Элементы электрической цепи
Источники тока и напряжения относятся к активным элементам электрической схемы. К ним же причисляют полупроводниковые приборы, например, транзисторы, диоды. Индуктивность, конденсатор, сопротивление, напротив, считают пассивными элементами.
В зависимости от частей, входящих в схему она может быть пассивной или активной. В первом случае она состоит только из электрически независимых элементов, если же в ней есть хотя бы один активный, то цепь считается энергозависимой.
Каждый прибор в электрической схеме можно охарактеризовать с двух сторон:
- качественной — зависит от физических параметров, определяет назначение и функцию элемента;
- количественной — характеризует величину прибора.
Источники питания разделяют на первичные и вторичные. К первым относят генераторы, то есть устройства, преобразующие энергию различного вида в электричество. Ими могут быть аккумуляторы, электромашины, гальванические батареи. Вторичные же источники преобразуют электричество из одного вида в другой. К ним можно отнести блоки выпрямления, инвертирования, трансформирования.
Вспомогательные элементы — это те, что обеспечивают правильную работу электрической схемы. Это всевозможные проводники, коммутационные устройства, измерительная и защитная аппаратура. Потребителем же является оборудование преобразующее электричество в полезную работу. Например, устройство нагрева, вентилирования, двигатели, различная бытовая и промышленная техника.
Другими словами, от источника ток начинает течь по проводникам через ряд электронных устройств, приводящих его характеристику к нужному виду. Затем он подаётся на нагрузку оказывающую сопротивление и выполняющую работу. Далее через потребитель ток возвращается к источнику. Замкнутость линии, вне зависимости от используемых элементов необходима, так как в ином случае не возникает разность потенциалов.
Подключение элементов в цепи может быть реализована тремя способами:
- параллельным — начало различных устройств соединены в одной точке, а концы в другой;
- последовательным — все части цепи подключаются поочерёдно друг к другу;
- смешанным — комбинация двух предыдущих видов.
Законы, действующие в электрических цепях
На схемах направление токов указывают стрелками. Для расчета нужно принять направления для напряжений, токов, ЭДС. При расчетах в электротехнике используют следующие основные законы:
- Закон Ома для прямолинейного участка цепи, который определяет связь между электродвижущей силой, напряжением источника с протекающей в проводнике силой тока и сопротивлением самого проводника.
- Чтобы найти все токи и напряжения, используют правила Кирхгофа, которые действуют между токами и напряжениями любого участка электрической цепи.
- Закон Джоуля–Ленца дает количественную оценку теплового действия электрического тока.
В цепях постоянного тока направление действия электродвижущей силы указывают от отрицательного потенциала к положительному. За направление принимают движение положительных зарядов. При этом стрелка направлена от большего потенциала к меньшему. Напряжение всегда направлено в ту сторону, что и ток.
В синусоидальных цепях ЭДС, напряжение и ток обозначают, используя полупериод тока, при этом он не изменяет свое направление. Чтобы подчеркнуть разницу потенциалов, их обозначают знаками «+» и «–».
Законы, действующие в электрических цепях
На схемах направление токов указывают стрелками. Для расчета нужно принять направления для напряжений, токов, ЭДС. При расчетах в электротехнике используют следующие основные законы:
- Закон Ома для прямолинейного участка цепи, который определяет связь между электродвижущей силой, напряжением источника с протекающей в проводнике силой тока и сопротивлением самого проводника.
- Чтобы найти все токи и напряжения, используют правила Кирхгофа, которые действуют между токами и напряжениями любого участка электрической цепи.
- Закон Джоуля–Ленца дает количественную оценку теплового действия электрического тока.
В цепях постоянного тока направление действия электродвижущей силы указывают от отрицательного потенциала к положительному. За направление принимают движение положительных зарядов. При этом стрелка направлена от большего потенциала к меньшему. Напряжение всегда направлено в ту сторону, что и ток.
В синусоидальных цепях ЭДС, напряжение и ток обозначают, используя полупериод тока, при этом он не изменяет свое направление. Чтобы подчеркнуть разницу потенциалов, их обозначают знаками «+» и «–».
Известные принципиальные схемы
Навыки чтения лучше закреплять на хорошо описанных схемах, ставших уже классическими. Они содержат небольшое количество интегральных элементов.
Радиоприемник “Ишим-003”
Устройство выпускалось с 1984 г. Оно представляет собой приемник частотно- и амплитудно-модулированных радиоволн в коротком, среднем и длинном диапазонах. Получил широкое распространение среди радиолюбителей.
Принципиальная схема Ишим-003.
Он выполнен по схеме супергетеродина с двумя каналами (ЧМ и АМ) и преобразователем частоты.
Частотно-модулированный канал выполнен из усилителя ВЧ, преобразователя, УПЧ и частотного детектора. Канал с модуляцией по амплитуде состоит из УВЧ, ПЧ, УПЧ и амплитудного детектора.
По низким частотам усиление производится общим УНЧ. В конструкцию входит электронно-счетная шкала, индикатор настройки и блок питания.
Вега-108 стерео
Аппарат появился в 1979 г. и представляет собой стереофонический электропроигрыватель грампластинок с выходной мощностью 2*10 Вт и частотой звука 63-18000 Гц. Устройство работает не только как усилитель внешних сигналов, но и может производить запись на магнитофон.
Принципиальная схема электрофона состоит из блоков:
- коммутации;
- регуляторов;
- питания;
- предусилителя;
- модуля усилителя мощности;
- акустической системы.
Основной частью элементной базы проигрывателя стали транзисторы: КТ815В, КТ814В, КТ315Г. Блок питания аппарата включает в себя понижающий трансформатор с 5 вторичными обмотками, 2 диодных моста и стабилизатор напряжения, выполненный на транзисторе КТ315В.
В качестве головки звукоснимателя используется прибор Г-602. Предварительный усилитель состоит из 2 каналов на транзисторах КТ3102Д, КТ361Е, КТ315Б. Коммутатор сделан из переключателей и электронной схемы.
Алмаг-01
Медицинский прибор Алмаг-01 предназначен для лечения кожных заболеваний, ЖКТ, ЛОР-органов. Воздействует на организм импульсным электромагнитным полем.
Схема устройства включает в себя:
- сетевой шнур;
- катушки-индукторы (излучатели);
- кабель для соединения ленты излучателей с блоком управления;
- бесперебойный блок питания;
- генератор импульсного тока;
- блок управления.
Мультиметр DT-832
Универсальный прибор для измерения разных электрических величин (напряжения, сопротивления, силы тока и др.). Основой измерительного прибора является микроконтроллер АЦП ICL1706 или его аналоги.
Устройство включает в себя:
- аналоговую часть;
- интегратор;
- компаратор;
- жидкокристаллический дисплей;
- цифровую часть с логикой управления.
Прибор удобен в использовании как в быту, так и на производстве.
Условные обозначения источников электрической энергии и элементов цепей
Условное обозначение | Элемент |
Идеальный источник ЭДС Е — электродвижущая сила, Е = const Ro = 0 — внутреннее сопротивление |
|
Идеальный источник тока I = const Rвн- внутреннее сопротивление источника тока, Rвн>>Rнаг |
|
Активное сопротивление R = const |
|
Индуктивность L = const | |
Емкость С = const |
К химическим источникам тока относят гальванические элементы и аккумуляторы. В них заряды переносятся в результате химических реакций. При этом в гальваническом элементе реагенты расходуются необратимо, а в аккумуляторе они могут восстанавливаться путем пропускания через аккумулятор электрического тока противоположного направления от других источников.
Источники электрической энергии относятся к группе активных элементов электротехнических устройств. Если Rо=0 и электродвижущая сила (ЭДС) Е=const, то источник называется идеальным. Аккумуляторная батарея по своим параметрам близка к идеальному источнику ЭДС.
К группе пассивных элементов относятся: активное сопротивление R, индуктивность L и емкость С.
В электротехнических устройствах одновременно протекают три энергетических процесса:
1 В активном сопротивлении в соответствии с законом Джоуля — Ленца происходит преобразование электрической энергии в тепло.
Мощность, по определению равна отношению работы к промежутку времени, за который эта работа совершается. Следовательно, мощность тока для участка цепи
p = A/t = ui
Полная мощность, вырабатываемая генератором, равна
где R- полное сопротивление замкнутой цепи, называемое омическим или активным;
Р, I — мощность и ток в цепи постоянного тока.
р, i, и — мгновенные значения активной мощности, тока и напряжения в цепи переменного тока,
g — активная проводимость или величина, обратная сопротивлению g=1/R измеряется в сименсах (См).
В соответствии с законом сохранения энергии работа есть мера изменения различных видов энергии. Так, в электродвигателе за счет работы тока возникает механическая энергия, протекают химические реакции и т. д. На резисторах происходит необратимое преобразование энергии электрического тока во внутреннюю энергию проводника.
Если в проводнике под действием тока не происходит химических реакций, то температура проводника должна измениться. Изменение внутренней энергии проводника (количество теплоты) Q равно работе А, которую совершает суммарное поле при перемещении зарядов:
Q = А = uit
Воспользовавшись законом Ома, получим два эквивалентных выражения:
Это и есть закон Джоуля — Ленца.
Если нужно сравнить два резистора по характеру тепловых процессов, происходящих в них, то нужно предварительно выяснить: протекает ли по ним одинаковый ток или они находятся под одинаковым напряжением?
Если по двум резисторам протекают одинаковые токи, то согласно формуле за одно и то же время больше возрастает внутренняя энергия резистора с большим сопротивлением. С таким случаем мы встречаемся, например, в цепи с последовательным соединением резисторов. Последнее обстоятельство следует учитывать при включении в сеть нагрузки (электроплиток, утюгов, электродвигателей и т. д.). Сопротивление подводящих проводов при этом должно быть значительно меньше, чем сопротивление нагрузки. При несоблюдении этого условия в проводах выделится большое количество теплоты, что может привести к их загоранию.
Если же оба резистора находятся под одинаковым напряжением, то согласно формуле быстрее будет нагреваться резистор с меньшим сопротивлением. Такой эффект, в частности, наблюдают при параллельном соединении резисторов.
Термин «сопротивление» применяется для условного обозначения элемента электрической цепи и для количественной оценки величины R.
Сопротивление измеряется в омах (Ом). 1 Ом — это сопротивление проводника, сила тока в котором равна 1 А, если на концах его поддерживается разность потенциалов 1 В:
1 Ом = 1 В/1 А
Электрическое сопротивление R материалов с изменением температуры меняется. Сопротивление металлических проводников линейно возрастает с температурой. У полупроводников и электролитов с увеличением температуры удельное сопротивление уменьшается, причем нелинейно.
Для сравнения проводников по степени зависимости их сопротивления от температуры t вводится величина a, называемая температурным коэффициентом сопротивления. Отсюда
Для практических расчетов в электрических цепях величину R можно принимать постоянной. В этом случае зависимость напряжения на сопротивлении R от силы тока (вольт-амперная характеристика) будет называться линейной. Электрические цепи, в которые включены постоянные по величине сопротивления, также будут линейными.
Преобразовательные устройства:
–воздушный
трансформатор;
–диодный
мост (двухполупериодный выпрямитель);
–инвертор.
Принципиальная
схема электрической цепи
– схема
электрической цепи, изображающая
соединение реальных элементов этой
цепи
.
Пример.
Простейшая электрическая цепь –
гальванический элемент, соединенный с
лампой накаливания через выключатель
с помощью соединительных проводов. Для
измерения напряжения и тока в цепь
включены вольтметр и амперметр.
Функциональная
(структурная, блок-схема) – схема
электрической цепи, изображающая
соединение отдельных блоков сложной
электрической цепи, выполняющих
определенные функции
(усиление, выпрямление, инвертирование
т.д.)
Двухполюсник
– часть
электрической цепи, которая рассматривается
относительно двух каких-либо зажимов
.
Четырехполюсник
– часть
электрической цепи, имеющая два входных
и два выходных зажима.
Активная
цепь
– часть
электрической цепи, в которой действуют
источники электрической энергии.
Пассивная
цепь
– часть
электрической цепи, в которой нет
источника электрической энергии.
Схема
замещения электрической цепи
Ни функциональная, ни принципиальная
схемы электрических цепей не отражают
количественную сторону электромагнитных
процессов, которые имеют место в элементах
цепи и которые определяют режим работы
этой цепи независимо от конструкции и
физической природы этих элементов.
Схема замещения
(расчетная
математическая модель, эквивалентная)электрической цепи
–схема
электрической цепи, изображающая
соединения абстрактных, идеальных
элементов, с достаточным приближением
отображающих электромагнитные процессы
в электрической цепи.
В теории электрических цепей реальные
элементы, из которых составляется
электрическая цепь, заменяются
абстрактными идеальными элементами с
определенными свойствами.
Какие же это элементы? И какие
электромагнитные процессы они отражают?
Что мы называем цепью? Это соединенные воедино звенья. Цепь соединяет вместе два или более объектов. Если цепь разорвать, то и объекты перестанут быть соединенными. Когда мы говорим об электрической цепи, то смысл остается тем же. Давайте разберемся, что такое электрическая цепь и из чего она состоит.
Классификация цепей
Электроцепи классифицируют по типу сложности: простые (неразветвленные) и сложные (разветвленные). Есть разделение на цепи постоянного тока и переменного, а также синусоидального и несинусоидального. Исходя из характера элементов, они бывают линейные и нелинейные. Линии переменного тока могут быть однофазными и трехфазными.
Разветвленные и неразветвленные
Во всех элементах неразветвленной цепи течет один и тот же ток. Простейшая разветвленная линия включает в себя три ветви и два узла. В каждой ветви течет свой ток. Ветвь определяют как участок цепи, который образован последовательно соединенными элементами, заключенными между двух узлов. Узел – это точка, в которой сходятся три ветви.
Линейные и нелинейные
Электрическая цепь, в которой потребители не зависят от значения напряжения и направления токов, а все компоненты линейные, называется линейной. К элементам такой цепи относятся зависимые и независимые источники токов и напряжений. В линейной сопротивление элемента не зависит от тока, например, электропечь.
В нелинейной, пассивные элементы зависят от значений направления токов и напряжения, имеют хотя бы один нелинейный элемент. Например, сопротивление лампы накаливания зависит от скачков напряжения и силы тока.
Трехфазные электрические цепи
Трехфазная цепь в рабочем режиме Среди электрических цепей распространены как однофазные, так и многофазные системы. Каждая часть многофазной цепи характеризуется одинаковым значением тока и называется фазой. Электротехника различает два понятия этого термина. Первое – непосредственная составляющая трехфазной системы. Второе – величина, изменяющаяся синусоидально.
Трехфазная цепь – это одна из многофазных систем переменного тока, где действуют синусоидальные ЭДС (электродвижущая сила) одинаковой частоты, которые сдвинуты во времени относительно друг друга на определенный фазовый угол. Она образована обмотками трехфазного генератора, тремя приемниками электроэнергии и соединительными проводами.
Такие цепи служат для обеспечения генерации электрической энергии, для ее передачи, распределения, и имеет следующие преимущества:
- экономичность выработки и транспортировки электроэнергии в сравнении с однофазной системой;
- простое генерирование магнитного поля, которое необходимо для работы трехфазного асинхронного электродвигателя;
- одна и та же генераторная установка выдает два эксплуатационных напряжения – линейное и фазное.
Трехфазная система выгодна при передаче электроэнергии на большие расстояния. К тому же материалоемкость значительно ниже, чем однофазных. Основные потребители – трансформаторы, асинхронные электродвигатели, преобразователи, индукционные печи, мощные нагревательные и силовые установки. Среди однофазных маломощных устройств можно отметить электроинструменты, лампы накаливания, бытовые приборы, блоки питания.
Параллельное соединение проводников
Параллельное соединение проводников выглядит вот так.
параллельное соединение резисторов
Ну что, думаю, начнем с сопротивления.
Сопротивление при параллельном соединении проводников
Давайте пометим клеммы как А и В
В этом случае общее сопротивление RAB будет находиться по формуле
Если же мы имеем только два параллельно соединенных проводника
То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.
Напряжение при параллельном соединении проводников
Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.
Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn
Сила тока при параллельном соединении проводников
Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.
Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.
Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что
I1 = U/R1
I2 = U/R2
I3 = U/R3
Если бы у нас еще были резисторы, соединенные параллельно, то для них
In = U/Rn
В этом случае, сила тока в цепи будет равна:
Задача
Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.
Решение
Воспользуемся формулами, которые приводили выше.
I1 = U/R1
I2 = U/R2
I3 = U/R3
Если бы у нас еще были резисторы, соединенные параллельно, то для них
In = U/Rn
Следовательно,
I1 = U/R1 = 10/2=5 Ампер
I2 = U/R2 = 10/5=2 Ампера
I3 = U/R3 = 10/10=1 Ампер
Далее, воспользуемся формулой
чтобы найти силу тока, которая течет в цепи
I=I1 + I2 + I3 = 5+2+1=8 Ампер
2-ой способ найти I
I=U/Rобщее
Чтобы найти Rобщее мы должны воспользоваться формулой
Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них — «калькулятор резисторов«. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.
I=U/Rобщее = 10/1,25=8 Ампер.
Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.
Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.
Подробное объяснение на видео:
Электрическая цепь и ее элементы
Режимы работы элементов и электрических цепей
Электрическая цепь — это совокупность устройств и объектов, образующих путь электрического тока. Отдельное устройство, входящее в состав электрической цепи и выполняющее в ней определенную функцию, называется элементом электрической цепи.
Простейшей электрическая цепь состоит из следующих элементов: 1 — источник электрической энергии; 2 — приемники электрической энергии; 3 — соединительные провода (рис. 1.10).
Источник электрической энергии дает электрическую энергию, потребитель эту энергию преобразует в другие виды энергии: свет, тепло, движение и т. д
Схема электрической цепи — это графическое изображение электрической цепи, содержащее условные обозначения ее элементов, показывающее соединения этих элементов.
Типы схем: структурная; функциональная; принципиальная; монтажная и др.
На принципиальной схеме приводится полный состав элементов и указаны все связи между ними.
Функциональные электрические схемы — это наиболее общие схемы в отношении уровня абстракции и обычно показывают лишь функциональные связи между составляющими данного объекта и раскрывающими его сущность и дающие представление о функциях объекта, изображённого на данном чертеже.
Принципиальные электрические схемы — это чертежи, показывающие полные электрические и магнитные и электромагнитные связи элементов объекта, а также параметры компонентов, составляющих объект, изображённый на чертеже.
Монтажные схемы — это чертежи, показывающие реальное расположение компонентов как внутри, так и снаружи объекта, изображённого на схеме.
Наиболее характерными для электрических цепей являются следующие режимы работы: номинальный, рабочий, холостого хода и короткого замыкания.
Номинальным называется режим, при котором данный элемент электрической цепи работает со значениями различных величин (тока, напряжения и др.), на которые он рассчитан заводом-изготовителем, а которые называются его номинальными (или техническими) данными. Номинальные данные указываются в справочной литературе, технической документации или на самом элементе.
Рабочим называется режим, при котором мощность, отдаваемая источником или потребляемая приемником, достигает максимального значения.
Под режимом холостого хода понимается такой режим, при котором приемник отключен от источника. При этом источник не отдает энергию во внешнюю цепь, а приемник не потребляет ее.
Режимом короткого замыкания называется режим, возникающий при соединении между собой выводов источника, приемника или соединительных проводов, а также иных элементов электрической цепи, между которыми имеется напряжение. При этом сопротивление в месте соединения оказывается практически равным нулю. Режим короткого замыкания в электрических установках нежелателен так как он приводит к большому току (больше номинального), т. е. к резкому увеличению выделения тепла и выходу из строя аппаратуры.
Параметры, характеризующие работу электрической цепи (рис. 1.11) при различных режимах, определяются следующими выражениями.
Ток в замкнутой цепи
Напряжение на клеммах источника
Падение напряжения на сопротивлении источника
Полезная мощность (мощность потребителя)
Исследуем изменение этих величин при изменении сопротивления от бесконечности (режим холостого хода) до нуля (режим короткого замыкания).
В режиме холостого хода (ключ разомкнут)
В режиме короткого замыкания
Максимальная полезная мощность выделяется при .
При максимальной отдаче мощности ток в цепи равен
а коэффициент полезного действия
так как
К КПД цепи приближается в режиме, близкой к холостому ходу. Зависимости напряжения и полезной мощности от нагрузки (тока ) показаны на рисунке 1.12.
Эта страница взята со страницы лекций по предмету теоретические основы электротехники (ТОЭ):
Возможно эти страницы вам будут полезны:
ЭДС и напряжение в электрической цепи. Электродвижущая сила. Энергия и мощность электрического тока. Баланс мощностей |
Закон Ома. Электрическое сопротивление. Закон Джоуля-Ленца |
Режимы работы источников тока. Потенциальная диаграмма |
Ветвь, узел, контур электрической цепи. Законы Кирхгофа |
Как элементы электрической цепи обозначают на схемах
Для наглядности способы соединения элементов изображают графически. Такие чертежи называют принципиальными электрическими схемами (рис. 6). Чтобы не рисовать элементы в подробностях, для них придумали упрощенные обозначения.
Пример цепи и ее электрической схемы
Обозначение каждого элемента стандартизировали. Благодаря стандартам, схема цепи, составленная в какой-либо стране, может быть прочитана и воспроизведена в другой части мира.
Обозначения, принятые в странах СНГ и некоторых странах Европы.
Условные обозначения некоторых элементов электрической цепи
Рядом с графическим символом указывают буквенные обозначения. Элементы на схемах принято обозначать латинскими буквами так:
- гальваническую батарею GB или B. В качестве источника тока для компактных электронных устройств часто применяют аккумуляторы, или батарейки;
- выключатель – SA, кнопка — SB; Для кнопок и выключателей иногда используют только одну букву S;
- проводник, обладающий сопротивлением – R;
- соединительные клеммы — буквами XT;
- символом FU — плавкий предохранитель. Он служит для защиты схемы и из строя первым, как только ток превысит определенный порог, указанный на таком предохранителе;
- нагревательный элемент электроплит и других обогревателей — символом EK;
- лампу накаливания – HL или HA;
- разъем вилка-розетка – XS;
- электродвигатель постоянного тока – M;
- электромеханический звонок – HA.
Часто бывает так, что на схемах присутствуют элементы, обозначаемые одинаковыми графическими значками. Чтобы различать их, дополнительно вводят цифровую нумерацию (рис. 8).
Для нескольких одинаковых элементов цепи применяют цифровую нумерацию
Например, первую лампу обозначают HL1, вторую – HL2, и так далее.
Существует еще одно, полезное для составителя схем, правило.
Благодаря такому правилу, одну и ту же схему можно нарисовать различными способами.
Элементы цепи можно передвигать по схеме, если это не нарушает соединений
Пример реальной цепи
Самую простую электрическую цепь можно сделать самостоятельно. Её часто собирают на уроке физики. При этом не стоит опасаться поражения током, так как в ней будет использоваться низковольтный источник напряжения. Но всё же перед тем как приступить к сборке, следует знать о коротком замыкании. Под ним понимают состояние, при котором происходит закорачивание выхода.
Другими словами, вся энергия источника тока оказывается приложенной к нему же. В результате разность потенциалов снижается до нуля, а в цепи возникает максимальная сила тока. Непреднамеренное короткое замыкание может привести к выходу из строя генератор и радиодетали. Именно для защиты от этого пагубного воздействия в цепи ставят предохранитель.
Схема для самостоятельного повторения будет представлять собой узел управления освещением. Для её сборки необходимо подготовить:
Источник питания на 12 вольт. Это может быть аккумулятор, регулируемый лабораторный блок, батарейки. Главное, чтобы источник смог выдавать нужное напряжение. Например, нужную величину можно получить соединив последовательно несколько батареек со стандартным номиналом 1,5 В (1,5 * 4 = 12 В).
Лампочка
Подойдёт накаливания
Здесь важно обратить внимание на её характеристики. Она должна быть рассчитанной на нужное напряжение.
Ключ
Это обыкновенный выключатель, имеющий два устойчивых состояния — разомкнутое и замкнутое.
Провода
В сборке можно использовать любые медные проводники сечением от 0,25 мм 2 .
Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.
Источники питания. Внутренняя, внешняя электрическая цепь
Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:
- Обмотка генератора.
- Гальванический источник питания (батарейка).
- Выход трансформатора.
Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.
Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.
Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:
- Источники напряжения (ЭДС).
- Источники тока.
В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.
В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.
Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет
Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра
К примеру, действующее значение ЭДС.
Электродинамические усилия в электрических аппаратах
Если эксплуатация электрического аппарата протекает в оптимальном режиме, электродинамические силы очень малы и не создают никаких трудностей для бесперебойной работы оборудования.
При возникновении короткого замыкания, такие силы могут привести к серьезным поломкам электрических устройств.
Для того чтобы избежать таких ситуаций, необходимо провести расчет аппарата или же отдельных его узлов, на электродинамическую устойчивость.
Потребность в таком расчете вызвана еще одной причиной. Дело в том, что реализация новых технических решений по минимизации элементов оборудования приводит к тому, что токопроводящие линии находятся в непосредственной близости друг от друга, что повышает риск возникновения короткого замыкания.
Контур, узел, ветвь
Для описания и анализа схем используются следующие термины:
- Ветвь — участок с одним или несколькими компонентами соединенными последовательно;
- Узел — место соединения двух и более ветвей;
- Контур — совокупность ветвей, образующих для тока замкнутый контур. Один из узлов в контуре должен быть и началом и концом пути. Остальные узлы должны встречаться не более одного раза.
Очень полезным элементом электрической цепи является предохранитель. Он предотвращает перегорание элементов цепи в случае перегрева. Предохранитель содержит легкоплавкий проводник, который перегорает в случае превышения допустимых параметров. Поменять предохранитель легче, чем найти сгоревший элемент среди сотен подобных элементов.
Рис. 3. Примеры участков схем: ветвь, узел, контур:.
Что мы узнали?
Итак, мы узнали что такое электрическая цепь и ее составные части. Все электрические цепи состоят из источников, проводников, потребителей и переключающих устройств.
-
/5
Вопрос 1 из 5