Что такое реактивная мощность и что с ней делать.
Асинхронные двигатели, трансформаторы, газоразрядные и люминесцентные лампы, индукционные и дуговые печи и т.д. в силу своих физических свойств вместе с активной энергией потребляют из сети также и реактивную энергию, которая необходима для создания электромагнитного поля. В отличие от активной энергии, реактивная не преобразуется в другие виды – механическую или тепловую – и не выполняет полезной работы, однако вызывает потери при ее передаче. На Рис.1
изображены направления протекания тока при работе с реактивными нагрузками.
Рис.1. Полная мощность.
Наличие в сети реактивной мощности (Q, Вар) характеризуется коэффициентом мощности (PF, cos ф) и является соотношением активной (P, Вт) к полной (S, ВА). Ниже можно увидеть зависимость полной мощности от ее составляющих как на векторной диаграмме, так и на более житейском уровне – бокале пива, где пиво является активной составляющей, а пена – реактивной. Никто же не хочет иметь бокал только с пеной?
Рис.2. Треугольник мощностей. Расчет коэффициента мощности.
При низких значениях коэффициента мощности в сети будет возникать ряд нежелательных явлений, которые могут привести к существенному уменьшению срока службы оборудования. Рекомендуется иметь cos ф не менее 0,9 (например, в Чехии за cos ф менее 0,95 штрафуют). Для этого разработан ряд мероприятий по регулированию баланса реактивной мощности в сети – компенсация реактивной мощности.
Здесь находится первый резерв энергосбережения. Как оценить его потенциал?
Как известно, существует несколько видов компенсации РМ:
- единичная;
- групповая;
- общая, (централизованная).
Рассмотрим единичную компенсацию трех основных электроприемников РМ:
- силовые трансформаторы;
- сварочные аппараты;
- электродвигатели.
При единичной компенсации силового трансформатора компенсируется только реактивная мощность холостого хода трансформатора. Для трехфазных трансформаторов, в зависимости от их мощности, компенсируемая мощность составляет от 3-х до 10% от номинальной мощности трансформатора(см.талб.1).
Следовательно потенциал энергосбережения одного силового трансформатора при единичной компенсации в зависимости от его мощности составляет 3-10%.
При единичной компенсации сварочных аппаратов мощность конденсаторов составляет от 30 до 40% от его полной мощности.
Следовательно, потенциал энергосбережения сварочных аппаратов при единичной компенсации составляет 30-40%.
При единичной компенсации электродвигателей реактивная мощность конденсаторов должна соответствовать току холостого ходя электродвигателя (см.Табл.2)
При единичной компенсации электродвигателей мощность конденсаторов составляет от 30 до 40% от его полной мощности.
Следовательно, потенциал энергосбережения электродвигателей при единичной компенсации составляет 30-40%.
Таким образом, при единичной компенсации достигается максимальный эффект энергосбережения, поскольку компенсируется каждый повышенный источник потребления РМ в сети предприятия. При ограниченной мощности, передаваемой от ЭСО к потребителю эти меры дают совокупный эффект экономии электроэнергии в размере 10-20%.
Но экономически невыгодно ставить конденсаторную установку возле каждого электродвигателя, поэтому используют групповую компенсацию, которая компенсирует, например один отходящий фидер от трансформаторной подстанции. Эта мера позволяет компенсировать РМ, потребляемую группой потребителей. Хотя она не так эффективна, как единичная, но позволяет достаточно эффективно управлять потреблением РМ.
В этом случае экономия электроэнергии составляет 5-10%. Если рассматривать групповую компенсацию с точки зрения соотношения: инвестиции/экономия энергии, то это самый оптимальный способ сокращения затрат на потребление электроэнергии.
Представляет интерес оценка технико-экономической эффективности повышения к-та мощности Cos Fi у потребителей средствами компенсации РМ (при допущении, что потребляемая активная мощность является постоянной)
В Табл.3 приведены результаты снижения нагрузки (полной мощности), а также потерь активной мощности в реальной сети предприятия до и после компенсации:
Табл. 3 Снижение потерь активной мощности
Tg Fi (Cos Fi) до компенсации | Tg Fi (Cos Fi) после компенсации | Снижение полной мощности в % | Снижение потерь активной мощности в % |
---|---|---|---|
2,24 (0,4) | 0,5 (0,89) | 54,42 | 79,23 |
2,0 (0,46) | 0,5 (0,89) | 50,00 | 75,00 |
1,0 (0,71) | 0,5 (0,89) | 20,94 | 37,5 |
0,8 (0,77) | 0,5 (0,89) | 12,7 | 23,78 |
0,6 (0,86) | 0,5 (0,89) | 4,13 | 8,09 |
1,0 (0,71) | 0,4 (0,93) | 23,84 | 42,0 |
0,8 (0,77) | 0,4 (0,93) | 15,90 | 29,2 |
0,6 (0,86) | 0,4 (0,93) | 7,65 | 14,71 |
1,0 (0,71) | 0,35 (0,94) | 25,08 | 43,88 |
0,8 (0,77) | 0,35 (0,94) | 17,27 | 31,55 |
0,6 (0,86) | 0,35 (0,94) | 9,15 | 17,46 |
Эффективность применения конденсаторных установок
То, насколько выгодным окажется использование агрегата, зависит от правильного выбора способа подключения и дальнейшего обслуживания.
Выбор режима компенсации
Существуют следующие схемы компенсации:
- Централизованная на одной из сторон – там, где присутствует максимальное для подстанции напряжение (6 и более киловатт) или минимальное (400 ватт). Такой принцип подключения обеспечивает разгрузку от индуктивной мощности сетей с высоким напряжением, во втором варианте – еще и трансформаторных устройств, относящихся к подстанции (поэтому этот вариант значительно выгоднее).
- Групповая – агрегат ставят в цеховом помещении, подсоединяют к распределительной точке или шинке на 400 ватт. Тогда без разгрузки обходятся только сети, ведущие к единичным приемникам.
- Индивидуальная – агрегат соединяют напрямую с оборудованием, нуждающимся в разгрузке от реактивной мощности. КПД разгрузки максимальный.
Режимы компенсации
Выбор типа компенсации
Различные типы компенсации реактивной нагрузки отличаются схемами подключения и особенностями управления.
Нерегулируемая компенсация
Здесь к требующему разгрузки оборудованию напрямую или к питающей его шине подсоединяется батарея конденсаторов со стабильной емкостью. Управление реализуется посредством автоматического выключателя или контакторного механизма.
Автоматическая компенсация
Подразумевает поддержание мощностного коэффициента на определенном уровне через контроль продуцируемой индуктивной энергии сообразно с колебаниями нагрузки. Используются специальные батареи и электронное управление.
Динамическая компенсация
Применяется для работы с часто и резко меняющимися нагрузками. Помимо батареи конденсаторов, задействуется электронное устройство, нивелирующее реактивные потери.
Учет условий эксплуатации и содержания гармоник в сети
Установку нужно приобретать, принимая во внимание будущие условия обслуживания в течение всего периода использования
Учет условий эксплуатации
При планировании использования агрегата нужно учитывать:
- наибольшее годовое число коммутаций;
- температуру воздуха;
- возможные скачки электротока, обусловленные изменениями в кривой напряжения.
Учет воздействия гармоник
Если в сети нет нелинейных нагрузок, используются типовые конденсаторные элементы, при наличии слабовыраженных – детали с большим номиналом. Если нагрузок такого типа много, в ход идут высокоемкие конденсаторы с катушками, предотвращающими резонанс.
Потери в электрических сетях
К электрическим сетям подключается как активная, так и реактивная нагрузка, которую создают потребители с резкопеременной нагрузкой: например, асинхронные двигатели, сварочные трансформаторы, компрессоры, станки, насосы, электропечи, электролизные печи, люминесцентные лампы.
Переменный ток в устройстве с индуктивными свойствами отстаёт по фазе от напряжения. Это означает, что в любом периоде переменного напряжения есть участки, когда мгновенные значения напряжения и тока имеют разный знак. В эти моменты индуктивная нагрузка возвращает в питающую сеть энергию, запасённую в индуктивности. При этом часть подводимой к устройству энергии не используется в нём. Эту часть принято называть реактивной энергией. Таким образом в сети образуются потери мощности. И, кроме того, реактивная энергия расходуется на нагрев проводов, создавая также и тепловые потери.
Для больших предприятий такие потери могут быть очень чувствительными. Кроме того, генераторы и линии электропередач в этом случае должны быть рассчитаны не только на полезную нагрузку, но, сверх того, и на генерацию и передачу этой бесполезной реактивной энергии.
Как установка помогает экономить деньги?
Установка КРМ, используется в промышленности, при эксплуатации в тандеме с электродвигателями, которые и являются основными потребителями реактивной мощности. Если «полезная» энергия тратиться на работу мотора, то реактивная приводит к снижению его эксплуатационных преимуществ. например, увеличивается риск преждевременной поломки, чаще нужны остановки оборудования для охлаждения, что отражается на производительности предприятия.
Без УКРМ пользователь платит и за бесполезную энергию
Реактивная доля электричества «гоняется» по проводам, не принося пользы, а из-за ее избытка возникает перегрев, обеспечивается дополнительная нагрузка на сеть и оборудование. Итог: у пользователя двойная потеря – переплата за нецелевую электроэнергию и повышенный риск поломок электрооснащения. А потери и риски сводятся к минимуму без значительных трат – покупкой и установкой УКРМ, И чем больше мощность потребляемой энергии, тем больше выгод от использования компенсатора.
Разбор технических аспектов решения
Снижение загруженности электросети
Во-первых, в результате снижения реактивной мощности и уменьшения перетоков энергии между сетью и конечным оборудованием мы получим уменьшение падения напряжения во внутренней электросети
Это важно если на предприятии есть протяжённые кабельные трассы. Как следствие, снизятся суточные колебания напряжения при минимальном и пиковом потреблении
Однако нужно учесть, что превышение номинала напряжения вызовет проблемы в оборудовании, такие, как ускоренное старение осветительных приборов, а также повышение энергопотребления, но этот вопрос можно решить регулировкой прямо на подстанции.
В целом снижение диапазона колебаний напряжения в течение суток положительно скажется на работе оборудования с точки зрения энергопотребления и ресурса.
Влияние гармоник на работу УКРМ
Во-вторых, подключив классическую установку компенсации реактивной мощности можно столкнуться с проблемой гармоник. Современное силовое и бытовое оборудование в целях повышения энергоэффективности использует импульсные блоки питания. В качестве контрпримера можно привести лампы накаливания и обычные электрические обогреватели, которые, напротив, нельзя назвать энергоэффективными. Импульсные блоки питания потребляют ток из сети не линейно, а импульсно, и, при этом, генерируют помехи обратно в сеть. Форма сигнала отличается от гармонической синусоиды с частотой 50Гц и содержит компоненты с частотой кратной 50 Гц: 150 Гц, 250 Гц, 350 Гц и выше.
Для рабочего элемента классической УКРМ – конденсатора – это проблема, так как с ростом частоты снижается полное сопротивление и повышается его электрическая мощность. Ток на частоте, выше чем 50 Гц преодолевает меньшее сопротивление и быстрее нагревает конденсатор. В свою очередь это увеличивает уровень высоких гармоник, повышает напряжение в сети, повышает энергопотребление и потери, снижает эффективность работы всей системы электроснабжения. Тут уже стоит говорить не столько об энергоэффективности, а о надежности и безопасности работы электроустановок.
Для устранения этой проблемы современные компенсаторные установки (УКРМ) содержат фильтр низкой частоты, подавляющий гармоники.
Потребители реактивной мощности
Потребителями реактивной мощности, необходимой для создания магнитных полей, являются как отдельные звенья электропередачи(трансформаторы, линии, реакторы), так и такие электроприёмники, преобразующие электроэнергию в другой вид энергии которые по принципу своего действия используют магнитное поле(асинхронные двигатели, индукционные печи и т.п.). До 80-85% всей реактивной мощности, связанной с образованием магнитных полей, потребляют асинхронные двигатели и трансформаторы. Относительно небольшая часть в общем балансе реактивной мощности приходится на долю прочих её потребителей, например на индукционные печи, сварочные трансформаторы, преобразовательные установки, люминесцентное освещение и т.п.
Трансформатор как потребитель реактивной мощности. Трансформатор является одним из основных звеньев в передаче электроэнергии от электростанции до потребителя. В зависимости от расстояния между электростанцией и потребителем и от схемы передачи электроэнергии число ступеней трансформации лежит в пределах от двух до шести. Поэтому установленная трансформаторная мощность обычно в несколько раз превышает суммарную мощность генераторов энергосистемы. Каждый трансформатор сам является потребителем реактивной мощности. Реактивная мощность необходима для создания переменного магнитного потока, при помощи которого энергия из одной обмотки трансформатора передаётся в другую.
Асинхронный двигатель как потребитель реактивной мощности. Асинхронные двигатели наряду с активной мощностью потребляют до 60-65% всей реактивной мощности нагрузок энергосистемы. По принципу действия асинхронный двигатель подобен трансформатору. Как и в трансформаторе, энергия первичной обмотки двигателя– статора передаётся во вторичную– ротор посредствам магнитного поля.
Индукционные печи как потребители реактивной мощности. К крупным электроприемникам, требующим для своего действия большой реактивной мощности, прежде всего, относятся индукционные печи промышленной частоты для плавки металлов. По существу эти печи представляют собой мощные, но не совершенные с точки зрения трансформаторостроения трансформаторы, вторичной обмоткой которых является металл (садка), расплавляемый индуктированными в нём токами.
Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей, также относятся к крупным потребителям реактивной мощности. Выпрямительные установки нашли широкое применение в промышленности и на транспорте. Так, установки большей мощности с ртутными преобразователями используются для питания электроизоляционных ванн, например при производстве алюминия, каустической соды и др. Железнодорожный транспорт в нашей стране почти полностью электрифицирован, причём значительная часть железных дорог использует постоянный ток преобразовательных установок.
Расчет мощности УКРМ
Коэффициент реактивной мощности на стороне ВН определяется следующим образом:
(2) |
Потребляемая активная мощность на шинах ВН складывается из активной мощности нагрузки и активных потерь мощности в трансформаторе:
(3) |
Потребляемая реактивная мощность на шинах ВН складывается из реактивной мощности нагрузки и реактивных потерь мощности в трансформаторе за вычетом расчетной мощности компенсирующего устройства:
(4) |
Выразим реактивную мощность нагрузки через известные величины (см. рис.1):
(5) |
(6) |
Потери активной и реактивной мощности в трансформаторе зависят от передаваемой мощности и рассчитываются по формулам (7) и (8):
(7) |
(8) |
где ΔPxx – потери активной мощности холостого хода трансформатора (паспортные данные), кВт;
ΔQμ – потери реактивной мощности холостого хода трансформатора, квар;
ΔPнагр. (ΔQнагр.) – нагрузочные активные (реактивные) потери в трансформаторе, кВт (квар);
ΔPк – потери активной мощности короткого замыкания трансформатора (паспортные данные), кВт;
SНН – потребляемая полная мощность на шинах НН, кВ*А:
(9) |
SТ – номинальная полная мощность трансформатора, кВ*А;
Iхх – ток холостого хода трансформатора, %;
Uк – напряжение короткого замыкания трансформатора, %.
Следует заметить, что расчеты по формулам (7) – (9) носят приближённый характер, так как на этом этапе нельзя определить значение QНН из-за того, что неизвестно расчетное значение реактивной мощности компенсирующего устройства QКУ.р, см. формулу (4). В этом случае можно:
- принять QКУ.р = 0 и выполнить расчет без компенсирующего устройства;
- принять QКУ.р = Qр.нагр. и выполнить расчет при полной компенсации реактивной мощности на шинах НН (этот вариант рекомендуется использовать из-за меньшей расчетной погрешности первой итерации расчёта потерь в трансформаторе).
Подставляя в (2) выражения (3), (4) и (5), получим выражение для расчета коэффициента реактивной мощности на шинах ВН, где вторым неизвестным является значение реактивной мощности компенсирующего устройства QКУ:
(10) |
Так как максимальное значение коэффициента реактивной мощности на шинах ВН нормировано, значит должно выполняться следующее условие:
(11) |
Выполнение условия (11) необходимо по нормативным требованиям, но недостаточно, так как коэффициент реактивной мощности может быть отрицательной величиной. Действительно, если в (10) QКУ.р будет достаточно большой величиной, чтобы числитель дроби стал отрицательным, то получим перекомпенсацию реактивной мощности QВН< 0 (генерацию в сеть высокого напряжения) и tgϕВН < 0. Перекомпенсация реактивной мощности также нежелательна, как и недокомпенсация, так как в сети опять появляются дополнительные потери мощности и энергии в электрической сети и возрастают капитальные затраты на её строительство. Таким образом, наряду с максимальным значением коэффициента реактивной мощности должно задаваться его минимальное значение tgϕmin. В отсутствие нормативных требований к величине tgϕmin его значение может быть определено из следующих соображений:
- если генерация реактивной мощности в сеть ВН недопустима, то tgϕmin = 0;
- если нельзя превышать заданный уровень потерь мощности и энергии в сети, а также обеспечить работу оборудования в номинальных режимах (перекомпенсация допустима), то tgϕmin = -tgϕmax.
Необходимое и достаточное условие для выбора УКРМ выглядит следующим образом:
(12) |
Подставив (10) в (12), получим:
(13) |
Рассмотрим отдельно левую и правую части выражения (13).
Очевидно, что tgϕmax будет при наименьшем расчетном значении реактивной мощности компенсирующего устройства QКУ.р.min. Заменим в (13) QКУ.р на QКУ.р.min и подставим знак равенства между правой и средней частью выражения:
(14) |
Выразив в (14) QКУ.р.min и выполнив необходимые преобразования (15), получим выражение для расчета минимально допустимой мощности компенсирующего устройства (16):
(15) |
(16) |
Аналогично для левой части (13), tgϕmin будет при наибольшем расчетном значении реактивной мощности компенсирующего устройства QКУ.р.max. Соответственно, выражение для расчета максимально допустимой мощности КУ:
(17) |
Номинальная мощность установки компенсации реактивной мощности выбирается из условия:
(18) |
где QКУ.р.max и QКУ.р.min – граничные значения реактивной мощности УКРМ, определенные для расчётных значений Pр.нагр. и cosϕр.нагр..
Подставив (16) и (17) в (18), получаем окончательные выражения для выбора номинальной реактивной мощности УКРМ:
(19) |
(20) |
Выбрав УКРМ, проводим вторую итерацию расчетов по формулам (7) – (9), подставляя в формулы вместо QКУ.р значение QКУ.ном, и уточняем величину QКУ.ном по выражениям (19) и (20).
Компенсация реактивной мощности (КРМ)
Следует понимать, что реактивная мощность бывает двух характеров – индуктивная и емкостная. Нас интересует компенсация только первого типа, т.к. второй встречается редко. В нашем случае – сетях с индуктивной нагрузкой – для увеличения cos ф требуется устанавливать компенсационные конденсаторы. Но как это сделать?
Выбор способа компенсации предполагает определение места установки конденсаторов (зачастую в составе конденсаторной установки (далее КУ)). Существует три основных варианта:
Индивидуальная компенсация
Размещение конденсаторов у устройств с низким cos ф и включение одновременно с последними.
Групповая компенсация
Размещение конденсаторов у группы устройств (например, пожарных насосов).
Централизованная компенсация
Предусматривает установку КУ на главном распределительном щите. Если предыдущие варианты могли быть как регулируемыми, так и нет, то этот, как правило, регулируемый.
Рис.3. Способы компенсации.
При правильном подборе КУ мероприятия по компенсации реактивной мощности позволяют:
-
существенно уменьшить нагрузку на трансформаторах, а следовательно уменьшить их нагрев и увеличить срок службы
-
при включении КУ в расчет при проектировании новых объектов, существенно уменьшить сечение проводников
-
при включении КУ в уже существующие сети, разгрузить их, повышая пропускную способность без реконструкции
-
снизить расходы на электроэнергию за счет снижения потери в проводниках
-
повысить стабильность напряжения (все) и качество электроэнергии (при использовании ФКУ)
Где мы можем сэкономить видно невооруженным глазом, но для начала придется и потратиться.
Во-первых, необходимо заказать проект, который следует доверить проверенной организации. Которая в свою очередь проведет ряд измерений или сделает расчеты для новых объектов и исходя из них даст рекомендации по способу компенсации, типу КУ и их параметрам.
Во-вторых, следует выбрать организацию-сборщика, которая соберет, установит и настроит наши КУ.
Защита конденсаторных установок
Чтобы обеспечить безопасность установки, применяются механизмы:
- датчик температуры, инициирующий подогрев при ее понижении и охлаждение при излишнем нагреве батареи конденсаторов;
- защита от инцидентов короткого замыкания, сильных скачков тока и напряжения;
- блокиратор попыток прикосновения к токоведущим деталям;
- контактный переключатель, отключающий агрегат при отпирании двери с работающим оборудованием.
Советуем изучить — Как устроена и работает электрическая изгородь (электрическое оргаждение)
Монтаж установки с конденсаторной батареей позволит разгрузить электродвигатели, генераторы и другое оборудование, несущее реактивную нагрузку. При подготовке к приобретению нужно рассчитать, куда целесообразнее всего будет подключить агрегат.
Коррекция коэффициента мощности: технические аспекты
Недавнее упразднение государственного регулирования рынка электроснабжения и появление многочисленных электроснабжающих компаний привели к появлению множества способов тарификации, во многих из которых коэффициент мощности не тарифицируется явно.
Однако конечная стоимость электроэнергии стабильно растет, и оптимизация коэффициента мощности становится все более и более оправданной.
В большинстве случаев установка оборудования для улучшения коэффициента мощности окупается за несколько месяцев.
Установка конденсаторной батареи дает следующие преимущества:
- уменьшение потерь в сети и трансформаторах за счет уменьшения протекающего тока;
- уменьшение падения напряжения в линиях;
- оптимизация типоразмеров оборудования распредсистемы.
Ток I, текущий в системе, определяется формулой:
где
P – активная мощность;
V – номинальное напряжение.
По мере увеличения cos ? ток, необходимый для получения одной и той же активной мощности, снижается. Как следствие, снижаются потери в сети и необходимая мощность трансформаторов. Как следствие, появляется возможность сэкономить на оборудовании за счет снижения необходимой мощности и типоразмеров.
Правильный выбор мощностей и типоразмеров оказывает влияние на падение напряжения в линиях. Это легко понять из следующей формулы:
где
P – активная мощность в сети (кВт);
Q – реактивная мощность в сети (квар);
R – активное сопротивление кабеля, а X – его индуктивное сопротивление (R
Установка конденсаторной батареи приводит к снижению Q, благодаря чему уменьшается падение напряжения. Если в результате неправильного расчета емкости конденсаторной батареи «реактивный» компонент уравнения станет отрицательным, вместо снижения падения напряжения мы получим повышение напряжение на конце линии (эффект Феранти), что может быть опасным для подключенных к ней нагрузок.
Ниже приведен пример, иллюстрирующий изложенные выше положения:
- Потери активной мощности (кВт) для медного кабеля 3х25 мм2, питающего нагрузку 40 кВт/400 В, в функции cos ?;
- Выдаваемая трансформатором мощностью 100 кВА активная мощность, в функции cos ?.
cos φ | 1) | 2) |
---|---|---|
0,5 | 3,2 | 50 |
0,6 | 2,3 | 60 |
0,7 | 1,6 | 70 |
0,8 | 1,3 | 80 |
0,9 | 1 | 90 |
1 | 100 |
Нетрудно видеть, что с ростом коэффициента мощности снижаются потери в сети и растет активная мощность, которую можно снять с трансформатора при одной и той же полной мощности (кВА).
Это позволяет оптимизировать параметры оборудования распредсистемы.