Описание работы и устройство импульсного блока питания

Схемотехника источников питания SMPS

Вот мы и дошли до практики. В зависимости от требуемой выходной мощности используются разные типы источников питания. Рассмотрим типы трансформаторных схем

Обратноходовый преобразователь

На приведенной схеме показаны основные формы сигналов тока и напряжения для обратноходового трансформатора.

Базовая схема flyback с трансформатором

В первой фазе цикла переключатель подключает дроссель L непосредственно к входному напряжению. Из-за постоянного входного напряжения Ue через дроссель протекает линейно возрастающий ток.

В этой фазе диод D заблокирован. Когда кнопка S открывается, полярность на дросселе меняется на обратную, так что диод проводит и энергия, накопленная в дросселе, передается нагрузочному конденсатору CLi R1. Дроссель действует как источник энергии. Таким образом, регулируя время зарядки на заданной частоте, можно менять энергию запасенную в дросселе.

Чтобы получить гальваническую развязку между входом и выходом схемы, дроссель заменяется трансформатором. Этот элемент действует как промежуточный накопитель энергии, так что цепь нагрузки может использовать энергию запасенную в трансформаторе, и тогда отсутствует прямая нагрузка на источник питания.

Условием сохранения энергии будет наличие в сердечнике трансформатора воздушного зазора или изолирующей прокладки между обеими половинами сердечника (которая имеет тот же эффект, что и воздушный зазор в средней части сердечника), но использование воздушного зазора в средней части сердечника обеспечивает лучшую обратную связь между обмотками.

Преобразователи прямоходового типа

На рисунке показана базовая схема преобразователя прямоходового типа. Когда ключ S замкнут, то линейно возрастающий ток течет через катушку непосредственно к конденсатору Ca и к нагрузке R1. На этом этапе энергия одновременно передается на дроссель и нагрузку. Диод D заблокирован.

Базовая схема прямоходового электропитания

Когда ключ открывается, магнитное поле дросселя прерывается. Полярность дросселя меняется, открывая диод. Энергия от дросселя через диод поступает на конденсатор и на нагрузку. Поскольку передача энергии в выходную схему также происходит при замкнутом ключе, тип этого трансформатора называется прямоходовым. Как и в случае трансформаторов обратного хода, энергия, запасенная в индуктивности в этом типе блока питания, может быть изменена за счет различного времени переключения.

Прямоходовое электропитание с трансформатором

На этой схеме показан источник питания прямого типа с трансформатором для разделения и преобразования сетевого напряжения. При использовании сердечника без воздушного зазора между первичной и вторичной обмотками поддерживается постоянный магнитный контакт. Но сбор и сглаживание выходного тока необходимо реализовать в отдельном дросселе Ls, для каждого выходного напряжения отдельно. Энергия, запасенная трансформатором во время фазы проводимости, передается на L1, Dl, Ce в фазе блокировки. Диод открывается при изменении полярности дросселя накопителя энергии.

Двухтактные преобразователи

Фактически, двухтактные трансформаторы состоят из двух соединенных между собой одиночных трансформаторов.

Базовая схема источника питания двухтактного типа

Переключатели S1 и S2 поочередно подключают первичную обмотку к источнику Ue. По сравнению с трансформатором прямого и обратного хода эта конфигурация обеспечивает возможность полной петли гистерезиса. Благодаря биполярной системе можно получить вдвое большую мощность при том же размере сердечника.

Двухтактный преобразователь

Даже при больших изменениях нагрузки, двухтактный трансформатор генерирует симметричное выходное напряжение, что позволяет напрямую использовать переменное напряжение без предварительного выпрямления, например в галогенном освещении.

Экранирование импульсных источников питания

Эффективность действия экранов, предназначенных для ослабления действия ВЧ–помех на функциональные устройства, расположенные рядом с сетевым импульсным источником питания, определим как уменьшение экраном величины напряженности магнитного и/или электрического полей. Эффективностью экранирования (Э) называется отношение величины напряженности электрического (Eэл) и магнитного (Hм) полей в экранируемом пространстве при отсутствии и наличии экрана :

где Eэл и Hм — напряженности падающей волны, а E’эл и H’эл — напряженности прошедшей волны непосредственно на выходе экрана. В радиоэлектронике эффективность экранирования (Кэ) выражают в децибелах (дБ).

Для электромагнитной волны, падающей на металлическую поверхность экрана, существуют два вида потерь. Волна частично отражается от поверхности, а преломленная волна по мере распространения в среде ослабляется (потери на поглощение).

Общая эффективность экранирования материала равна сумме потерь на поглощение Кпогл и потерь на отражение Котр при условии пренебрежения явлением многократного отражения в тонких экранах.

При прохождении электромагнитной волны в среде ее амплитуда уменьшается экспоненциально. В результате этого токи, индуцируемые в среде, вызывают потери, в итоге происходит нагрев вещества экрана. Расстояние, которое волна должна пройти до того, как будет ослаблена в «e» (≈ 2,72) раз, то есть до 37% своего первоначального значения, характеризуется глубиной проникновения или глубиной скин-слоя (Δf).

Глубину скин-слоя в миллиметрах можно определить как:

где F — частота волны; μ — относительная магнитная проницаемость; σотн — относительная удельная проводимость, равная σмат/σмеди, (в числителе — удельная проводимость материала экрана, а в знаменателе — удельная проводимость меди).

В таблице 1 приведены данные для глубины проникновения (глубины скин-слоя) Δf некоторых материалов, применяемых для экранов.

Таблица 1. Глубина скин-слоя в зависимости от материала
Частота F,
МГц
Глубина скин-слоя Δf , мм,
для материалов экрана
алюминий медь сталь
10–4 8,5 6,6 0,66
10–3 2,7 2,1 0,203
10–2 0,84 0,66 0,076
10–1 0,28 0,203 0,02
I 0,076 0,073 0,0076
10 0,025 0,02 0,002

Потери на поглощение в дБ определим по формуле :

где hэ — толщина экрана в мм.

Значения относительной удельной проводимости и относительной магнитной проницаемости различных материалов приведены в таблице 2.

Таблица 2. Удельная проводимость и относительная магнитная проницаемость материалов экрана
Материал σотн μ
Серебро 1,05 1
Медь отожженная 1,0 1
Алюминий 0,61 1
Латунь 0,26 1
Никель 0,2 1
Олово 0,15 1
Сталь 0,1 1000
Сталь нержавеющая 0,02 500

Анализ выражения (5) для стальных, медных и алюминиевых экранов дает следующие значения Кпогл при толщине экрана 0,25 мм (таблица 3).

Таблица 3. Значения Кпогл при толщине экрана 0,25 мм
Частота F, МГц Кпогл, дБ, при h = 0,25 мм
для материала экрана
сталь медь алюминий
0,5 231,5 23,15 18,1
1,0 327,5 32,75 25,6
10 1035,5 103,55 81
100 3275 327,5 255,8

Потери на отражение электрического поля Котр.эл найдем по формуле :

где |Zэ| — модуль полного сопротивления экрана, вычисляемый, в свою очередь, по формуле:

а r — расстояние от источника помех до экрана, м.

В свою очередь, потери на отражение магнитного поля по определяются в соответствии с выражением:

Анализ выражений (6) и (7) для малогабаритных высокочастотных ИВЭ, в которых расстояние от экрана, выполненного из различных металлов, до источников электромагнитных помех достаточно мало (например, r = 7 мм), дает следующие значения Котр.эл и Котр.м (таблица 4).

Таблица 4. Значение значения Котр.эл и Котр.м экранов в зависимости от материала
Частота F, МГц Котр эл, дБ Котр м, дБ
медь алюминий сталь медь алюминий сталь
0,5 193,9 191,7 150,9 28,5 26,3
1,0 184,8 182 144,8 31,5 19,4
10 154,9 152 114,9 41,5 39,4 1,5
100 124,8 122,7 84,8 51,5 39,4 11,5

В заключение отметим, что электрическое и магнитное поле экранируется одними и теми же конструкциями, но действуют они поразному. Токи, протекающие по экрану под влиянием магнитного поля, значительно превосходят токи, наблюдаемые при экранировании электрического поля. Объясняется это тем, что токи, возбуждаемые магнитным полем, протекают в коротком замкнутом поверхностном слое тела самого экрана, сопротивление которого невелико. В то же время в цепь тока, протекающего при электрическом экранировании, всегда включено большое сопротивление паразитной емкости между экранируемой точкой и экраном.

Схема принципиальная ИБП на 2 кВт

Сетевое напряжение сначала проходит через фильтр помех, а затем выпрямляется и фильтруется с помощью конденсаторов C4. Для уменьшения пускового тока был последовательно подключен переключатель с Re1 и R2. Катушка реле и вентилятора (обычный, от блока питания компьютера) питаются от 12 В, получаемых путем понижения напряжения 17 В от вспомогательного источника. Резистор R1 должен быть выбран как так что напряжение на упомянутой катушке и вентиляторе составляет 12 В. Вспомогательный источник питания был построен на основе м/с TNY267. Резистор R27 реализует защиту от пониженного напряжения этого источника питания — он не запустится при напряжении ниже пика 220 В.

Контроллер UC3845 имеет сигнал 50 кГц на выходе и максимальную скважность 47%. Он питается от стабилитрона, который снижает напряжение питания на 5,6 В (с выходом 11,4 В), а также сдвигает пороги UVLO с 7,9 В (ниже) и 8,5 В (вверху) до соответственно 13,5 и 14,1 В

Следовательно, источник питания начнет работать при напряжении 14,1 В, и не будет ниже 13,5 В, благодаря чему защита IGBT была получена от работы без насыщения. Первоначально это было невозможно, потому что пороги UC3845 были слишком низкими.

Эта схема управляет MOSFET T2, который, в свою очередь, питает управляющий трансформатор Tr2. В результате были получены гальваническая развязка и плавающий контроль. Этот трансформатор, через системы формирования с T3 и T4, управляет IGBT T5 и T6 затворами. Эти транзисторы переключают выпрямленное сетевое напряжение (325 В), питая силовой трансформатор Tr1.

Напряжение от вторичной обмотки этого трансформатора затем выпрямляется с использованием выпрямителя, подключенного в транзитной системе, и сглаживается дросселем L1 и конденсаторами C17. Обратная связь по напряжению подается с выхода на вывод 2 UC3845. Напряжение можно выставить с помощью потенциометра P1. Гальваническая развязка обратной связи не требуется, поскольку контроллер был подключен к вторичной стороне напряжения и изолирован от сети. Обратная связь по току была реализована с использованием трансформатора тока Tr3 и выведена на выход 3 UC3845. Порог ограничения тока можно установить с помощью P2.

Транзисторы T5, T6, диоды D5, D5′, D6, D6′, D7, D7′ и диодный мост обязательно должны быть размещены на радиаторе. Диоды D7, конденсаторы C15 и защитные цепи R22 + D8 + C14 должны быть как можно ближе к IGBT. Светодиод 1 указывает, что устройство включено, светодиод 2 — режим ограничения тока или ошибка. Он будет светиться, когда схема не находится в режиме стабилизации напряжения. В состоянии стабилизации на выходе 1 UC3845 составляет 2,5 В, в остальных случаях около 6 В. LED сигнализация может быть убрана.

Импульсный трансформатор: принцип действия и функциональные особенности

Трансформатор представляет собой достаточно сложное техническое устройство, основной функцией которого служит преобразование определенных свойств и качеств электрической энергии, таких, как напряжение или крутящий момент. Также современный трансформатор способен превращать переменный ток в постоянный и наоборот.

Среди огромного разнообразия используемых в настоящее времяприборов особо следует выделить их импульсные разновидности.

Импульсный трансформатор широко используется в системах связи, ВТ, устройствах автоматики, для внесения изменений амплитуды импульсов, а также их полярности. Главное условие для успешной работы данного вида прибора состоит в том, что искажение сигнала, который передается с его помощью, должно быть минимальным.

Импульсный трансформатор основывается в своей деятельности на следующем принципе: в то время как на его вход поступают прямоугольные импульсы определенного напряжения, в первичной обмотке постепенно появляется электрический ток, сила которого постепенно начинает увеличиваться. Это, в свою очередь, повлечет за собой изменение магнитного поля и появление электродвижущей силы во вторичной обмотке. В этом случае искажения сигнала практически не происходит, а возможные потери тока настолько малы, что ими можно пренебречь.

Что касается отрицательной части импульса, появление которой неизбежно в то время, как импульсный трансформатор выходит на проектную мощность, то его влияние можно свести к минимуму, установив простой диод во вторичную обмотку. Тем самым и здесь импульс станет максимально близким к прямоугольному.

Импульсный трансформатор отличается от других разновидностей данной технической системы тем, что работает исключительно в ненасыщенном режиме. Его магнитопровод изготавливается из специального сплава, который в обязательном порядке обладает значительной пропускной способностью магнитного поля.

Помимо импульсных, в современной энергетической и электронной промышленности используют следующие основные виды трансформаторов:

  1. Деятельность ни одного современного радиоприбора невозможна без силовых трансформаторов. Их деятельность многогранна: с одной стороны, они необходимы для того, чтобы приемники можно было запитывать от обычной сети с переменным током, а с другой, для того, чтобы повышать или понижать напряжение той или иной частоты в усилителях. С этой функцией связана и важная конструктивная особенность силовых трансформаторов – вместо стальных сердечников здесь используют вставки из магнетита или карбонильного железа.
  2. Еще одной разновидностью прибора, применяемого преимущественно в современных системах слежения и бортовых компьютерах самолетов, является вращающийся трансформатор. Его принцип действия заключается в том, что угол поворота рамки преобразуется в напряжение электрического тока. Внешне вращающийся трансформатор представляет собой небольшую электрическую машину, работающую исключительно от переменного тока. Кроме того, в зависимости от того, где эти трансформаторы применяются, они могут быть как двухполюсными, так и многополюсными.
  3. В зависимости от того, какой ток поступает на первичную обмотку, выделяют трансформаторы переменного и постоянного тока. Основной вид первого типа – автотрансформатор, который состоит исключительно из одной катушки, которая непосредственно включается в электрическую цепь. Данный вид приборов предназначен исключительно для понижения напряжения и только для очень маленьких токов. Трансформатор постоянного тока – это более сложный прибор, состоящий из динамомашины и двигателя. В этом случае первичный ток вырабатывается двигатель, а вторичный – динамомашиной, которая приводится в движение тем же электродвигателем. Нередко встречается ситуация, когда трансформатор постоянного тока представляет собой двигатель и динамомомашину, соединенные между собой одним металлическим каркасом. Делается это для экономии материала, а также для повышение качества работы прибора.

Схема

Импульсный БП состоит из следующих функциональных блоков:

  • фильтр. Не пропускает помехи из сети и обратно (генерируются самим БП);
  • выпрямитель со сглаживающим конденсатором. Обычный диодный мост, дает на выходе почти ровное (с низким коэффициентом пульсаций) постоянное напряжение, равное действующему значению переменного селевого напряжения — 311 В;
  • инвертор. Состоит из быстро переключающихся силовых ключевых транзисторов и управляющей ими микросхемы. На выходе дает прямоугольный переменный ток. Процесс преобразования в инверторе называют широтно-импульсной модуляцией (ШИМ), а микросхему — ШИМ-контроллером. В рабочем режиме реализована обратная связь, потому в зависимости от мощности подключенной к БП загрузки, контроллер регулирует продолжительность открытия транзисторов, то есть ширину импульсов. Также благодаря обратной связи, компенсируются скачки напряжения на входе и броски, обусловленные коммутацией мощных потребителей. Это обеспечивает высокое качество выходного напряжения;
  • импульсный высокочастотный трансформатор. Понижает напряжение до требуемых 12 или 24 В;
  • выпрямитель со сглаживающим конденсатором. Преобразует высокочастотное переменное напряжение в постоянное.

Дроссель переменного тока

Основной элемент сетевого фильтра — дроссель. Его сопротивление (индуктивное) возрастает с увеличением частоты тока, потому высокочастотные помехи нейтрализуются, а ток частотой 50 Гц проходит свободно. Дроссель работает тем эффективнее, чем больше размеры магнитопровода, толщина проволоки и больше витков. Дополнительно установленные конденсаторы улучшают фильтрацию, закорачивая высокочастотные помехи и отводя их на «землю».

Также емкостные сопротивления не позволяют в/ч помехам, генерируемым БП, поступать в сеть. Высокочастотный трансформатор отличается от обычного материалом магнитопровода: используются ферриты или альсифер. Выпрямитель после трансформатора собирается на диодах Шоттки, отличающихся высоким быстродействием.

Существует два способа генерации высокочастотного переменного тока:

  1. однотактная схема. Применяется в БП небольшой мощности — до 50 Вт (зарядки телефонов, планшетов и т.п.). Конструкция простая, но у нее велика амплитуда напряжения на первичной обмотке трансформатора (защищается резисторами и конденсаторами);
  2. двухтактная схема. Сложнее в устройстве, но выигрывает в экономичности (выше КПД). Двухтактная схема делится на три разновидности:
    1. двухполупериодная. Самый простой вариант;
    2. двухполярная. Отличается от предыдущей присутствием 2-х дополнительных диодов и сглаживающего конденсатора. Реализован обратноходовый принцип работы. Такие схемы широко применяются в усилителях мощности. Важная особенность: продлевается срок службы конденсаторов за счет того, что через них протекают меньшие токи;
    3. прямоходовая. Используется в БП большой мощности (В ПК и т.п. устройствах). Выделяется наличием габаритного дросселя, накапливающего энергию импульсов ШИМ (направляются на него через два диода, обеспечивающих одинаковую полярность).

2-тактные БП отличаются схемой силового каскада, есть три модификации:

  1. полумостовая: чувствительна к перегрузкам, потому требуется сложная защита;
  2. мостовая: более экономична, но сложна в наладке;
  3. пушпульная. Наиболее экономична и потому весьма востребована, особенно в мощных БП. Отличается присутствием среднего вывода у первичной и вторичной обмоток трансформатора. В течение периода работает то одна, то другая полуобмотка, подключаемая соответствующим ключевым транзистором.

Стабилизации выходного напряжения добиваются следующими способами:

  • применением дополнительной обмотки на трансформаторе. Это самый простой способ, но и наименее действенный. Снимаемое с нее напряжение корректирует сигнал на первичной обмотке;
  • применением оптопары. Это более эффективный способ. Основные элементы оптопары — светодиод и фототранзистор. Схема устроена так, что протекающий через светодиод ток пропорционален выходному напряжению. Свечение диода управляет работой фототранзистора, подающего сигналы ШИМ-контроллеру.

Таким образом, в данной методике контролируется непосредственно напряжение на вторичной обмотке, при этом отсутствует гальваническая связь с генератором ключевого каскада.

При подключении последовательно с оптопарой стабилитрона качество стабилизации становится еще выше.

Блок питания с силовым трансформатором

Силовые трансформаторы для ИБП бывают двух типов: с косой и без косы. Оба типа могут использоваться для установки в импульсные блоки питания.

Трансформатор с косой состоит из трех обмоток, первичная цепь — 1 обмотка, состоящая из двух полуобмоток по 20-ть витков и вторичная цепь — состоит тоже из 2-х полуобмоток, которые соединяются в косе. Каждая полуобмотка состоит из семи витков, последовательно соединенных между собой по электросхеме, каждый виток равен 1 Вольт. Последовательное соединение между собой обмоток увеличивает мощность.

Применение силовых трансформаторов для блока питания импульсного типа обусловлено рядом преимуществ:

  • последовательное соединение обмоток трансформатора обеспечивает стабильность напряжения в блоке;
  • простота сборки и доступность элементов;
  • возможность повысить мощность силы тока за счет количества обмоток;
  • малое энергопотребление.

У силовых трансформаторов есть такие недостатки:

  • при ненадежной изоляции соединений на косе возможно короткое замыкание;
  • индукция электромагнитного поля может создавать помехи.

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Проверка конструкции

Перед первым включением БП нужно проверить. В первую очередь проверяется монтаж, например, могли остаться следы от пайки, несмытый флюс. Какой-либо компонент, установленный на плате, может оказаться неисправным.

Если с монтажом все в порядке, можно приступать ко второй стадии проверки с помощью лампочки. В качестве лампочки можно использовать любую лампу накаливания. Для этого подключаем изготовленный нами источник питания последовательно с лампочкой, как показано на рисунке ниже.

Если лампочка не светится, значит, в цепи БП есть обрыв. Нужно проверить дорожки платы, дроссель, диодный мост.

Лампочка постоянно горит. В блоке питания короткое замыкание. Причина может быть в пробое конденсаторов, транзисторов. Нужно также проверить дорожки печатной платы, выходные цепи трансформатора.

Если лампочка вспыхнула и погасла, значит, БП исправен, конденсаторы зарядились.

Ремонт ИБП

Ремонт ИБП, как правило, заключается в замене, неисправных, погоревших деталей на новые. Но сложность даже не в самом монтаже новой детали, а именно в поиске неисправной. Для этого производят следующие операции:

  • Внешний осмотр платы блока на предмет наличия вздувшихся конденсаторов, обуглившихся резисторов и других элементов с дефектами.
  • Осмотр пайки трансформатора, ключевых транзисторов и микросхем, а также дросселей.
  • Проверка цепи питания на предмет разрыва: позванивают сам кабель, предохраняющий переключатель, переключатель тока при его наличии, а также дроссели и выпрямительный мост.
  • Первичная диагностика любой детали производится без демонтажа, и только когда есть вполне обоснованное предположение о том, что она неисправна, ее можно выпаивать и проверять отдельно.
  • Также необходимо проверить цепь на предмет коротких замыканий.
  • Проведя визуальную и приборную диагностику оборудования и поменяв нерабочие элементы, приступают к проверке под рабочим напряжением сети. Но в роли предохранителя используется обычная лампочка на 150-200 Ватт 220 вольт. Она не даст сгореть всему преобразователю при наличии неисправности и просигнализирует о характере дефекта. Так, если лампочка ярко вспыхнет и притухнет, излучая растр, то, скорее всего, неисправны конденсаторы. Проверить их на исправность можно только заменив на новые. Другим случаем является вариант, когда лампа вспыхнула и сразу же погасла совсем. Этот вариант предусматривает индивидуальную проверку всех резисторов цепи запуска. Наконец последний случай – светильник горит на полную яркость. В этом случае надо полностью перепроверить всю схему заново.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector