Что такое фантомный двигатель

Рекомендации

Использование в бытовых условиях трёхфазных двигателей постоянного тока не вызывает никаких затруднений тогда, когда управление ими осуществляется посредством специальных драйверов, например:

одного реверсируемого двигателя постоянного тока;

Вооружившись технологией и желанием собрать устройство своими руками можно смело браться за дело. При работе драйверов требуется учитывать конструктивные особенности и некоторые рекомендации по подключению:

  • проверка уровня заряда аккумуляторов, напряжение должно быть не менее 12 В;
  • не допускать высоких токовых значений на выходе моста, чтобы не сгорели транзисторы;
  • если продолжительное включение драйвера приводит к перегреву корпуса транзистора, то понадобится установка радиатора решетчатого типа на сток транзистора;
  • двигатель с источником питания по шине +12 В выполнять многожильным медным кабелем, рассчитанным на большой ток.

Работа: не совсем то, о чем вы подумали

Итак, работа ​\( W \)​ — это произведение прилагаемой силы ​\( \mathbf{F} \)​ и перемещения \( \mathbf{s} \), выполняемого этой силой. Точнее говоря речь идет о проекции прилагаемой силы на направление перемещения, т.е. ​\( W=Fs\cos\theta \)​, где ​\( \theta \)​ — угол между векторами силы \( \mathbf{F} \) и перемещения \( \mathbf{s} \). С точки зрения физика, работа равна произведению компоненты силы в направлении перемещения и величины перемещения.

Прежде чем переходить к подробному рассмотрению особенностей работы, познакомимся с единицами измерения работы в разных системах единиц измерения.

Узлы электродвигателя

Вал ротора имеет цилиндрическую форму и производится из стали. Металлические стержни, замыкающиеся с двух сторон, дают ему название – короткозамкнутый ротор.  Указанная конструкция обеспечивает высокую степень защиты, поскольку не возникает необходимость частого технического обслуживания устройства, нет нужды в замене подающих ток щеток и т.д.

Если присмотреться к фото ротора электродвигателя, то он напоминает клетку для белки, откуда и название «беличья клетка». Конструкция представляет собой собранные стальные листы небольшой толщины. В специальные пазы помещается обмотка, которая может быть нескольких типов.

Определяющее значение имеет ответ на вопрос о том, каков двигатель – фазного или короткозамкнутого типа. Большее распространение имеют последние конструкционные новинки. Стержни из меди, имеющие большую толщину, помещаются в пазы без дополнительной изоляции. Медные кольца позволяют соединить концы обмотки.

Бывают ситуации, когда «беличья клетка» получает альтернативу в виде литья. Таково в целом устройство ротора электродвигателя короткозамкнутого типа.

К основным причинам поломки двигателя асинхронного типа относят износ подшипников, в которых осуществляется вращение вала. Центровка или балансировка ротора электродвигателя осуществляется за счет установленных в статоре крышек. Двигатели также имеют подшипники для облегчения вращательных движений.

Кроме того устройство подразумевает установку крыльчатки, обеспечивающей должное охлаждение двигателя. Статор имеет специальные ребра, улучшающие отдачу тепла от нагреваемого устройства. Именно так обеспечивается работа моторов переменного тока в нормальных тепловых условиях.

Устройство типичного пылесоса

Пылесос начинается с двигателя не меньше чем на 6000 оборотов. Это странно звучит, но подобный снимете с любой центрифужной соковыжималки. Возникает сложность: ряд моторов не предназначены для долговременной работы. Двигатель (коллекторный) берем из приборов, способных на долговременную работу либо оснащенных защитой от перегрева.

Если замены двигателю от соковыжималки не имеется, то необходимо оснастить его термопредохранителем на 126 oС. Отметим, что сечение меди выбирается, исходя из мощности рассеивания, и не факт, что указанная температура подойдет для первого попавшегося двигателя. Но район 130 oС является средним диапазоном значений, на него рассчитывается большинство трансформаторов и обмоток электрических моторов. Полагаем, что принцип действия пылесоса реализуют:

  1. Двигатель вытяжки с центробежным вентилятором. Осевой не годится, подобный моторчик стоит в дешевых моделях и не способен на многое.
  2. Двигатель старого пылесоса.
  3. Двигатель стиральной машины.
  4. Двигатель компрессора холодильника.

Внутри поршневого компрессора стоит электрический двигатель, приводящий в движение поршневую группу. Если разрезать корпус и достать мотор, то послужит различным целям. Это мощный и тихий двигатель с малой производительностью. Известно, что поршневой компрессор способен развить давление от 20 атмосфер и выше. Нам же потребуется вращение центробежного вентилятора, для создания тяги пылесоса. Плюс в том, что холодильники чаще комплектуются пускозащитными реле, запускающим мотор (асинхронный) и защищающим от сгорания. Из приведенных источников это единственные асинхронные двигатели, работающие тише коллекторных. Сравните холодильник и пылесос, где установлен последний тип. Поймете разницу.

Важно! Асинхронные двигатели годятся для решения малых задач. Убрать комнату с ним не получится

Мощности не хватит.

Причина редкого применения асинхронных двигателей в количестве возникающих трудностей. К примеру, коллекторный двигатель пылесоса работает от розетки 230 В, если не нужно регулировать скорость. Пара защитных элементов, и квартира чиста. Но у асинхронного двигателя сложно регулировать скорость оборотов. Не задумывались, почему новые холодильники выходят с линейными компрессорами. Там стоит катушка, чей сердечник совершает поступательные движения быстрее или медленнее, но асинхронный двигатель не ставят, так как возникает ряд трудностей. Ну, а если усекать амплитуду, то выйдет не экономично.

В стиральных машинах стоит коллекторный или синхронный двигатель, его скорость работы регулируется через тиристорный ключ отсечкой части периода импульса питающего напряжения либо инвертором. Если подключить мотор напрямую к розетке, обороты станут максимальными. Скорость ниже 6000 (до 1000), как правило, если, конечно, не стоит ременной редуктор. В данном случае режим отжима может дотянуть.

Электрический парус

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, проект заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

Закон сохранения энергии в тепловых процессах

Чтобы закон сохранения энергии для тепловых процессов был сформулирован, было сделано два важных шага. Сначала французский математик и физик Жан Батист Фурье установил один из основных законов теплопроводности. А потом Сади Карно определил, что тепловую энергию можно превратить в механическую.

Вот что сформулировал Фурье:

При переходе теплоты от более горячего тела к более холодному температуры тел постепенно выравниваются и становятся едиными для обоих тел — наступает состояние термодинамического равновесия.

Таким образом, первым важным открытием было открытие того факта, что все протекающие без участия внешних сил тепловые процессы необратимы.

Дальше Карно установил, что тепловую энергию, которой обладает на­гретое тело, непосредственно невозможно превратить в механиче­скую энергию для производства работы. Это можно сделать, только если часть тепловой энергии тела с большей температурой передать другому телу с меньшей температурой и, следовательно, нагреть его до более высокой температуры.

Закон сохранения энергии в тепловых процессах

При теплообмене двух или нескольких тел абсолютное количество теплоты, которое отдано более нагретым телом, равно количеству теплоты, которое получено менее нагретым телом.

Математически его можно описать так:

Уравнение теплового баланса

Qотд = Qпол

Qотд — отданное системой количество теплоты

Qпол — полученное системой количество теплоты

Данное равенство называется уравнением теплового баланса. В реальных опытах обычно получается, что отданное более нагретым телом количество теплоты больше количества теплоты, полученного менее нагретым телом:

Это объясняется тем, что некоторое количество теплоты при теплообмене передаётся окружающему воздуху, а ещё часть — сосуду, в котором происходит теплообмен.

Чтобы разобраться в задачках, читайте нашу статью про агрегатные состояния вещества.

Задачка раз

Сколько граммов спирта нужно сжечь в спиртовке, чтобы нагреть на ней воду массой 580 г на 80 °С, если учесть, что на нагревание пошло 20% затраченной энергии.

Удельная теплота сгорания спирта 2,9 · 107 Дж/кг, удельная теплоёмкость воды 4200 Дж/(кг · °С).

Решение:

При нагревании тело получает количество теплоты

Q = cmΔt ,

где c — удельная теплоемкость вещества

При сгорании тела выделяется энергия

Qсгор = q · mсгор,

где q — удельная теплота сгорания топлива

По условию задачи нам известно, что на нагревание воды пошло 20% энергии, полученной при горении спирта.

То есть:

Ответ: масса сгоревшего топлива равна 33,6 г.

Задачка два

Какое минимальное количество теплоты необходимо для превращения в воду 500 г льда, взятого при температуре −10 °С? Потерями энергии на нагревание окружающего воздуха пренебречь. Удельная теплоемкость льда равна 2100 Дж/кг · ℃, удельная теплота плавления льда равна 3,3 · 105 Дж/кг.

Решение:

Для нагревания льда до температуры плавления необходимо:

Qнагрев = cmΔt

Qнагрев = 2100 · 0,5 · (10 − 0) = 10 500 Дж

Для превращения льда в воду:

Qпл = λm

Qпл = 3,3 · 105 · 0,5 = 165 000 Дж

Таким образом, для превращения необходимо затратить:

Q = Qнагрев + Qпл = 10 500 + 165 000 = 175 500 Дж = 175,5 кДж

Ответ: чтобы превратить 0,5 кг льда в воду при заданных условиях необходимо 175,5 кДж тепла.

Самые распространенные виды двигателей

  1. Оппозитный двигатель. В нем поршни двигаются по обеим сторонам коленчатого вала в горизонтальном направлении вправо и влево. Автомобили с таким двигателем движутся более плавно. Создаваемые поршнями крутящие моменты компенсируют друг друга, значительно уменьшая вибрацию.
  2. Рядный двигатель. Все его цилиндры расположены в одной плоскости рядом друг с другом. Конструкция довольна проста. Такие двигатели отличаются следующими показателями: имеют высокую стабильность, высокую характеристику крутящего момента на низких оборотах, меньший размер и низкий расход топлива.
  3. V-образный двигатель. У него все цилиндры разделяются на две группы друг напротив друга. Мотор образует плоскость под углом. V-образные двигатели отличаются небольшими размерами по длине и высоте.
  4. Квазитурбинный двигатель. Является модифицированным двигателем, основанным на роторном силовом агрегате. Он использует цепной ротор, состоящий из четырех частей. Такой двигатель обладает небольшим размером, высоким крутящим моментом и высокой мощностью. Но они не используются ни на одном автомобиле в настоящий момент.
  5. Роторный двигатель. Его внутреннее пространство разделено на три рабочие камеры. Во время работы постоянно изменяется объем рабочих камер. Также роторный двигатель имеет все те же четыре такта: впуск, сжатие, сгорание и выпуск. Стоимость, ремонт и обслуживание такого агрегата существенно отличаются в большую сторону. По своим характеристикам двигатель не показывает особых преимуществ перед обычными.
  6. Green Steam двигатель — эффективный, простой и экономичный. Его мотор преобразовывает избыточное тепло в водяной пар, приводящий в движение силовой агрегат. Такой мотор используют для воздушных насосов, водяных насосов, генераторов, кондиционеров.
  7. Двигатель Стирлинга. Это двигатель внешнего сгорания. Его периодичный нагрев и охлаждение изменяют давление, вследствие чего образуется энергия для работы. Он отлично подходит для преобразования тепла в электроэнергию.
  8. Радиальный двигатель или звездообразный. Это поршневой двигатель, в котором вокруг коленчатого вала расположены цилиндры. Преимущественно используется в самолетах.

Варианты реализации квантового компьютера

На сегодняшний день есть очень много реализаций квантовых вычислений, но самые перспективные на мой взгляд следующие подходы:

  • Спины в твердом теле
  • Сверхпроводники
  • Фотоника
  • Одиночные атомы (холодные ионы или ЯМР)

Спины в твердом теле

Исторически, кубиты рассматривали как спины, поэтому идея о том, чтобы взять множество спинов в каком-нибудь твёрдом теле (чтобы они никуда не убегали) — естественная для реализации квантовых вычислений.

Такой подход теоретически масштабируем, но, конечно, тут есть свои сложности, такие как сам процесс изготовления устройств и управление квантовым состоянием. Зато времена жизни кубитов получаются впечатляюще большие.

Сверхпроводники

Пожалуй это самая многообещающая реализация квантовых вычислений, и так считаю не только я: IBM, Google, Intel, Rigetti, D-Wave, да практически все крупные компании, которые занимаются железом квантовых вычислений занимаются непосредственно «железом», ведь в такой реализации квантового компьютера кубиты — это сверхпроводящие металлические структуры на кремниевом чипе, почти как транзисторы в обычном процессоре.

Охлаждают кубиты до низких температур для того, чтобы они перешли в квантовые состояние и чтобы устранить тепловые шумы. Эта технология масштабируемая, то есть ничто не мешает нам сделать процессор, размером несколько сантиметров, на котором будут миллионы кубитов.

Фотоника

Фотоника чаще всего используется в криптографии, ведь фотоны (частицы света) квантовые сами по себе и не нуждаются в холоде: для криптографических протоколов используют лазеры и оптоволокно.

Базу для квантовые вычисления можно делать таким же образом, а можно реализовать на чипах, по которым передаются фотоны. Эта технология так же масштабируема, но инженерных сложностей тут, кажется, больше, чем у сверхпроводников.

Одиночные атомы (холодные ионы или ЯМР)

Представляете, люди научились ловить отдельные атомы с помощью оптической ловушки и охлаждать с помощью лазера. Это достаточно дёшево и просто.

Первый компьютер из 50 кубитов был собран именно из холодных атомов в Гарварде. Однако, размер ловушки ограничен, так что масштабировать эту технологию крайне трудно. Тоже самое касается и ЯМР: вы берёте сложную молекулу и называется каждый атом в ней кубитом. Размер молекул ограничен, что усложняет создание большого компьютера, более того, есть проблемы со считыванием состояния кубита.

Газораспределительный механизм

В задачу этого механизма входит своевременная подача горючей смеси или ее составляющих в цилиндр, а также отвод продуктов горения.

У двухтактных двигателей как такового механизма нет. У него подача смеси и отвод продуктов горения производится технологическими окнами, которые проделаны в стенках гильзы. Таких окон три – впускное, перепускное и выпускное.

Поршень, двигаясь производит открытие-закрытие того или иного окна, этим и выполняется наполнение гильзы топливом и отвод отработанных газов. Использование такого газораспределения не требует дополнительных узлов, поэтому ГБЦ у такого двигателя простая и в ее задачу входит только обеспечение герметичности цилиндра.

У 4-тактного двигателя механизм газораспределения имеется. Топливо у такого двигателя подается через специальные отверстия в головке. Эти отверстия закрыты клапанами. При надобности подачи топлива или отвода газов из цилиндра производится открывание соответствующего клапана. Открытие клапанов обеспечивает распределительный вал, который своими кулачками в нужный момент надавливает на необходимый клапан и тот открывает отверстие. Привод распредвала осуществляется от коленвала.

ГРМ с ременным и цепным приводом

Компоновка газораспределительного механизма может отличаться. Выпускаются двигатели с нижним расположением распредвала (он находится в блоке цилиндров) и верхним расположением клапанов (в ГБЦ). Передача усилия от вала к клапанам производится посредством штанг и коромысел.

Более распространенными являются моторы, у которых и вал и клапана имеют верхнее расположение. При такой компоновке вал тоже размещен в ГБЦ и действует он на клапана напрямую, без промежуточных элементов.

КВАНТОВЫЙ ДВИГАТЕЛЬ ВЛАДИМИРА ЛЕОНОВА ЧАСТЬ 1

Максимальная скорость космического аппарата с квантовым двигателем Владимира Леонова может достигать 1000 км/с против 18 км/с у ракеты. Полет до Марса на космическом корабле с квантовым двигателем в режиме ускорения ±1g составит всего 42 часа, причем с полной компенсацией невесомости, до Луны — 3,6 часа. Квантовый двигатель Владимира Леонова дает возможность работы в космосе, в атмосфере, на земле и под водой.

Сегодня реактивные двигатели (РД) космических аппаратов достигли своего технического предела. За 50 лет временной импульс их работы увеличен с 220 секунд (Фау–2) всего в 2 раза до 450 секунд (Протон). Ракета с РД массой в 100 тонн в лучшем случае несет 5 тонн (5%) полезного груза.

В июне 2014 года были успешно проведены стендовые испытания прототипа квантового двигателя (КД). При массе аппарата в 54 кг импульс вертикальной тяги составил 500–700 кгс (кг силы) при потребляемой электрической мощности 1 кВт. Аппарат (квантовый двигатель Владимира Леонова) взлетает вертикально по направляющим с ускорением в 10–12g.

Этими испытаниями убедительно доказано, что гравитация покорена экспериментально, подтверждая теорию Суперобъединения, созданную В.С. Леоновым.

В основе теории Суперобъединения лежит открытие В.С. Леоновым в 1996 году кванта пространства–времени (квантона) и энергии сверхсильного электромагнитного взаимодействия (СЭВ).

Квантон – это нулевой недостающий элемент в таблице Менделеева (атом вакуума Ньютоний), без участия которого не могут формироваться остальные элементы.

Извлечение энергии сверхсильного электромагнитного взаимодействия (СЭВ) в квантовом двигателе происходит в результате создания неуравновешенной силы (момента) при деформации квантованного пространства–времени градиентными электромагнитными системами (активаторами). ПРОДОЛЖЕНИЕ СЛЕДУЕТ.

Что такое квантовый компьютер

Привычные нам компьютеры хранят информацию в двоичном коде, а наименьшей единицей хранения информации является бит. Он может принимать строго одно из двух значений: 0 или 1. При решении задачи ПК проводит множество последовательных операций с битами, и в случае со сложными задачами этот процесс занимает много времени.

Квантовые компьютеры работают принципиально иначе, чем классические. Для решения любых алгоритмических задач они используют квантовые биты — кубиты.

Кубиты могут существовать одновременно в нескольких состояниях, поэтому при проведении вычислений не перебирают последовательно все возможные комбинации, как обычный компьютер, а делают вычисления моментально. В итоге та задача, на выполнение которой у обычного компьютера ушла бы неделя, может выполняться на квантовом компьютере за секунду.

В настоящее время усилия ведущих игроков сосредоточены в направлении разработки специализированных квантовых вычислителей для конкретной задачи (так делает D-Wave) и универсальных квантовых компьютеров для решения разных задач (IBM, Google).

Первый двухкубитный квантовый компьютер появился в 1998 году. Он работал на так называемом явлении «ядерного магнитного резонанса». Компьютер использовался в Оксфордском университете, в исследовательском центре IBM и Калифорнийским университетом в Беркли вместе с сотрудниками из Стэнфордского университета и Массачусетского технологического института. В 2018 году IBM предложила сторонним компаниям использовать ее 20-кубитный квантовый компьютер через облако. Google представила 53-кубитный компьютер Sycamore и заявила о достижении квантового превосходства. Квантовое превосходство подразумевает способность квантовых вычислительных устройств решать те проблемы, которые не могут решить классические компьютеры. По заявлению компании, Sycamore потребовалось около 200 секунд, чтобы выполнить выборку одного экземпляра схемы миллион раз. Самому мощному суперкомпьютеру Summit для той же задачи понадобилось бы около 10 тыс. лет.

Работа Sycamore

(Видео: Google)

Правда, в IBM оспорили утверждение Google. Компания утверждала, что Summit справится с задачей для Sycamore в худшем случае за 2,5 дня, но полученный ответ будет точнее, чем у квантового компьютера. Это позволил предположить теоретический анализ.

В России квантовые технологии также привлекают внимание исследователей. Так, в 2010 году для проведения исследовательских работ в этой области был организован Российский квантовый центр

В 2019 году была разработана сначала единая дорожная карта, а после — дорожная карта на каждое отдельное направление: квантовые вычисления, квантовые коммуникации и квантовые сенсоры. Руслан Юнусов, руководитель проектного офиса по квантовым технологиям госкорпорации «Росатом», говорит, что создание квантовых процессоров стало одной из основных задач дорожной карты, утвержденной в июле 2020 года. По его словам, работа ведется в нескольких плоскостях: развитии фундаментальной науки и первых прикладных внедрениях квантовых продуктов. Россия стала одним из 17 технологически развитых государств с официально утвержденной квантовой стратегией.

Индустрия 4.0

Что надо знать о квантовых вычислениях

Юнусов рассказал, что перед отечественными разработчиками стоит задача к 2025 году построить квантовые процессоры на четырех основных платформах: сверхпроводниках, ионах, атомах и фотонах, а также создать облачный софт, который позволил бы работать с этими процессорами удаленно, вне лабораторий. На реализацию дорожной карты предусмотрено финансирование в размере 23,7 млрд рублей.

Рабочий цикл мотора

Как было сказано выше, цикл состоит из четырех тактов. Во время первого такта кулачок распредвала толкает впускной клапан, открывая его, поршень начинает двигаться из крайнего верхнего положения вниз. При этом в цилиндре создается разрежение, благодаря которому в цилиндр поступает готовая рабочая смесь, либо воздух, если двигатель внутреннего сгорания оснащен системой непосредственного впрыска топлива (в таком случае горючее смешивается с воздухом непосредственно в камере сгорания).

Во время второго такта – сжатия – впускной клапан (или клапаны) закрывается, поршень меняет направление движения на противоположное, сжимая и нагревая рабочую смесь или воздух. По окончанию такта, системой зажигания на свечу подается электрический разряд, и образуется искра, поджигающая сжатую топливно-воздушную смесь.

Принцип воспламенения горючего у дизельного ДВС иной: в завершении такта сжатия, через форсунку, в камеру сгорания впрыскивается мелкораспыленное дизтопливо, где оно смешивается с нагретым воздухом, и происходит самовоспламенение получившейся смеси. Необходимо отметить, что по этой причине степень сжатия дизеля намного выше.

Коленвал тем временем повернулся еще на 180 градусов, сделав один полный оборот.

По достижении нижней мертвой точки начинается заключительный такт – выпуск. В начале данного такта кулачок распределительного вала толкает и открывает выпускной клапан, поршень движется вверх и выгоняет отработавшие газы из цилиндра.

ДВС, устанавливаемые на современные автомобили, имеют не один цилиндр, а несколько. Для равномерной работы мотора в один и тот же момент времени в разных цилиндрах выполняются разные такты, и каждые пол-оборота коленвала как минимум в одном цилиндре происходит рабочий ход (исключение составляют 2- и 3-цилиндровые моторы). Благодаря этому удается избавиться от лишних вибраций, уравновешивая силы, действующие на коленвал и обеспечить ровную работу ДВС. Шатунные шейки расположены на валу под равными углами относительно друг друга.

Верите ли вы в открытие В.Леоновым антигравитации и полет на Марс за 42 ч.?

Большая статья в последнем номере Вечерней Москвы. Вот выдержки из нее.

  1. Владимир Леонов — лауреат премии Правительства РФ в области науки и техники, включен в «100 лидеров промышленности и науки Содружества»
  2. «Россия успешно испытала антигравитационный двигатель Леонова».
  3. Леонов создал новую физику, открытие опубликовано за границей .
  4. мною был открыт квант пространства-времени — единственная четырехмерная частица в природе, являющаяся одновременно носителем времени и пространства.
  5. квантовый двигатель создает силу тяги, «отталкиваясь» от квантованного пространства-времен.
  6. При испытаниях в 2014 году аппарат с КД имел уже вертикальную силу тяги. сила вертикальной тяги КД уже составила более 500 кг, заставляя аппарат взлетать вертикально с ускорением более 10 g.
  7. полет до Марса на космическом корабле нового поколения с квантовым двигателем составит всего 42 часа, причем с полной компенсацией невесомости, до Луны — 3,6 часа. Максимальная скорость космического аппарата с квантовым двигателем может достигать 1000 км/с против 18 км/с у ракеты. Наступает новая эра в космических технологиях
  8. Как ученый я свое дело сделал, создал фундаментальную теорию, на базе которой предсказал новые фундаментальные эффекты и получил их. Материалы испытаний КД переданы в Роскосмос, и там дана положительная оценка квантовому двигателю. нам надо торопиться, поскольку НАСА также работает над созданием КД

Ну ладно, ещё пять копеек, хоть и после драки. Извините, будет длинно.

голоса

Рейтинг статьи

Закон сохранения энергии

В физике и правда ничего не исчезает бесследно. Чтобы это как-то выразить, используют законы сохранения. В случае с энергией — Закон сохранения энергии.

Закон сохранения энергии

Полная механическая энергия замкнутой системы остается постоянной.

Полная механическая энергия — это сумма кинетической и потенциальной энергий. Математически этот закон описывается так:

Закон сохранения энергии

Еполн. мех. = Еп + Eк = const

Еполн. мех. — полная механическая энергия системы

Еп — потенциальная энергия

Ек — кинетическая энергия

const — постоянная величина

Задачка раз

Мяч бросают вертикально вверх с поверхности Земли. Сопротивление воздуха пренебрежимо мало. Как изменится высота подъёма мяча при увеличении начальной скорости мяча в 2 раза?

Решение:

Должен выполняться закон сохранения энергии:

В начальный момент времени высота равна нулю, значит Еп = 0. В этот же момент времени Ек максимальна.

В конечный момент времени все наоборот — кинетическая энергия равна нулю, так как мяч уже не может лететь выше, а вот потенциальная максимальна, так как мяч докинули до максимальной высоты.

Это можно описать соотношением:

Еп1 + Ек1 = Еп2 + Ек2

0 + Ек1 = Еп2 + 0

Ек1 = Еп2

Разделим на массу левую и правую часть

Из соотношения видно, что высота прямо пропорциональна квадрату начальной скорости, значит при увеличении начальной скорости мяча в два раза, высота должна увеличиться в 4 раза.

Ответ: высота увеличится в 4 раза

Задачка два

Тело массой m, брошенное с поверхности земли вертикально вверх с начальной скоростью v, поднялось на максимальную высоту h. Сопротивление воздуха пренебрежимо мало. Чему будет равна полная механическая энергия тела на некоторой промежуточной высоте h?

Решение

По закону сохранения энергии полная механическая энергия изолированной системы остаётся постоянной. В максимальной точке подъёма скорость тела равна нулю, а значит, оно будет обладать исключительно потенциальной энергией Емех = Еп = mgh.

Таким образом, на некоторой промежуточной высоте h, тело будет обладать и кинетической и потенциальной энергией, но их сумма будет иметь значение Емех = mgh.

Ответ: Емех = mgh.

Задачка три

Мяч массой 100 г бросили вертикально вверх с поверхности земли с начальной скоростью 6 м/с. На какой высоте относительно земли мяч имел скорость 2 м/с? Сопротивлением воздуха пренебречь.

Решение:

Переведем массу из граммов в килограммы:

m = 100 г = 0,1 кг

У поверхности земли полная механическая энергия мяча равна его кинетической энергии:

Дж

На высоте h потенциальная энергия мяча есть разность полной механической энергии и кинетической энергии:

Дж

м

Ответ: мяч имел скорость 2 м/с на высоте 1,6 м

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector