спешить подключать три фазы, лучше уточнить о возможности увеличения лимита мощности для однофазной сети — эта процедура намного проще, чем согласование и подключение трех фаз. Три фазы в обязательном порядке подключают в том случае, если нужно запитать трехфазные электродвигатели, которые не могут работать в однофазном режиме, либо в случае одновременного использования большого количества электроприборов, оборудования, например, если в доме большое хозяйство, налажено какое-то мелкое производство.

Также следует отметить еще несколько недостатков трехфазной системы электроснабжения. Один из минусов — необходимость равномерного распределения нагрузок по каждой из фаз. Второй недостаток — большая сложность в подключении, приобретении другого щитка, защитных аппаратов и т.д. Третий недостаток — большая опасность с точки зрения поражения током, так как в доме будет не только однофазное напряжение 220 В, но и линейное — 380 В

Как видите, преимущества питания потребителя от сети 380 Вольт не всегда очевидны. Теперь стоит разобраться, какие документы нужны для подключения трехфазной сети. Об этом мы сейчас и поговорим.

Фаза в розетке: слева или справа?

Представление о том, что носитель электрического потенциала в бытовых разъемах располагается слева, является довольно распространенным заблуждением. Среди наиболее частых аргументов, приводимых адептами такой точки зрения:

  1. Об этом свидетельствует их личный жизненный опыт;
  2. Такие результаты дает «прозванивание» сетевых шнуров и встроенных в электроприборы выключателей;
  3. Якобы указание на это имеют спецификации ряда производителей газовых котлов;
  4. Любители качественного звука настаивают на подключении вилки к разъему «правильной» стороной, благодаря чему обеспечивается наиболее чистое звучание.

Но все эти доводы не имеют отношения к действительности. Для евророзеток типа «шуко» нет никакой разницы, в каком положении к ним подключен провод. Электрические разъемы в нашей и всех европейских странах не поляризованы. Лишь имеющий довольной узкое применение стандарт подключения CEE 7/5 содержит жесткие требования к порядку подсоединения приборов.

В редких случаях монтажники принимают за данность положение о том, что фаза находится справа. Но делается это исключительно для удобства измерений и предотвращения путаницы.

В итоге фаза в розетке может быть как слева, так и справа, с одинаковой вероятностью.

Правильно определить фазу

Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль — искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

  1. В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая — земля (в противном случае — резервный провод питания напряжением 220 вольт).
  2. В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
  3. Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.

Обрыв нейтрального провода при несимметричной нагрузке

В симметричном режиме IN = 0, поэтому обрыв нейтрального провода не приводит к изменению токов и напряжений в цепи и такой режим не является аварийным. Однако, при несимметричной нагрузке IN ¹ 0, поэтому обрыв нейтрали приводит к изменению всех фазных токов и напряжений. На векторной диаграмме напряжений точка «0» нагрузки, совпадающая до этого с точкой «N» генератора, смещается таким образом, чтобы сумма фазных токов оказалась равной нулю (рис.8.4.1). Напряжения на отдельных фазах могут существенно превысить номинальное напряжение.

Рис. 8.4.1

Обрыв фазы при симметричной нагрузке в схеме с нулевым проводом

При обрыве провода, например, в фазе А ток этой фазы становится равным нулю, напряжения и токи в фазах В и С не изменяются, а в нулевом проводе появляется ток

IN =IB + IC.Он равен току, который до обрыва протекал в фазе А (рис. 8.4.2).

Рис.8.4.2

Обрыв фазы при симметричной нагрузке в схеме без нулевого провода

При обрыве, например, фазы А сопротивления RA и RB оказываются соединёнными последовательно и к ним приложено линейное напряжение UBC. Напряжение на каждом из сопротивлений составляет от фазного напряжения в нормальном режиме. Нулевая точка нагрузки на векторной диаграмме напряжений смещается на линию ВС и при RB = RC находится точно в середине отрезка ВС (рис.8.4.3

Рис.8.4.3

Короткие замыкания

При коротком замыкании фазы нагрузки в схеме с нулевым проводом ток в этой фазе становится очень большим (теоретически бесконечно большим) и это приводит к аварийному отключению нагрузки защитой. В схеме без нулевого провода при замыкании, например, фазы А, нулевая точка нагрузки смещается в точку «А» генератора. Тогда к сопротивлениям фаз В и С прикладываются линейные напряжения. Токи в этих фазах возрастают в раз, а ток в фазе А – в 3 раза (рис. 8.4.4).

Короткие замыкания между линейными проводами и в той и в другой схеме приводят к аварийному отключению нагрузки.

Рис.8.4.4

Экспериментальная часть

Задание

Экспериментально исследовать аварийные режимы трёхфазной цепи при соединении нагрузки в звезду.

Порядок выполнения работы

· Соберите цепь цепь согласно схеме (рис.8.4.5) с сопротивлениями фаз RA=RB=RC=1кОм. Измерения токов можно производить одним – двумя амперметрами, переключая их из одной фазы в другую, либо виртуальными приборами

Рис.8.4.5

· Убедитесь, что обрыв (отключение) нейтрали не приводит к изменению фазных токов.

· Убедитесь, что в схеме с нулевым проводом происходит отключение источника защитой при коротких замыканиях как в фазах нагрузки, так и между линейными проводами.

· Убедитесь, что в схеме без нулевого провода короткое замыкание в фазе нагрузки не приводит к отключению, а при коротком замыкании между линейными проводами установка отключается.

· Проделайте измерения токов и напряжений всех величин, указанных в табл. 8.4.1 в различных режимах и по экспериментальным данным постройте векторные диаграммы для каждого случая в выбранном масштабе.

· Ответьте на контрольные вопросы.

Таблица 8.4.1

Режим UAO, B UBO, B UCO, B UON, B IA, мА IB, мА IC, мА IN, мА
RA=1 кОм RB=680 Ом RC=330 Ом Обрыв нейтрали
RA=RB=RC=1 кОм Схема с нейтралью Обрыв фазы А
RA=RB=RC=1 кОм Схема без нейтрали Обрыв фазы А
RA=RB=RC=1 кОм Схема без нейтрали К. З. фазы А

Векторные диаграммы

  1. RA=1 кОм, RB=680 Ом, RC=330 Ом. Обрыв нейтрали

2. RA= RB= RC =1 кОм, Схема с нейтралью, обрыв фазы А

3. RA= RB= RC =1 кОм, Схема без нейтрали, обрыв фазы А

4. RA= RB= RC =1 кОм, Схема без нейтрали, короткое замыкание фазы А

Вопрос:Как изменяется мощность трёхфазной нагрузки при обрыве фазы в схеме с нулевым проводом и без него? Как изменяется мощность при коротком замыкании одной фазы?

Ответ: …………

2 фазы в розетках однофазной проводки: 3 возможных причины

Объясняю последовательно, что может произойти при обрыве нулевого потенциала по разным причинам:

  1. внутри вводного квартирного щитка;
  2. в распределительной коробке или около нее;
  3. при пробое изоляции скрытой в стене проводки с повреждением нулевого провода и его замыканием на фазу.

Разбираю их более подробно с поясняющими схемами.

Причина №1. Повреждение контактов на вводе в квартиру или дом: как создается и чем опасно

Хотя это уже редкость, но в старых деревянных домах еще встречаются вводные щитки, которые защищены не автоматическими выключателями, а электрическими пробками с предохранителями.

Вот такие раритеты до сих пор работают в сельской местности по схеме заземления TN-C. Через две пробки в дом подается напряжение от питающей линии электроснабжения.

Вместо пробок можно встретить автоматический выключатель ПАР, но принцип пропадания потенциала нуля он не изменяет.

Дело в том, что при возникновении аварийной ситуации, связанной с созданием короткого замыкания или перегрузки отгорает тот предохранитель, плавкая вставка которого более чувствительна. Процесс случайный, предвидеть невозможно.

Электрическая цепь разрывается, а аварийный ток прекращает свое опасное воздействие.

Рассмотрим случай, что произойдет, когда отработал предохранитель нуля, а не фазы. Этот же случай характерен для более новой схемы с автоматическим выключателем, если повреждена цепь нулевого проводника в месте его подключения к сборной шине.

Из-за нарушения правил монтажа электропроводки в квартире может быть поврежден электрический контакт провода.Он же может просто отгореть при плохом зажатии винтов крепления на клемме в месте подключения. Встречаются такие ляпы и у современных монтажников.

Приходилось видеть случаи, когда монтеры срезают изоляцию острым ножом, вращая его вокруг металлической жилы, наносят на ней царапины. В ослабленном месте она легко обламывается после нескольких загибов.

Есть мастера, которые до сих пор снимают изоляцию бокорезами или пассатижами вместо специальных приборов — стрипперов. Тяжело переубеждать таких работников. Они себе на уме. Беда в том, что от их ошибок страдают другие люди.

При таком обрыве провода потенциал нуля будет отсутствовать в схеме, а фазы дойдет до всех подключенных потребителей, включая розетки и лампочки.

Обращаю внимание, что все электрические потребители квартиры жестко подключены к нулевой шине квартирного щитка. Если где-то в розетке что-либо включено, а это в первую очередь холодильник или морозильник, а также, микроволновка и другая техника, то через внутреннее сопротивление этого оборудования потенциал фазы проходит на сборку нулевой шинки, а далее ко всем контактам розеток

Если где-то в розетке что-либо включено, а это в первую очередь холодильник или морозильник, а также, микроволновка и другая техника, то через внутреннее сопротивление этого оборудования потенциал фазы проходит на сборку нулевой шинки, а далее ко всем контактам розеток.

Для более наглядного примера показал на картинке этот случай лампочкой с включенным выключателем. Светиться она, конечно, не будет (нет достаточных условий для действия закона Ома), но обходную цепочку для проникновения потенциала фазы создает.

Надеюсь, что объяснил, почему 2 фазы в розетках показывает емкостной индикатор напряжения при исчезновении потенциала нуля на вводе в квартиру.

Проблема возникает на всех коммутационных точках квартиры или частного дома.

Причина №2. Обрыв нуля внутри распределительной коробки или за ней

Типовая схема старой одноквартирной проводки создавалась с распаечными коробками, которые позволяют значительно экономить расход кабеля и проводов. Да и сейчас этот способ еще широко применяется монтажниками.

Когда нарушится контакт провода нуля в распределительной коробке, то на розеточный блок в оба контактных гнезда может пройти фаза:

  • по своей цепочке она и так подводится;
  • а на второй контакт поступит через подключенный потребитель, как в предыдущем случае на вводе.

В масштабе всей системы электроснабжения эта картинка выглядит так.

Более подробно изобразил этот случай для лучшего понимания через цепочку освещения.

Индикатор опять будет светиться в обоих положениях. Секретов здесь нет, неисправность скрыта в плохом, некачественном соединении проводов между собой. Придется искать это место и делать подключение правильно.

Общие сведения о величинах напряжений

Если речь идёт об электромонтаже в частном доме, то здесь чаще всего используется трёхфазное напряжение сети, величина которого составляет 380 В. Однако подобный параметр используется лишь для электродвигателей и прочего оборудования промышленного типа. Единственным исключением можно назвать некоторые варочные плиты старого образца. Именно поэтому, даже если к вводному распределительному щитку дома подходят 3 фазы, их делят на группы. Дело в том, что если при делении с каждой из них в паре пускать нейтраль (ноль), то напряжение снизится до привычных всем 220 В.

Пример того, как трёхфазную линию можно разделить на три однофазных

Подобные системы можно наблюдать в большинстве многоквартирных домов. Ведь к каждому из них подходит 3 фазы, которые уже в подъездных щитках распределяются по квартирам. В результате, в каждую подводится только одна фаза, ноль и заземление. Только при таком подключении привычные всем бытовые приборы (холодильник, стиральная и посудомоечная машина, микроволновая печь) смогут нормально функционировать.

А это схема подключения одной квартиры в распределительном шкафу на лестничной клетке

Почему в розетке две фазы? Причины появления двух фаз

Иногда, когда электропроводка выходит из строя и при этом не работают электроприборы, индикатор может показывать две фазы в розетке. Это достаточно распространенная неисправность, но при этом неопытному или просто начинающему электрику может понадобиться много времени на поиск решения.

Рассмотрим данную ситуацию на примере. Вы решили просверлить стену и подключили дрель в розетку. И вот, отверстие практически уже просверлено, но вдруг срабатывает автомат на счетчике. Но даже после включения автомата электроприборы не работают. Проверка розетки показывает, что индикатор в обоих гнездах сигнализирует о наличии фазы. В чем же дело, почему в розетке две фазы?

Только одна фаза входит в квартиру через счетчик и автоматы. Поэтому в розетке должен находиться ноль и одна фаза, а в рассмотренной выше ситуации индикатор показывал наличие одной и той же фазы в обоих гнездах розетки.

Вероятнее всего причиной возникновения данной неисправности является повреждение (разрыв), при сверлении стены, нулевого провода, который шел к розетке.

Наличие фазы в том месте, где по определению должен быть ноль, можно объяснить тем, что данная фаза проходит через какую-либо постоянную нагрузку — лампочку, которая постоянно включена, или другой электроприбор.

Обычно все нулевые провода в квартире или доме замкнуты на нулевую шину в электрическом щите, поэтому в розетке будет появляться фаза. Это очень просто проверить — необходимо выключить все имеющиеся в квартире электроприборы.

Что делать, если в розетке две фазы даже при отключении всех электроприборов?

Случается так, что даже после выключения всех потребителей электроэнергии из розеток и выключения всех осветительных приборов, в розетке все равно присутствуют две фазы. Какова причина этого?

Причина кроется в том, что сверло во время сверления перебило ноль и замкнуло его на фазу. При коротком замыкании тоже может возникнуть такая ситуация, когда оплетка проводов оплавляется и проводники замыкаются.

Поэтому вам потребуется отключить все электроприборы и осмотреть место сверления, чтобы найти и устранить неисправность.

Помимо этого, в розетке две фазы могут появиться и по другой причине — если на электрощите выключится автомат защиты сети или перегорит предохранитель (пробка).

А могут ли на самом деле появиться в розетке две разные фазы?

Да, такое возможно, но при этом могут сгореть различные электроприборы и лампочки, так как между разными фазами напряжение составляет 380 вольт.

Причиной этого может быть замыкание одной из фаз, которые идут по воздушной линии, на нулевой провод.

Для получения достоверной информации о наличии в вашей квартире напряжения и фазы, не достаточно иметь один фазоуказатель. Необходимо приобрести комбинированный прибор для измерения напряжения — мультиметр, которым можно измерять сопротивление, силу тока и напряжение. Для домашних нужд можно выбрать самый простой и дешевый прибор.

Всегда и везде необходимо помнить о мерах безопасности, ведь ощутимый электрический удар можно получить даже через нагрузку.

Прямое и обратное чередование фаз

Трехфазный переменный ток графически представляет собой три фазы в виде чередующихся синусоид на оси Х, сдвинутых по отношению друг к другу на 120°. Первую синусоиду можно представить как фазу А, следующую синусоиду как фазу B, сдвинутую на 120° относительно фазы А, и третью фазу C, также сдвинутую на 120° по отношению к фазе В.


Графическое отображение сдвига фаз на 120° трехфазной сети

Если фазы имеют порядок АВС, то такое следование фаз называется прямым чередованием. Следовательно, порядок фаз СВА будет означать обратное чередование. Всего возможно три прямых чередования фаз ABС, BCА, CАВ. Для обратного чередования фаз порядок будет выглядеть как CВА, BAC, ACB.

Проверить чередование фаз трехфазной сети можно фазоуказателем ФУ — 2. Он представляет собой небольшой корпус, на котором имеются три зажима для подключения трех фаз сети, алюминиевого диска с черной точкой на белом фоне и три обмотки. Принцип действия у него аналогичен работе асинхронного электродвигателя.

Если подключить фазоуказатель к трем фазам и нажать кнопку на корпусе, то диск начнёт вращаться в одну из сторон. Когда вращение диска совпадает со стрелкой на корпусе, тогда фазоуказатель показывает прямое чередование фаз, вращение диска в обратном направлении указывает на обратное чередование фаз.


Электрическая схема фазоуказателя ФУ-2

В каких случаях необходимо знать порядок чередования фаз. Во-первых, если дом подключен к трехфазной сети и установлен индукционный электросчётчик, тогда нужно соблюдать на нем прямое чередование фаз. При неправильном подключении такого электросчетчика возможен его самоход, что даст неправильные показания в сторону увеличения расхода электроэнергии.

Также, если в доме используются асинхронные электродвигатели, то направление вращения ротора будет зависеть от порядка чередования фаз. Меняя чередование фаз на асинхронном электродвигателе можно изменить направление вращения ротора в нужную сторону.

Последствия КЗ и способы их предотвращения

Короткое замыкание характеризуется протеканием повышенных значений тока. В свою очередь большой ток опасен для кабелей, соединений. Это характерно лавинообразным развитием последствий замыкания. Кабеля отгорают от соединений, сами соединения нагреваются, после чего происходит их ускоренное разрушение. Нагрев может повлечь возгорание электропроводки и пожар.

Для предотвращения последствий межфазного замыкания в цепях 220/380 используются плавкие вставки, предохранители, автоматические выключатели. Предохранители, когда через них протекает ток выше номинального, перегорают, тем самым разрывая цепь. После замены предохранителя, если вы не устранили межфазное замыкание, он будет перегорать вновь и вновь.

Для улучшения условий работы и эксплуатации, устранения необходимости замены плавких элементов используются автоматические выключатели. Они реагируют как на незначительное повышение тока сверх нормы (тепловой расцепитель), так и на резкое сильное повышение (электромагнитный расцепитель). При междуфазном замыкании или между фазой и землей автоматический выключатель разъединится. В таких случаях говорят «выбил автомат». Для возобновления подачи напряжения необходимо заново взвести рычаг автомата или перевключить кнопку (на АП-шках).

На видео наглядно показывается опасность межфазного короткого замыкания (под удар попал манекен, это были показательные выступления):

Как в обычной розетке может появиться две фазы

При выходе из строя электропроводки иногда случается, что индикатор показывает в розетке две фазы, а электроприборы при этом не работают.

Такая неисправность является достаточно распространенной, но начинающий или неопытный электрик может долго над этим ломать голову.

Рассмотрим такую ситуацию. Вы сверлите стену, подключив дрель в розетке. Отверстие почти уже досверлено, как вдруг на счетчика сработал автомат.

Вы включаете автомат, но в результате ни один электроприбор не работает. Проверяете розетку – в обоих гнездах индикатор сигнализирует о наличии фазы. Что это все значит?

Почему в розетке две фазы?

В квартиру через счетчик и автоматы заходит только одна фаза. В розетке должна быть одна фаза и ноль, а в приведенной выше ситуации индикатор свидетельствует о наличии в обоих гнездах розетки одной и той же фазы.

Наиболее вероятной причиной возникновения неисправности в данном случае является повреждение (разрыв) нулевого провода, идущего к розетке, в процессе сверления стены.

Наличие фазы там, где должен быть ноль обусловлено тем, что она проходит через нагрузку – постоянно включенную лампочку или какой-нибудь другой электроприбор.

Как правило, все нулевые провода в доме или квартире замыкаются на нулевую шину электрического щита. фаза будет появляться в розетке. Проверить это очень легко – нужно просто выключить все электроприборы, которые имеются в квартире.

Краткий экскурс в теорию

Сегодня мы не будем сильно углубляться в теоретические основы электротехники, а попытаемся кратко объяснить суть проблемы. Тем, кто желает более детально ознакомиться с данным вопросом, рекомендуем прочитать на нашем сайте серию статей по физике переменного электрического тока.

Штатная установка выключателя.

Приведем в качестве примера фрагмент бытовой электросети, где организовано подключение электролампы освещения и штепсельного разъема (розетки).

Фрагмент бытовой сети с подключением лампы и розетки

Обозначения:

Как известно, в однофазных цепях электрический ток (Ì) течет от фазы к нулю. В приведенном выше рисунке выключатель SW находится в разомкнутом положении, следовательно, лампа будет обесточена, в чем можно убедиться, измерив напряжение U2. При этом на штепсельном разъеме и части сети до выключателя (отмечено красным) будет оставаться рабочий потенциал U1, соответствующий фазному напряжению. Это штатный режим работы для данной схемы, где выключатель размыкает фазный провод.

Обратим внимание, если производить замеры индикатором напряжения, то он покажет наличие фазы на одном из контактов штепсельного разъема и ее отсутствие на обоих контактах патрона лампы

Установка выключателя на ноль

Теперь посмотрим, что произойдет, если поменять фазу и ноль местами, или, что чаще встречается на практике, установить выключатель на ноль, а не фазный провод.

Выключатель установлен неправильно

Внешне такое изменение никак не проявит себя. Лампа будет так же, как и в предыдущем примере включаться и выключаться, а на контактах розетки присутствовать разность потенциалов. Но, возникают определенные нюансы, которые проявляются в виде наличия напряжения на контактах патрона и части нулевой линии между лампой и выключателем. В чем несложно убедиться, используя электрический пробник.

Такой вариант подключения несет в себе потенциальную угрозу поражения электротоком при попытке замены или ремонта светильника.

Характерно, что измерения вольтметром наличия напряжения между контактами патрона осветительного прибора не принесут результатов. Прибор покажет «0», поскольку на контактах будет один уровень потенциала фазы.

Резюмируя итоги главы можно констатировать, что неправильное подключение контактов выключателей в распределительной коробке не оказывает значимого влияния на работу электрических приборов, подключенных к розетке. Помимо этого мы выяснили о необходимости комбинированного применения измерительных приборов (вольтметра и пробника).

Проблемы при обрыве нуля

Разрыв нарушает баланс в системе, поступление разнофазных токов прекращается, а напряжение в системе изменяется.

В качестве примера того, как могут возникнуть две фазы в розетке, рассмотрим контур AB. К помещениям A и B направляется линейное напряжение. Сопротивление подключается последовательным образом и включает в себя два компонента. Благодаря общему сопротивлению (Ra+Rb), по цепи проходит ток (Lab), который рассчитывается согласно закону Ома. Этот показатель общий для обоих помещений.

Снижение напряжения в помещениях становится не равным — оно зависит от уровня сопротивления, присущего работающим электрическим приборам. Если в одной из квартир включена вся бытовая техника, а в другой показатель потребления ниже, все 380 В окажутся в квартире с более высоким током, что приведет к выходу техники из строя, поэтому 2 фазы недопустимы в розетке.

Уменьшить риски повреждения электрооборудования можно с помощью реле, контролирующего напряжение. Такое реле устанавливается в квартирный электрощит. Реле работает в автоматическом режиме. Его задача — вовремя отключит подачу электричества в случае возникновения аварийной ситуации.

Краткий экскурс в теорию

При подаче напряжения на бытовой потребитель по нему течет электрический ток в замкнутой цепи. Если схема разомкнута, например, выключателем люстры, врезанным в фазный провод, то свечения не будет.


При этой ситуации потенциал фазы доходит до выключателя, а нуля — до ближнего контакта цоколя на каждой лампочке.

Их провода кратко называют фазой и нулем. После включения выключателя потенциал фазы доходит до удаленного контакта лампочки и через сопротивление нити накала образуется ток, который протекает по проводам замкнутой цепочки от источника питающей трансформаторной подстанции.

Если проверить индикатором напряжение на удаленном контакте патрона лампочки, то он своим свечением укажет фазу, а на ближнем — свечения не будет. Делаем вывод, что здесь потенциал нуля. Теперь рассмотрим другой вариант.

Фаза в розетке: слева или справа?

Представление о том, что носитель электрического потенциала в бытовых разъемах располагается слева, является довольно распространенным заблуждением. Среди наиболее частых аргументов, приводимых адептами такой точки зрения:

  1. Об этом свидетельствует их личный жизненный опыт;
  2. Такие результаты дает «прозванивание» сетевых шнуров и встроенных в электроприборы выключателей;
  3. Якобы указание на это имеют спецификации ряда производителей газовых котлов;
  4. Любители качественного звука настаивают на подключении вилки к разъему «правильной» стороной, благодаря чему обеспечивается наиболее чистое звучание.

Но все эти доводы не имеют отношения к действительности. Для евророзеток типа «шуко» нет никакой разницы, в каком положении к ним подключен провод. Электрические разъемы в нашей и всех европейских странах не поляризованы. Лишь имеющий довольной узкое применение стандарт подключения CEE 7/5 содержит жесткие требования к порядку подсоединения приборов.

В редких случаях монтажники принимают за данность положение о том, что фаза находится справа. Но делается это исключительно для удобства измерений и предотвращения путаницы.

В итоге фаза в розетке может быть как слева, так и справа, с одинаковой вероятностью.

Подведем итоги

Безусловно, что вероятности аварий носят случайный характер, максимум, что можно сделать в таких ситуациях, — принять необходимые меры для обеспечения защиты. Но помимо этого не будет лишним вовремя определить аварийную ситуацию по характерным признакам. В первую очередь отгорание нулевого магистрального провода приводит к перенапряжению сети. Обнаружив первые признаки этого явления, следует отключить все электроприборы.

Сделать это оперативно и самостоятельно практически нереально. Временной промежуток для этого слишком коротким, поэтому следует установить на электрическом щитке специальные приборы, реагирующие на обрыв нуля. Как только напряжение выйдет за установленные пределы, реле контроля напряжения произведет защитное отключение.

Полностью доверять системе защиты не стоит. Может случиться так, что при наличии характерных признаков перепадов напряжения, отключение питания не произойдет. Поэтому имеет смысл перечислить наиболее вероятные проявления для данного явления:

  • Мерцание ламп накаливания. Они наиболее чувствительны к перепаду уровня напряжения, возникающего при обрыве нуля. Энергосберегающие осветительные приборы и светодиодные лампы не настолько реагируют на изменения.
  • Электронные приборы, имеющие встроенную защиту, как правило, отключаются от сети питания. Или не запускаются. Такие действия предусмотрены реакцией защиты импульсных БП на броски напряжения. Характерно, что такая реакция может сработать раньше, чем реле напряжения. Но это, во многом зависит от производителя и схемы реализации защиты электросетей, а также надежности электрического соединения.
  • Еще один характерный признак – повышение температуры выключателя. Даже если Вы не обратили внимания на мерцание ламп, то данное проявление должно вызвать опасения.
  • Искрение, при попытке подключения электроприбора, может говорить об обрыве нуля на вводе однофазного потребителя. Даже, если оно вызвано другим фактором, а не обрывом нуля, это очень нехороший признак.
  • Самопроизвольные срабатывания вводных автоматов, также могут указывать на перенапряжение. Такая реакция на обрыв нуля характерна при включении электронагревательных приборов, например электропечи, бойлера, чайника и т.д.
  • Характерные звуки во вводном электрическом щите также могут указывать на перепады напряжения. В такой ситуации рекомендуется отключить ввод питания и дождаться приезда аварийной бригады. Велика вероятность, что авария обрыва нуля имела место в электросети поставщика.
  • Обязательно установите на вводе электрической сети реле напряжения. В идеале желательно продублировать данную систему стабилизатором напряжения для дома или квартиры. Такое устройство, работая в паре с реле, позволит поддерживать заданный уровень напряжения, не отключая питание.

Собственно, только многоуровневая защита может обеспечить максимальную безопасность.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector