Как выбрать токовые клещи: топ-10 лучших токоизмерительных клещей

2.1.1 Электромеханические приборы основные понятия и классификация

Для измерения напряжения и силы тока в прошлом веке (иногда еще и в настоящее время) широко применялись электромеханические приборы. Приборы этих систем часто входят в состав и других, более сложных, средств измерений.

По физическому принципу, положенному в основу построения и конструктивному исполнению, эти приборы относятся к группе аналоговых средств измерения, показания которых являются непрерывной функцией измеряемой величины.

Электромеханические приборы непосредственной оценки измеряемой величины представляют класс приборов аналогового типа, обладающих рядом положительных свойств: просты по устройству и в эксплуатации, обладают высокой надежностью и на переменном токе реагируют на среднее квадратическое значение напряжения.

Напряжение и силу тока измеряют приборами непосредственной оценки или приборами, использующими метод сравнения (компенсаторы). По структурному построению приборы, измеряющие напряжение и силу тока, условно можно разделить на три основных типа:

  • электромеханические;
  • электронные аналоговые;
  • цифровые.

По физическому принципу действия, положенному в основу построения и конструктивному исполнению, электромеханические приборы относят к группе аналоговых средств измерения, показания которых являются непрерывной функцией измеряемой величины.

Электромеханические приборы непосредственной оценки измеряемой физической величины представляют класс приборов аналогового типа, обладающих рядом положительных свойств: просты по устройству и в эксплуатации, обладают высокой надежностью и на переменном токе реагируют на среднее квадратическое значение напряжения. Последнее обстоятельство позволяет производить наиболее информативного параметра сигнала без методических ошибок. Электромеханические приборы строят по обобщенной структурной схеме, представленной на рис. 2.1.

Рисунок 2.1 Структурная схема электромеханического прибора

Измерительная схема электромеханического прибора содержит совокупность сопротивлений, индуктивностей, емкостей и других элементов электрической цепи прибора и осуществляет количественное или качественное преобразование входной величины х в электрическую величину Х, на которую реагирует измерительный механизм. Механизм преобразует электрическую величину Х в механическое угловое или линейное перемещение α, значение которого отражается на шкале отсчетного устройства прибора, проградуированной в единицах измеряемой величины N(х). Для этого необходимо чтобы каждому значению измеряемой величины соответствовало одно и только одно, определенное отклонение α. При этом параметры схемы и измерительного механизма не должны меняться при изменении внешних условий; температуры окружающей среды, частоты питающей сети и других факторов.

  • магнитоэлектрическая,
  • электромагнитная,
  • электродинамическая,
  • электростатическая.

Электроизмерительные приборы: принцип действия.

Электроизмерительные приборы — это специальные устройства, позволяющие получать значения некоторых параметров электрического тока. Любой электроизмеритель включается в исследуемую цепь (постоянно или с помощью щупов) и отображает на индикаторе значение параметра, для которого он предназначен.

Рис. 1. Подключение тестера к электрической цепи.

Принцип действия электроизмерительных приборов основан на том, что исследуемая цепь влияет на подключенный прибор, причем это влияние пропорционально исследуемому параметру. А прибор отображает результат этого влияния в форме, удобной для считывания оператором.

В зависимости от того, какое влияние оказывает цепь на измеритель, различные приборы классифицируются по следующим видам:

  • работающие от проходящего через них тока;
  • работающие от накопления заряда;
  • работающие от взаимодействия с электрическим или магнитным полем;
  • работающие от теплового действия измерительной цепи.

В подавляющем большинстве случаев электроизмерительные приборы работают от проходящего через них тока. Приборы остальных принципов менее удобны. В самом деле, для накопления заряда или появления заметного электрического поля в измерительной цепи должны существовать высокие напряжения порядка киловольт. А для существования заметного магнитного поля или выделения заметного количества тепла необходимо наличие высоких токов порядка десятков ампер и выше. При прохождении же тока через измеритель можно обеспечить чувствительность, достаточную для очень малых токов, при этом стоимость прибора будет не сильно высокой.

Если требуется определение напряжения, то используется закон Ома, известный в 11 классе. Подключая прибор к измеряемому напряжению через фиксированное сопротивление, можно получить значение напряжения. Точно так же можно измерить и другие параметры электрического тока: частоту, фазу, нелинейные искажения и другие.

Возможные погрешности

Как и любой тестер, мультиметр не даёт абсолютно точных результатов. Наибольшее значение они принимают в приближении к пределам диапазона измерения прибора. Самые распространённые сложности связаны с определением низких сопротивлений. Возможные причины искажений:

Грязные контакты

Чтобы правильно произвести замер, важно убедиться, что тестируемый компонент не покрыт окислами и другими загрязнениями. Высокое сопротивление контактов не позволит измерить значение без искажений

Наведённые помехи. Если тестирование производится под влиянием внешних магнитных полей, возможны отклонения результатов от действительности. Для минимизации эффекта в таких условиях применяют щупы с короткими идеально экранированными проводами. Кроме того, явление температурной ЭДС из-за образования термопар в месте контактов разнородных металлов также может искажать результаты.

Принцип работы

Большинство электроизмерительных устройств имеют принцип действия, основанный на том, что электроны двигаются по проводнику электроцепи и создают вокруг себя магнитное поле. Стрелка измерительного приспособления перемещается в этом поле, реагируя на его параметры. Чем ниже показатели магнитной зоны, тем меньше отклонения стрелки.

Шкала и стрелка присутствуют на многих приборах и визуализируют особенности электрического тока

При этом все приборы электроизмерительного типа по принципу действия разделяются на следующие виды:

  • магнитоэлектрические, в которых ток пропускается через особую рамку в виде нескольких витков изолированной проволоки. Она размещена между полюсами постоянного магнита, поля их взаимодейству­ют. Рамка и сидящая на одной с ней оси стрелка перемещаются на определённый угол, который пропорционален напряжению или току. Эти приспособления предоставляют точные данные, но без дополнительных устройств используются для определения небольших значений и лишь тока постоянного типа;
  • в электродинамических устройствах магнитное поле, в котором вращается рамка, получается не благодаря постоянному магниту, а с помощью катушки с током. У этих приборов имеются две катушки: неподвижная и подвижная (рамка, жёстко соединённая со стрелкой). Устройства оптимальны для измерения постоянного и непостоянного вариантов тока;
  • работа тепловых моделей осуществляется в результате нагревания током и удлинения проводников. Приборы используются как для постоянного, так и для тока переменного типа;
  • действие электростатических устройств основано на взаимной силе притяжения пластин. Это осуществляется в результате воздействия на них напряжения.

Виды амперметров

Классифицировать устройства можно по способу индикации. Наиболее широко распространены аналоговые амперметры – с градуированной шкалой, по которой движется стрелка. Современные приборы имеют цифровой дисплей, на котором отображается значение величины тока.

Приборы со стрелочной головкой

Стрелочные амперметры постепенно исчезают. Они отличаются более сложным устройством, чем современные модели, и обладают ограниченной областью применения. Еще один недостаток – меньший срок работы из-за наличия большего количества механических деталей. При этом современные условия иногда требуют измерения меньших величин, чем требуется для отклонения стрелки даже на одно деление. Из-за этого стрелочные приборы приходится модифицировать усилителями сигнала.

Интересно. Долгое время эти приборы не имели аналогов – точность измерений была достаточно высокой. Однако развитие электротехнической промышленности позволило разработать более дешевые в изготовлении приборы.

Принцип действия стрелочной головки

Еще одна сложность при использовании стрелочного амперметра – принцип работы стрелки, отличающийся в разных системах измерения:

  1. Магнитоэлектрическая. Стрелка поворачивается по линейной шкале, пропорциональной силе тока. Вращающий момент задается током, проходящим через обмотку рамки.
  2. Электромагнитная. Стрелка закреплена на сердечнике из ферромагнита, который двигается внутри катушки.
  3. Электродинамическая. Используются две катушки с последовательным либо параллельным соединением. На подвижной – закреплена стрелка, поворачивающаяся от взаимодействия между токами катушек.

Во всех типах прибора используется корректор – специальный винт, соединенный с пружиной. Он необходим для установки стрелки в нулевое положение.

Игнорирование начальной регулировки может привести к неправильному отображению величины измеряемого тока, так как стартовое положение стрелки будет находиться левее нуля.

Приборы с цифровым индикатором

Цифровые устройства вытесняют аналоговые, благодаря ряду отличий:

  • простота изготовления – дешевле производить, легче собрать самостоятельно;
  • возможность измерения меньших величин;
  • отсутствие износа подвижных частей – дольше служат, не требуют замены элементов;
  • наглядная и удобная индикация;
  • меньший вес.

Переход к цифровому исполнению позволил шире применять приборы в быту. Они проще в использовании – вертикальное и горизонтальное расположение не влияет на работу. Также они лучше защищены от внешних воздействий, например, механических ударов по корпусу.

Магнитоэлектрические амперметры

Устройства, реагирующие на магнитные явления (магнитоэлектрические) применяют для того, чтобы замерить токи очень маленьких значений в цепях с постоянным током. Внутри них нет ничего лишнего, кроме катушки, подсоединенной к ней стрелки и шкалы с делениями.

Термоэлектрические амперметры

Используют для измерения переменного тока с высокой частотой. Внутри прибора установлен нагревательный элемент (проводник с высоким сопротивлением) с термопарой. Из-за проходящего тока нагревается проводник, и термопара фиксирует величину. Из-за возникающего тепла отклоняется рамка со стрелкой на определенный угол.

Ферродинамические

Очень надежные приборы, которые обладают высокой прочностью и мало подвергаются воздействию магнитных полей, возникающих не в приборе. Такого рода амперметры устанавливают в автоматические контролирующие системы как самописцы.

Бывает так, что шкалы прибора недостаточно и необходимо увеличить значения, которые стоит замерить. Чтобы этого достичь используется шунтирование (проводник с высоким сопротивлением присоединяется параллельно прибору). Например, чтобы установить значение силы в сто ампер, а прибор рассчитан всего на десять, то присоединяют шунт, у которого значение сопротивления в девять раз ниже, чем у прибора.

На схемах принципиальных амперметры всегда обозначаются подобным образом:

Основанные на электродинамике

Можно применять не только для замеров силы постоянного тока, но и переменного. Из-за особенностей прибора, его можно применять в таких сетях, где частота достигает двухсот герц. Электродинамический амперметр используется в основном как контрольный измеритель для проверки приборов.

Они сильно реагируют на сторонние магнитные поля и на перегрузки. Из-за этого в качестве измерителей используются редко.

В отличие от магнитоэлектрических их можно применять и для сетей с переменным током, чаще всего в цепях промышленного назначения с частотой в пятьдесят герц. Электромагнитным амперметром можно пользоваться для замеров в цепях с большой силой тока.

Измерение напряжения

Одним из наиболее востребованных в быту замеров было и остается измерение напряжения. Заряд аккумуляторной батареи измеряют автомобилисты, напряжение в сети проверяют при перебоях в работе электрических приборов.

Учитывая, что напряжение – это разница потенциалов между двумя точками, для определения переменного напряжения щупы устройства необходимо подключить параллельно прибору, напряжение которого оценивается.

Как измерить напряжение, например, аккумуляторной батареи:

  1. Подключить щупы.
  2. Установить переключатель на максимальное значение в секторе ACV.
  3. Удерживая щупы за изолированные участки, прикоснуться оголенными концами к разным контактам батареи.
  4. Зафиксировать результаты измерений в вольтах, отображаемые на экране.
  5. Если показания не точны, следует изменить значение предельного измерения путем перемещения ручки переключателя на оптимальное значение из предлагаемого диапазона.

Для измерения постоянного напряжения следует установить ручку переключателя на сектор DCV (режим вольтметр). Соблюдение полярности не обязательно, поскольку при обратном подключении на экране будет отображено отрицательное значение.

Документация

Любой измерительный прибор имеет относительную погрешность. Обычно этот параметр фиксирован и индивидуален для каждого мультиметра. Он отражается в документации, прилагаемой к товару. Данные о погрешности обозначаются знаком процента или «плюса-минуса». Производитель указывает максимально допустимый диапазон отклонений, который получает после калибровки на заводе.

Однако перед использованием можно определить точность мультиметра самостоятельно. Часто два разных экземпляра, выпущенных одним и тем же производителем, могут иметь разные погрешности.

Для правильной оценки лучше использовать абсолютную цифру, которая приводится в конце шкалы погрешностей. Например, если нужно произвести измерения, где диапазон напряжения составляет 2 В, погрешность не должна составлять больше ±41 мВ.

Если вы выявили, что на данном отрезке измерений мультиметр показывает отклонения, больше предусмотренных, ему требуется калибровка. Если правильно провести процедуры, показания будут точнее тех, которые указывает производитель в паспорте товара.

Типовые измерения бытовым мультиметром

Измерение постоянного тока

Измерение постоянного тока безопасной величины. Например — проверка автомобильного аккумулятора. Установка режима: измерение постоянного напряжения. Предел измерения — 20 вольт (ближайший диапазон). Измерительные кабели включаются в соответствии с инструкцией.

Как проверить батарейки или аккумуляторы

Аналогичным способом проверяем пальчиковые батарейки или аккумуляторы. Предел измерения в нашем случае те же 20 вольт постоянного напряжения. Предполагаемое значение 1.4 вольта. Прижимаем контакты к аккумулятору (соблюдая полярность), снимаем показания.

Измерение опасного напряжения

Измерение опасного напряжения: например, в розеточной сети. Для начала проверяем измерительные кабели. Изолирующие рукояти должны быть целыми, провода надежно удерживаться. На измерительном кабеле отформованы ограничительные кольца, чтобы пальцы не соскользнули в опасную зону во время прижимания к измеряемым контактам.

Выставляем режим измерения переменного тока, предел измерения — 500 (или 750) вольт (измеряемое напряжение 220 вольт). Надежно фиксируем кабели в приборе, подключаемся к розетке, манипулируя одной рукой.

Чтобы измерить напряжение в сети, достаточно нескольких секунд. Не следует надолго оставлять подключенный к розетке прибор.

Прозвонка цепи

Разобравшись, как пользоваться тестером напряжения, переходим к самой простой операции: прозвонка цепи.

Производится при наличии такого режима на приборе.

Перед началом прозвонки, соединяем щупы между собой и проверяем работоспособность прибора (устойчивый звуковой сигнал). Если концы проверяемой проводки разнесены далеко друг от друга, воспользуйтесь удлинителем.

Проверка радиокомпонентов

Разумеется, детали следует проверять после извлечения их из монтажной платы. В крайнем случае, достаточно отсоединить один контакт.

Проверка диода или резистора.  Выставляем соответствующий режим на переключателе. Если вы не знаете приблизительный номинал, начинаем измерения с большего предела. Переключая диапазон измерений, вы рано или поздно найдете нужный номинал.

Светодиоды проверяются в режиме прозвонки. Даже если вы увидите, что диод исправно проводит ток в одну сторону (в режиме проверки обычных диодов), но при этом не светится, измерения не имеют значения.

В режиме прозвонки, силы тока будет достаточно для зажигания кристалла. Перепутав полярность, вы не испортите деталь. Просто диод не засветится.

Но это не означает, что вы можете путать режимы, и подключаться к высокому напряжению с установленным низким порогом измерения.

Как проверить заземление

Измерение заземления также можно произвести с помощью бытового тестера.

  1. Прежде всего убедимся, что у вас в доме выполнена разводка «земли». Для этого открываем корпус любой розетки, и проводим визуальный осмотр. Если на «земляной» контакт ничего не заведено, или есть перемычка (это опасно!) между нулевым и «земляным» выводом, собственно и проверять нечего. При наличии на контакте «земли»: типового желто—зеленого провода, вы можете проверить, подключено «естественное заземление», либо у вас объединены нулевая и земляная шины.
  2. Определяем фазу. Для этого существует индикаторная отвертка.
  3. Затем, предварительно проверив провода, и выставив правильный режим, замеряем напряжение между фазой и нулевым контактом. Записываем результат и проводим измерение между фазой и проверяемым заземлением.
  4. Если результат п.3 одинаковый — значит у вас фальшивая «земля», провод объединен с нулевой шиной. Это крайне опасно, лучше вообще отсоединить такой провод и закрыть изолирующим колпачком.
  5. Если результат п.3 отличается на несколько вольт — проверьте несколько раз с минимально возможным интервалом измерения. При устойчивом отличии значения вы можете быть уверены в безопасности вашей электросети. У вас естественное заземление.

Как проверить заземление без индикаторной отвертки

Для этого необходимо с помощью тестера проверить напряжение между всеми парами контактов. Разумеется, в этом есть смысл при наличии подключенного провода к заземляющему контакту розетки.

Напряжение, близкое к значению 220 вольт будет только между парами: фаза-ноль, и фаза-«земля». Понятное дело, что фаза не может быть заведена на заземляющие контакты розетки, стало быть, она в одном из рабочих отверстий.

Как пользоваться тестером для проверки естественного заземления (при известном фазном контакте), вы уже знаете.

Особенности конструкции

Устройство амперметра зависит непосредственно от модели и производителя.

У классического амперметра имеется катушка, стрелка и градуированная шкала. Через катушку устройства проходит некоторая часть тока, который необходимо измерить. Это количество тока обратно пропорционально сопротивлению катушки. Она включена параллельно шунту (калиброванный) малого сопротивления.

Выпрямленный или прямой ток проходит через катушку. Это приводит к повороту стрелки аппарата. В связи с этим угол наклона стрелки становится пропорционален величине электрического тока, который надо измерить.

Благодаря катушке аппарата, электрический ток инициирует крутящий момент. Он получается в результате взаимодействия магнитного поля амперметра и магнитного поля стационарного магнита. Так как катушка и стрелка соединены, то катушка наклоняется в соответствии с углом и показывает значение электрического тока непосредственно на шкале.

Помимо классического типа устройства, существует также цифровой.

Электрическая схема цифрового амперметра:

Назначение и виды токоизмерительных клещей

Токоизмерительные клещи — пожалуй, единственный инструмент, позволяющий измерять ток в цепи, не разрывая ее. Различаются они по устройству, функциональности, максимальному измеряемому напряжению и типу измеряемого тока (постоянный либо переменный). Так какими же могут быть наши клещи и как они работают?

Одноручные токовые клещи

Начнем, пожалуй, с известных многим одноручных клещей — по сути это мультиметр (чаще всего) с дополнительным токовым датчиком. Пользоваться такими клещами довольно просто — для этого достаточно перевести переключатель в режим амперметра, развести клещи и свести их, заключив проводник внутри кольца. Сила тока в этом проводнике высветится на цифровом индикаторе.

Для измерения силы тока в труднодоступных местах на некоторых моделях предусмотрена кнопка фиксации результата.

Такие одноручные клещи рассчитаны на сравнительно низкое (до 1000 В) напряжение и, в силу своей компактности и удобства в использовании, наиболее подходят для применения в бытовых условиях.

Помимо одноручных выпускаются также двуручные, предназначенные для работы с напряжением от 2000 до 10000 В.

Двуручные токовые клещи

Работать одной рукой с такими клещами уже не получится. Столь неудобная в применении конструкция придумана неспроста. Дело в том, что по технике безопасности токоизмеряющие устройства, предназначенные для измерений свыше 1 кВ, должны иметь длину изоляторов не менее 38 см, а рукояток — не менее 13 см. К счастью, в быту такие напряжения практически не встречаются, поэтому работать с двуручными клещами придется немногим.

Как уже было сказано, помимо максимального измеряемого напряжения, измерительные клещи различаются также по типу измеряемого тока. Каковы различия между ними и как узнать, для тока какого типа предназначен тот или иной прибор? Это на самом деле несложно — по маркировке на корпусе (сейчас имеются ввиду клещи высокого или хотя бы среднего качества, а не собранные в подвале на коленках). Так, на корпусе клещей, предназначенных для измерения переменного тока, будет проставлена маркировка AC, для постоянного же — DC (чаще — ACDC). Различия же в принципе работы. Токоизмерительные клещи для измерения переменного тока работают по принципу одновиткового трансформатора.

Токоизмерительные клещи для измерения переменного тока работают по принципу одновиткового трансформатора

В целом конструкция токовых клещей переменного тока проста. Они состоят из разводного магнитопровода с намотанной на него вторичной обмоткой, подключенной к амперметру. В роли первичной обмотки выступает измеряемый проводник, протекающий по которому ток создает переменное магнитное поле, передающееся через магнитопровод вторичной обмотки и возбуждающее в ней электромагнитную индукцию. Возникший в результате электрический ток как раз и измеряется амперметром. Данная схема объясняет принцип работы токовых клещей переменного тока, но как же работают клещи для измерения тока постоянного? Ведь, как известно, трансформатор может работать только в цепях переменного тока. Сейчас мы получим ответ и на этот вопрос.

Для измерения постоянного тока используются уже другие принципы. Общеизвестно, что проводник, по которому протекает электрический ток, создает вокруг себя магнитное поле, и чем выше сила тока, тем более мощным это поле получается. Так вот, измерив это поле, можно получить представление о силе и даже направлении тока. Наличие и интенсивность магнитного поля определяется специальным датчиком (датчиком Холла). Клещи, оснащенные датчиком Холла, в отличие от трансформаторных, способны измерять как постоянный ток, так и переменный, а стоят незначительно дороже. Так что если придется выбирать, какие лучше приобрести, то рекомендуются именно они. Помимо своих непосредственных функций (измерение силы тока без разрыва цепи), многие современные клещи представляют собой полноценный тестер (мультиметр), позволяющий измерить напряжение, сопротивление, а также прозвонить участки цепи и проверить работоспособность некоторых радиоэлементов.

Но не стоит забывать также об аналоговых (стрелочных) клещах, которые, несмотря на все достоинства и удобства своих цифровых собратьев, все еще продолжают использоваться наряду с ними. Происходит это ввиду их менее высокой стоимости и способности работать без источника питания.

Теперь, зная, какими могут быть токоизмерительные клещи, можно перейти непосредственно к обзору. В сегодняшнем рейтинге будут участвовать 10 клещей различных производителей, разных ценовых категорий, но непременно имеющие высокие оценки пользователей. Позиционироваться клещи будут в порядке возрастания их качества.

Приборы магнитоэлектрической системы

Электроизмерительные приборы, основанные на прохождении тока, имеют много вариантов, которые называются «системами». Наиболее широко распространены приборы магнитоэлектрической системы. В таких приборах рамка с током помещается в магнитное поле постоянного магнита и удерживается в начальном положении пружинами. Если по рамке идет ток, то в результате возникающей силы Ампера рамка поворачивается до тех пор, пока возникшая сила не будет уравновешена силой пружины. С рамкой связана стрелка, и по углу поворота можно судить о проходящем через прибор токе.

Форма постоянного магнита сделана такой, чтобы магнитное поле, в котором поворачивается рамка, было бы почти однородным. Это позволяет добиться высокой линейности прибора.

Рис. 2. Магнитоэлектрическая система приборов.

Показатели точности

Одна из главных характеристик прибора для электроизмерений – класс точности. Их существует несколько. А определяется он по зависимости от допустимого предела погрешности, вызванной конструктивными особенностями отдельно взятого устройства.

Точность электроизмерительных приборов не может быть равна погрешности относительной или абсолютной. Последняя не является определителем точности, а относительная имеет зависимость от значения величины, подвергшейся изменению, то есть для различных участков шкалы будет иметь разные значения.

Поэтому для характеристики точности электроприбора применяется приведенная погрешность (ɣ). Определяется она отношением погрешности абсолютной конкретного прибора (∆x) к максимуму (или пределу) измеряемой величины (xпр). Полученная величина, выраженная в процентах, и будет классом точности конкретного прибора:

— ɣ = ∆x / xпр * 100%.

Любой электроизмерительный прибор на шкале обязательно имеет указание на класс точности. Согласно ГОСТу он может быть 0,05, 0,1, 0,2, 0,5, 1,0, 1,5, 2,5 и 4,0. На этом основании приборы можно классифицировать следующим образом:

— класс точности 0,05 и 0,1 — образцовые, использующиеся для поверки точных приборов (например, лабораторных);

— класс точности 0,2 и 0,5 – лабораторные, используются в лабораториях для производства измерений и поверки технических приборов;

— класс точности 1,0, 1,5, 2,5 и 4,0 – технические, применяются для технических измерений.

Слесарные инструменты

Достаточно часто можно встретить измерительные слесарные инструменты. Наиболее важная характеристика — точность измерений. За счет того, что слесарные инструменты механические, удается добиться точности до 0,005 или 0,1 мм.

Если погрешность измерений превысит допустимый порог, то произойдет нарушение технологии работы инструмента. Тогда потребуется переточка некачественной детали или замена целого узла в устройстве

Поэтому для слесаря важно при подгонке вала под втулку использовать не линейку, а инструменты с большей точностью измерений

Наиболее популярным инструментом с высокой точностью измерений является штангенциркуль. Но и он не сможет дать гарантии точного результата с первого измерения. Опытные рабочие делают несколько измерений, которые затем преобразуют в некоторое среднее значение.

Встречаются операции, требующие максимальной точности. Таких много в микромашинах и отдельных деталях устройств крупного размера. Тогда следует воспользоваться микрометром. С его помощью можно измерять с точностью до сотых долей миллиметров. Распространенное заблуждение о том, что он позволяет измерять микроны, является не совсем верным. Да и при проведении стандартных домашних работ такая точность может не пригодиться, поскольку достаточно действующих значений точности и погрешности.

Описание пульта измерения УКТ-03М:

Пульт измерения УКТ-03М конструктивно выполнен в виде самостоятельного прибора бесфутлярной конструкции в металлическом корпусе. На передней панели пульта размещаются кнопки выбора режимов измерения, включения питания пульта и табло ЖКИ индикатора. Кнопочные органы управления имеют следующие обозначения:

  • «50Гц » — режим измерения первой гармоники тока 50 Гц;
  • «150Гц» — режим измерения третьей гармоники тока 150 Гц;
  • «Max» — режим измерения максимального значения тока;
  • «ВКЛ» — включение питания пульта.

На передней панели пульта расположен также разъем для подключения соединительного кабеля.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: